

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 8x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24223a-24pvxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Additional System Resources

System resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, switch-mode pump, low-voltage detection, and power-on-reset (POR). Statements describing the merits of each system resource follow:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks may be generated using digital PSoC blocks as clock dividers.
- A multiply accumulate (MAC) provides a fast 8-bit multiplier with 32-bit accumulate, to assist in both general math and digital filters.

- The decimator provides a custom hardware filter for digital signal processing applications including the creation of Delta Sigma ADCs.
- The I²C module provides 100- and 400-kHz communication over two wires. slave, master, and multi-master are supported.
- Low-voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR circuit eliminates the need for a system supervisor.
- An internal 1.3 V reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch-mode pump generates normal operating voltages from a single 1.2 V battery cell, providing a low cost boost converter.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or 4 analog blocks. Table 1 on page 6 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in this table.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[2]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[2]	1 K	16 K
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[2]	512	8 K
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[2]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[2]	256	4 K
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[2,3]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[2,3]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

2. Limited analog functionality.

3. Two analog blocks and one CapSense[®].

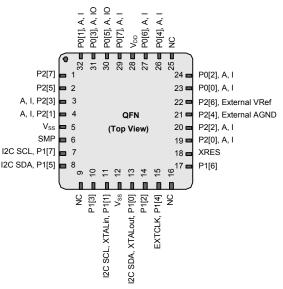
28-Pin Part Pinout

Table 4. 28-Pin PDIP, SSOP, and SOIC

Pin			Description	Figure 6. CY8C24423A 28-Pin PSoC Device	
No.	Digital	Analog	Name	Description	
1	I/O	Ι	P0[7]	Analog column mux input	A, I, P0[7] = 1 28 D V _{DD}
2	I/O	I/O	P0[5]	Analog column mux input and column output	
3	I/O	I/O	P0[3]	Analog column mux input and column output	A, IO, P0[3] = 3 26 = P0[4], A, I A, I, P0[1] = 4 25 = P0[2], A, I
4	I/O	I	P0[1]	Analog column mux input	P2[7] = 5 24 = P0[0], A, I
5	I/O		P2[7]		P2[5]
6	I/O		P2[5]		A, I, P2[3] = 7 SSOP 22 = P2[4], External AGND A, I, P2[1] = 8 21 = P2[2], A, I
7	I/O	I	P2[3]	Direct switched capacitor block input	A, I, P2[1] = 8 21 = P2[2], A, I SMP = 9 SOIC 20 = P2[0], A, I
8	I/O	I	P2[1]	Direct switched capacitor block input	12CSCL, P1[7] = 10 19 EXRES
9	Pov	wer	SMP	SMP connection to external components	I2C SDA, P1[5] ■ 11 18 ■ P1[6]
- 10				required	P1[3] ■ 12 17 ■ P1[4], EXTCLK I2C SCL, XTALin, P1[1] ■ 13 16 ■ P1[2]
10	I/O		P1[7]	I ² C SCL	V _{ss} = 14 15 = P1[0], XTALout, I2(SD.
11	I/O		P1[5]	I ² C SDA	
12	I/O		P1[3]	2	
13	I/O		P1[1]	XTALin, I ² C SCL, ISSP-SCLK ^[6]	
14		wer	V _{SS}	Ground connection.	
15	I/O		P1[0]	XTALout, I ² C SDA, ISSP-SDATA ^[6]	
16	I/O		P1[2]		
17	I/O		P1[4]	Optional EXTCLK	-
18	I/O		P1[6]		-
19	Inp	out	XRES	Active high external reset with internal pull-down	
20	I/O	I	P2[0]	Direct switched capacitor block input	Not for Production
21	I/O	I	P2[2]	Direct switched capacitor block input	
22	I/O		P2[4]	External analog ground (AGND)	
23	I/O		P2[6]	External voltage reference (V _{REF})	
24	I/O	I	P0[0]	Analog column mux input	
25	I/O	I	P0[2]	Analog column mux input	
26	I/O	I	P0[4]	Analog column mux input	
27	I/O	I	P0[6]	Analog column mux input]
28	Pov	wer	V_{DD}	Supply voltage]

LEGEND: A = Analog, I = Input, and O = Output.

 Note


 6. These are the ISSP pins, which are not high Z at POR. See the PSoC Technical Reference Manual for details.

32-Pin Part Pinout

Table 5. 32-Pin QFN^[7]

Pin No.	Ту	vpe	Pin	Description	1
PIII NO.	Digital	Analog	Name	Description	l
1	I/O		P2[7]		
2	I/O		P2[5]		1
3	I/O	I	P2[3]	Direct switched capacitor block input	1
4	I/O	1	P2[1]	Direct switched capacitor block input	1
5	Po	wer	V _{SS}	Ground connection	
6	Po	wer	SMP	SMP connection to external components required	
7	I/O		P1[7]	I ² C SCL	1
8	I/O		P1[5]	I ² C SDA	
9			NC	No connection. Pin must be left floating	
10	I/O		P1[3]		
11	I/O		P1[1]	XTALin, I ² C SCL, ISSP-SCLK ^[8]	
12	Po	wer	V _{SS}	Ground Connection	
13	I/O		P1[0]	XTALout, I ² C SDA, ISSP-SDATA ^[8]	
14	I/O		P1[2]		
15	I/O		P1[4]	Optional EXTCLK	
16		•	NC	No connection. Pin must be left floating	
17	I/O		P1[6]		
18	In	put	XRES	Active high external reset with internal pull-down	
19	I/O	I	P2[0]	Direct switched capacitor block input	
20	I/O	I	P2[2]	Direct switched capacitor block input	
21	I/O		P2[4]	External AGND	
22	I/O		P2[6]	External V _{REF}	
23	I/O	I	P0[0]	Analog column mux input	
24	I/O	I	P0[2]	Analog column mux input	
25		•	NC	No connection. Pin must be left floating	
26	I/O	I	P0[4]	Analog column mux input	
27	I/O	I	P0[6]	Analog column mux input	
28	Po	wer	V _{DD}	Supply voltage	1
29	I/O	I	P0[7]	Analog column mux input	
30	I/O	I/O	P0[5]	Analog column mux input and column output	1
31	I/O	I/O	P0[3]	Analog column mux input and column output	
32	I/O	I	P0[1]	Analog column mux input	1
LEOFND.	$\Lambda = \Lambda$ polog	I = Input and			~

Figure 7. CY8C24423A 32-Pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

Notes

- The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not high Z at POR. See the PSoC Technical Reference Manual for details.

56-Pin Part Pinout

The 56-pin SSOP part is for the CY8C24000A On-Chip Debug (OCD) PSoC device. **Note** This part is only used for in-circuit debugging. It is NOT available for production.

Table 6. 56-Pin SSOP OCD

	Tv	ре	Pin	
Pin No.	Digital	Analog	Name	Description
1	-		NC	No connection. Pin must be left floating
2	I/O		P0[7]	Analog column mux input
3	I/O	I	P0[5]	Analog column mux input and column output
4	I/O	I	P0[3]	Analog column mux input and column output
5	I/O	I	P0[1]	Analog column mux input
6	I/O		P2[7]	
7	I/O		P2[5]	
8	I/O	I	P2[3]	Direct switched capacitor block input
9	I/O	I	P2[1]	Direct switched capacitor block input
10		•	NC	No connection. Pin must be left floating
11			NC	No connection. Pin must be left floating
12			NC	No connection. Pin must be left floating
13			NC	No connection. Pin must be left floating
14	OCD		OCDE	OCD even data I/O
15	OCD		OCDO	OCD odd data output
16	Pov	wer	SMP	SMP connection to required external compo- nents
17			NC	No connection. Pin must be left floating
18			NC	No connection. Pin must be left floating
19			NC	No connection. Pin must be left floating
20			NC	No connection. Pin must be left floating
21			NC	No connection. Pin must be left floating
22			NC	No connection. Pin must be left floating
23	I/O		P1[7]	I ² C SCL
24	I/O		P1[5]	I ² C SDA
25			NC	No connection. Pin must be left floating
26	I/O		P1[3]	
27	I/O		P1[1]	XTALin, I ² C SCL, ISSP-SCLK ^[9]
28	Pov	wer	V _{DD}	Supply voltage
29			NC	No connection. Pin must be left floating
30			NC	No connection. Pin must be left floating
31	I/O		P1[0]	XTALout, I ² C SDA, ISSP-SDATA ^[9]
32	I/O		P1[2]	
33	I/O		P1[4]	Optional EXTCLK
34	I/O		P1[6]	
35			NC	No connection. Pin must be left floating
36			NC	No connection. Pin must be left floating
37			NC	No connection. Pin must be left floating
38			NC	No connection. Pin must be left floating
39			NC	No connection. Pin must be left floating
40			NC	No connection. Pin must be left floating
41		out	XRES	Active high external reset with internal pull-down.
42	OCD		HCLK	OCD high speed clock output.
43	OCD		CCLK	OCD CPU clock output.
44			NC	No connection. Pin must be left floating
45			NC	No connection. Pin must be left floating
46			NC	No connection. Pin must be left floating
47			NC	No connection. Pin must be left floating
48	I/O	I	P2[0]	Direct switched capacitor block input.
49	I/O	I	P2[2]	Direct switched capacitor block input.
50	I/O		P2[4]	External AGND.
51	I/O		P2[6]	External V _{REF} .
52	I/O	I	P0[0]	Analog column mux input.
53	I/O	I	P0[2]	Analog column mux input and column output.
54	I/O	I	P0[4]	Analog column mux input and column output.
55	I/O	I	P0[6]	Analog column mux input.
56	Pov	wer	V _{DD}	Supply voltage.
LECEND			+ 0 - 0 + 1	out and OCD = On-Chin Debug

Figure 8. CY8C24000A 56-Pin PSoC Device

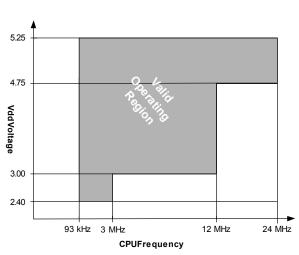
Г	0]
NC	1		56	
AI, P0[7] =	2		55	P0[6], AI
AIO, P0[5]	3		54	P0[4], AIO
AIO, P0[3]	4		53	P0[2], AIO
AI, P0[1]	5		52	P0[0], AI
P2[7]	6		51	P2[6], External VRef
P2[5]	7		50	P2[4], External AGND
AI, P2[3]	8		49	■ P2[2], AI
AI, P2[1]	9		48	P2[0], AI
NC	10		47	■ NC
NC	11		46	■ NC
NC	12		45	■ NC
NC=	13		44	■ NC
OCDE	14	SSOP	43	- CCLK
OCDO	15	0001	42	HCLK
SMP=	16		41	NRES
NC	17		40	■ NC
NC	18		39	NC
NC	19		38	NC
NC	20		37	■ NC
NC=	21		36	NC
NC	22		35	NC
I2C SCL, P1[7]	23		34	P P1[6]
I2C SDA, P1[5]	24		33	■ P1[4], EXTCLK
NC	25			P1[2]
P1[3] =	26		31	P1[0], XTALOut, I2C SDA, SDATA
I2C SCL, XTALIn, P1[1]	27			■NC
Vss■	28		29	■ NC
L				J

SCLK,

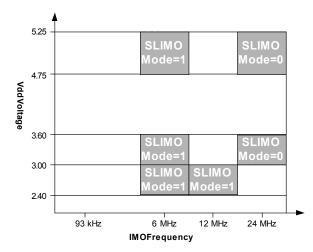
LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.

Note

9. These are the ISSP pins, which are not high Z at POR. See the PSoC Technical Reference Manual for details.



Electrical Specifications


This section presents the DC and AC electrical specifications of the CY8C24x23A PSoC device. For the latest electrical specifications, check if you have the most recent datasheet by visiting the website at http://www.cypress.com.

Specifications are valid for –40 $^\circ C \le T_A \le 85 \ ^\circ C$ and $T_J \le 100 \ ^\circ C,$ except where noted.

Refer to Table 29 on page 37 for the electrical specifications for the IMO using SLIMO mode.

Figure 8. IMO Frequency Trim Options

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+100	°C	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrades reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
t _{BAKETIME}	Bake time	See package label	-	72	Hours	
T _A	Ambient temperature with power applied	-40	_	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	$V_{SS} - 0.5$	_	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tri-state	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
ESD	Electrostatic discharge voltage	2000	-	-	V	Human body model ESD.
LU	Latch up current	_	-	200	mA	

Table 9. Absolute Maximum Ratings

Table 16. 2.7-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	1.65 1.32 –	10 8 -	mV mV mV	Power = high, Opamp bias = high setting is not allowed for 2.7 V V _{DD} operation.
TCV _{OSOA}	Average input offset voltage drift	-	7.0	35.0	μV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	20	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0.2	-	V _{DD} – 0.2	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low	60 60 80		- - -	dB dB dB	Specification is applicable at low Opamp bias. For high Opamp bias mode, (except high power, high Opamp bias), minimum is 60 dB.
V _{OHIGHOA}	High output voltage swing (internal signals) Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low	V _{DD} - 0.2 V _{DD} - 0.2 V _{DD} - 0.2		- - -	V V V	Power = high, Opamp bias = high setting is not allowed for 2.7 V V _{DD} operation.
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low	- - -		0.2 0.2 0.2	V V V	Power = high, Opamp bias = high setting is not allowed for 2.7 V V _{DD} operation.
I _{SOA}	Supply current (including associated AGND buffer) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high	- - - - -	150 300 600 1200 2400 -	200 400 800 1600 3200 -	μΑ μΑ μΑ μΑ	Power = high, Opamp bias = high setting is not allowed for 2.7 V V _{DD} operation.
PSRR _{OA}	Supply voltage rejection ratio	64	80	-	dB	$V_{SS} \leq V_{IN} \leq (V_{DD}-2.25) \text{ or } \\ (V_{DD}-1.25 \text{ V}) \leq V_{IN} \leq V_{DD}$

DC Low Power Comparator Specifications

Table 17 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V at 25 °C and are for design guidance only.

Table 17.	DC Low Power	Comparator	Specifications
-----------	---------------------	------------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{REFLPC}	Low power comparator (LPC) reference voltage range	0.2	-	V _{DD} – 1	V	
I _{SLPC}	LPC supply current	-	10	40	μA	
V _{OSLPC}	LPC voltage offset	-	2.5	30	mV	

DC Switch Mode Pump Specifications

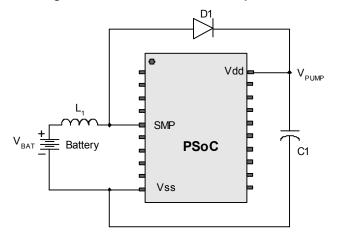

Table 21 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 21.	DC Switch Mode	Pump (SMP) Specifications
-----------	----------------	-----------	------------------

Symbol	Description	Min	Тур	Мах	Units	Notes
V _{PUMP} 5 V	5 V output voltage from pump	4.75	5.0	5.25	V	Configuration listed in footnote. ^[11] Average, neglecting ripple. SMP trip voltage is set to 5.0 V.
V _{PUMP} 3 V	3.3 V output voltage from pump	3.00	3.25	3.60	V	Configuration listed in footnote. ^[11] Average, neglecting ripple. SMP trip voltage is set to 3.25 V.
V _{PUMP} 2 V	2.6 V output voltage from pump	2.45	2.55	2.80	V	Configuration listed in footnote. ^[11] Average, neglecting ripple. SMP trip voltage is set to 2.55 V.
I _{PUMP}	$\begin{array}{l} \text{Available output current} \\ \text{V}_{\text{BAT}} = 1.8 \text{ V}, \text{V}_{\text{PUMP}} = 5.0 \text{ V} \\ \text{V}_{\text{BAT}} = 1.5 \text{ V}, \text{V}_{\text{PUMP}} = 3.25 \text{ V} \\ \text{V}_{\text{BAT}} = 1.3 \text{ V}, \text{V}_{\text{PUMP}} = 2.55 \text{ V} \end{array}$	5 8 8		- - -	mA mA mA	Configuration listed in footnote. ^[11] SMP trip voltage is set to 5.0 V. SMP trip voltage is set to 3.25 V. SMP trip voltage is set to 2.55 V.
V _{BAT} 5 V	Input voltage range from battery	1.8	-	5.0	V	Configuration listed in footnote. ^[11] SMP trip voltage is set to 5.0 V.
V _{BAT} 3 V	Input voltage range from battery	1.0	-	3.3	V	Configuration listed in footnote. ^[11] SMP trip voltage is set to 3.25 V.
V _{BAT} 2 V	Input voltage range from battery	1.0	-	3.0	V	Configuration listed in footnote. ^[11] SMP trip voltage is set to 2.55 V.
V _{BATSTART}	Minimum input voltage from battery to start pump	1.2	-	-	V	Configuration listed in footnote. ^[11] 0 °C \leq T _A \leq 100. 1.25 V at T _A = -40 °C
ΔV_{PUMP} Line	Line regulation (over V _{BAT} range)	-	5	-	%V _O	Configuration listed in footnote. ^[11] V_O is the V_{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 26 on page 35.
ΔV_{PUMP_Load}	Load regulation	_	5	-	%V _O	Configuration listed in footnote. ^[11] V_O is the " V_{DD} value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 26 on page 35.
ΔV_{PUMP_Ripple}	Output voltage ripple (depends on capacitor/load)	-	100	-	mVpp	Configuration listed in footnote. ^[11] Load is 5 mA.
E ₃	Efficiency	35	50	-	%	Configuration listed in footnote. ^[11] Load is 5 mA. SMP trip voltage is set to 3.25 V.
E ₂	Efficiency	-	_	-		
F _{PUMP}	Switching frequency	-	1.3	-	MHz	
DC _{PUMP}	Switching duty cycle	-	50	_	%	

Figure 10. Basic Switch Mode Pump Circuit

DC Analog Reference Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

The guaranteed specifications for RefHI and RefLo are measured through the Analog Continuous Time PSoC blocks. The power levels for RefHi and RefLo refer to the Analog Reference Control register. AGND is measured at P2[4] in AGND bypass mode. Each Analog Continuous Time PSoC block adds a maximum of 10 mV additional offset error to guaranteed AGND specifications from the local AGND buffer. Reference control power can be set to medium or high unless otherwise noted.

Note Avoid using P2[4] for digital signaling when using an analog resource that depends on the analog reference. Some coupling of the digital signal may appear on the AGND.

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Units
0b000	RefPower = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.136	V _{DD} /2 + 1.288	V _{DD} /2 + 1.409	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2-0.138	$V_{DD}/2 + 0.003$	$V_{DD}/2 + 0.132$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2-1.417	V _{DD} /2 – 1.289	V _{DD} /2 – 1.154	V
	RefPower = high	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.202	V _{DD} /2 + 1.290	V _{DD} /2 + 1.358	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.055$	V _{DD} /2 + 0.001	$V_{DD}/2 + 0.055$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2-1.369	V _{DD} /2 – 1.295	V _{DD} /2 – 1.218	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.211	V _{DD} /2 + 1.292	V _{DD} /2 + 1.357	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.055$	V _{DD} /2	$V_{DD}/2 + 0.052$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2-1.368	V _{DD} /2 – 1.298	V _{DD} /2 – 1.224	V
	RefPower = medium	V _{REFHI}	Ref High	V _{DD} /2 + Bandgap	V _{DD} /2 + 1.215	V _{DD} /2 + 1.292	V _{DD} /2 + 1.353	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	$V_{DD}/2 - 0.040$	$V_{DD}/2 - 0.001$	$V_{DD}/2 + 0.033$	V
		V _{REFLO}	Ref Low	V _{DD} /2 – Bandgap	V _{DD} /2-1.368	V _{DD} /2 – 1.299	V _{DD} /2 – 1.225	V
0b001	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.076	P2[4]+P2[6]- 0.021	P2[4]+P2[6]+ 0.041	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.025	P2[4]-P2[6]+ 0.011	P2[4]-P2[6]+ 0.085	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.069	P2[4]+P2[6]- 0.014	P2[4]+P2[6]+ 0.043	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.029	P2[4]-P2[6]+ 0.005	P2[4]-P2[6]+ 0.052	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.072	P2[4]+P2[6]- 0.011	P2[4]+P2[6]+ 0.048	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.031	P2[4]-P2[6]+ 0.002	P2[4]-P2[6]+ 0.057	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] + P2[6] - 0.070	P2[4]+P2[6]- 0.009	P2[4]+P2[6]+ 0.047	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 1.3 V)	P2[4] – P2[6] – 0.033	P2[4]-P2[6]+ 0.001	P2[4]-P2[6]+ 0.039	V

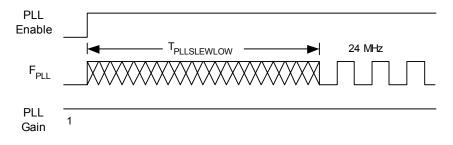
Table 22. 5-V DC Analog Reference Specifications

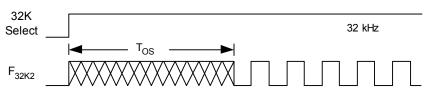
Table 23. 3.3-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b100	All power settings Not allowed at 3.3 V	-	-	-	-	-	-	-
0b101	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.211	P2[4] + 1.285	P2[4] + 1.348	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.354	P2[4] – 1.290	P2[4] – 1.197	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.209	P2[4] + 1.289	P2[4] + 1.353	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.352	P2[4] – 1.294	P2[4] – 1.222	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.218	P2[4] + 1.291	P2[4] + 1.351	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.351	P2[4] – 1.296	P2[4] – 1.224	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.215	P2[4] + 1.292	P2[4] + 1.354	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.352	P2[4] – 1.297	P2[4] – 1.227	V
0b110	RefPower = high	V _{REFHI}	Ref High	2 × Bandgap	2.460	2.594	2.695	V
	Opamp bias = high	V _{AGND}	AGND	Bandgap	1.257	1.302	1.335	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.01	V _{SS} + 0.029	V
	RefPower = high	V _{REFHI}	Ref High	2 × Bandgap	2.462	2.592	2.692	V
	Opamp bias = low	V _{AGND}	AGND	Bandgap	1.256	1.301	1.332	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.005	V _{SS} + 0.017	V
	RefPower = medium	V _{REFHI}	Ref High	2 × Bandgap	2.473	2.593	2.682	V
	Opamp bias = high	V _{AGND}	AGND	Bandgap	1.257	1.301	1.330	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.014	V
	RefPower = medium	V _{REFHI}	Ref High	2 × Bandgap	2.470	2.594	2.685	V
	Opamp bias = low	V _{AGND}	AGND	Bandgap	1.256	1.300	1.332	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.012	V
0b111	All power settings Not allowed at 3.3 V	-	_	-	_	-	_	-


Table 30. 2.7-V AC Chip-Level Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
F _{IMO12}	IMO frequency for 12 MHz	11.5	12	12.7 ^[27, 28]	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 8 on page 18. SLIMO mode = 1.
F _{IMO6}	IMO frequency for 6 MHz	5.5	6	6.5 ^[27, 28]	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 8 on page 18. SLIMO mode = 1.
F _{CPU1}	CPU frequency (2.7 V nominal)	0.937	3	3.15 ^[27]	MHz	SLIMO mode = 0.
F _{BLK27}	Digital PSoC block frequency (2.7 V nominal)	0	12	12.7 ^[27, 28]	MHz	Refer to the AC Digital Block Specifications.
F _{32K1}	ILO frequency	8	32	96	kHz	
F _{32K_U}	ILO untrimmed frequency	5	-	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on timing this
t _{XRST}	External reset pulse width	10	-	-	μs	
DC12M	12 MHz duty cycle	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.7	MHz	
SR _{POWER_UP}	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power-up.
t _{POWERUP}	Time from end of POR to CPU executing code	-	16	100	ms	Power-up from 0 V. See the System Resets section of the PSoC Technical Reference Manual.
t _{jit_IMO} ^[29]	12 MHz IMO cycle-to-cycle jitter (RMS)	_	400	1000	ps	N = 32
	12 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	600	1300	ps	
	12 MHz IMO period jitter (RMS)	-	100	500	ps	
t _{jit_PLL} ^[29]	12 MHz IMO cycle-to-cycle jitter (RMS)	_	400	1000	ps	N = 32
	12 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	700	1300		
	12 MHz IMO period jitter (RMS)	-	300	500		


Notes 27. 2.4 V < V_{DD} < 3.0 V. 28. Refer to application note Adjusting PSoC[®] Trims for 3.3 V and 2.7 V Operation – AN2012 for information on trimming for operation at 3.3 V. 29. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.



AC Digital Block Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Function	Description	Min	Тур	Max	Unit	Notes
All functions	Block input clock frequency					
	$V_{DD} \ge 4.75 \text{ V}$	-	_	50.4	MHz	
	V _{DD} < 4.75 V	-	_	25.2	MHz	
Timer	Input clock frequency					
	No capture, $V_{DD} \ge 4.75 V$	-	_	50.4	MHz	
	No capture, V _{DD} < 4.75 V	-	_	25.2	MHz	
	With capture	-	—	25.2	MHz	
	Capture pulse width	50 ^[30]	-	-	ns	
Counter	Input clock frequency					
	No enable input, $V_{DD} \ge 4.75 \text{ V}$	-	_	50.4	MHz	
	No enable input, V _{DD} < 4.75 V	-	_	25.2	MHz	
	With enable input	-	_	25.2	MHz	
	Enable input pulse width	50 ^[30]	_	-	ns	
Dead Band	Kill pulse width					
	Asynchronous restart mode	20	—	-	ns	
	Synchronous restart mode	50 ^[30]	_	_	ns	
	Disable mode	50 ^[30]	_	_	ns	
	Input clock frequency					
	$V_{DD} \ge 4.75 \text{ V}$	-	_	50.4	MHz	
	V _{DD} < 4.75 V	-	_	25.2	MHz	
CRCPRS	Input clock frequency					
(PRS Mode)	$V_{DD} \ge 4.75 \text{ V}$	-	—	50.4	MHz	
mode)	V _{DD} < 4.75 V	-	—	25.2	MHz	
CRCPRS (CRC Mode)	Input clock frequency	_	_	25.2	MHz	
SPIM	Input clock frequency	-	-	8.2	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	_	—	4.1	MHz	The input clock is the SPI SCLK in SPIS mode.
	Width of SS_negated between transmissions	50 ^[30]	_	-	ns	
Transmitter	Input clock frequency					The baud rate is equal to the input clock frequency
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	_	50.4	MHz	divided by 8.
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	_	25.2	MHz	
	V _{DD} < 4.75 V	-	_	25.2	MHz	
Receiver	Input clock frequency					The baud rate is equal to the input clock frequency divided by 8.
	$V_{DD} \ge 4.75$ V, 2 stop bits	_	-	50.4	MHz	
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	-	25.2	MHz	
	V _{DD} < 4.75 V	-	-	25.2	MHz	1

Note 30.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

Table 38. 2.7-V AC Digital Block Specifications

Function	Description	Min	Тур	Max	Units	Notes
All Functions	Block input clock frequency	-	-	12.7	MHz	2.4 V < V _{DD} < 3.0 V
Timer	Capture pulse width	100 ^[31]	-	-	ns	
	Input clock frequency, with or without capture	-	-	12.7	MHz	
Counter	Enable Input Pulse Width	100 ^[31]	-	-	ns	
	Input clock frequency, no enable input	-	-	12.7	MHz	
	Input clock frequency, enable input	-	-	12.7	MHz	
Dead Band	Kill pulse width:					
	Asynchronous restart mode	20	_	_	ns	
	Synchronous restart mode	100 ^[31]	-	_	ns	
	Disable mode	100 ^[31]	-	_	ns	
	Input clock frequency	_	-	12.7	MHz	
CRCPRS (PRS Mode)	Input clock frequency	-	_	12.7	MHz	
CRCPRS (CRC Mode)	Input clock frequency	-	_	12.7	MHz	
SPIM	Input clock frequency	-	-	6.35	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock frequency	-	-	4.23	MHz	
	Width of SS_ Negated between transmissions	100 ^[31]	_	-	ns	
Transmitter	Input clock frequency	-	_	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.
Receiver	Input clock frequency	-	_	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.

Table 44. 2.7-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1 ^[34]	0.093	-	12.3	MHz	
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater ^[35]	0.186	-	12.3	MHz	
-	High period with CPU clock divide by 1	41.7	-	5300	ns	
-	Low period with CPU clock divide by 1	41.7	-	-	ns	
-	Power-up IMO to switch	150	-	-	μs	

AC Programming Specifications

Table 45 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 45. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RSCLK}	Rise time of SCLK	1	-	20	ns	
t _{FSCLK}	Fall time of SCLK	1	-	20	ns	
t _{SSCLK}	Data setup time to falling edge of SCLK	40	-	-	ns	
t _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
t _{ERASEB}	Flash erase time (block)	-	20	-	ms	
t _{WRITE}	Flash block write time	-	80	-	ms	
t _{DSCLK}	Data out delay from falling edge of SCLK	-	-	45	ns	V _{DD} > 3.6
t _{DSCLK3}	Data out delay from falling edge of SCLK	-	-	50	ns	$3.0 \leq V_{DD} \leq 3.6$
t _{DSCLK2}	Data out delay from falling edge of SCLK	-	-	70	ns	$2.4 \leq V_{DD} \leq 3.0$
t _{ERASEALL}	Flash erase time (Bulk)	-	20	-	ms	Erase all blocks and protection fields at once
t _{PROGRAM_HOT}	Flash block erase + flash block write time	-	-	200 ^[36]	ms	$0~^\circ C \leq Tj \leq 100~^\circ C$
t _{PROGRAM_COLD}	Flash block erase + flash block write time	-	-	400 ^[36]	ms	$-40~^\circ C \le Tj \le 0~^\circ C$

Notes

34. Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.

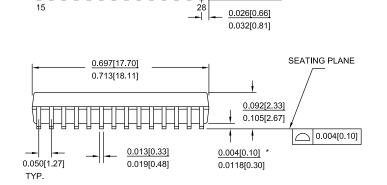
^{35.} If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.

^{36.} For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing Refer to the Flash APIs application note Design Aids – Reading and Writing PSoC[®] Flash – AN2015 for more information.

HHHH

ННН

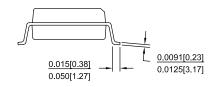
Н


Figure 24. 28-Pin (300-Mil) Molded SOIC

- 1. JEDEC STD REF MO-119
- BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH, BUT DOES INCLUDE MOLD MISMATCH AND ARE MEASURED AT THE MOLD PARTING LINE. MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.010 in (0.254 mm) PER SIDE

3. DIMENSIONS IN INCHES

MIN.
MAX


Ð

PIN 1 ID

0.291[7.39] 0.300[7.62]

> 0.394[10.01] 0.419[10.64]

PART#					
S28.3	STANDARD PKG.				
SZ28.3	LEAD FREE PKG.				
SX28.3	LEAD FREE PKG.				

51-85026 *H

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular programmer base
- Three programming module cards
- MiniProg programming unit
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Accessories (Emulation and Programming)

Table 51. Emulation and Programming Accessories

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

Note CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 programmer unit
- PSoC ISSP software CD
- 110 ~ 240 V power supply, Euro-Plug adapter
- USB 2.0 cable

Part Number	Pin Package	Flex-Pod Kit ^[40]	Foot Kit ^[41]	Adapter ^[42]
All non-QFN	All non-QFN	CY3250-24X23A	CY3250-8DIP-FK, CY3250-8SOIC-FK, CY3250-20DIP-FK, CY3250-20SOIC-FK, CY3250-20SSOP-FK, CY3250-28DIP-FK, CY3250-28SOIC-FK, CY3250-28SSOP-FK	Adapters can be found at http://www.emulation.com.

Notes

40. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

41. Foot kit includes surface mount feet that can be soldered to the target PCB.

^{42.} Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

Document Conventions

Units of Measure

Table 54 lists the unit sof measures.

Table 54. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
kB	1024 bytes	μs	microsecond
dB	decibels	ms	millisecond
°C	degree Celsius	ns	nanosecond
fF	femto farad	ps	picosecond
pF	picofarad	μV	microvolts
kHz	kilohertz	mV	millivolts
MHz	megahertz	mVpp	millivolts peak-to-peak
rt-Hz	root hertz	nV	nanovolts
kΩ	kilohm	V	volts
Ω	ohm	μW	microwatts
μA	microampere	W	watt
mA	milliampere	mm	millimeter
nA	nanoampere	ppm	parts per million
pА	pikoampere	%	percent
mH	millihenry		· ·

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	10.A logic signal having its asserted state as the logic 1 state. 11.A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
API (Application Programming Interface)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
Bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

Errata

This section describes the errata for the CY8C24xxxA device family. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Ordering Information
CY8C24123A	CY8C24123A-24PXI
	CY8C24123A-24SXI
	CY8C24123A-24SXIT
	CY8C24223A-24PXI
	CY8C24223A-24PVXI
	CY8C24223A-24PVXIT
	CY8C24223A-24SXI
	CY8C24223A-24SXIT
	CY8C24423A-24PXI
	CY8C24423A-24PVXI
	CY8C24423A-24PVXIT
	CY8C24423A-24SXI
	CY8C24423A-24SXIT
	CY8C24423A-24LFXI
	CY8C24423A-24LTXI
	CY8C24423A-24LTXIT
	CY8C24000A-24PVXI

CY8C24123A Qualification Status

Product Status: Production

CY8C24123A Errata Summary

The following table defines the errata applicability to available CY8C24123A family devices.

Items	Part Number	Silicon Revision	Fix Status
[1.]. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes	CY8C24123A		No silicon fix planned. Workaround is required.

1. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes

Problem Definition

Asynchronous Digital Communications Interfaces may fail framing beyond 0 to 70 °C. This problem does not affect end-product usage between 0 and 70 °C.

Parameters Affected

The IMO frequency tolerance. The worst case deviation when operated below 0° C and above +70 °C and within the upper and lower datasheet temperature range is $\pm 5\%$.

Trigger Condition(S)

The asynchronous Rx/Tx clock source IMO frequency tolerance may deviate beyond the data sheet limit of $\pm 2.5\%$ when operated beyond the temperature range of 0 to +70 °C.

- Scope of Impact
 - This problem may affect UART, IrDA, and FSK implementations.
- Workaround

Implement a quartz crystal stabilized clock source on at least one end of the asynchronous digital communications interface.

Fix Status

Silicon fix is not planned. The workaround mentioned above should be used.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2004-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-12028 Rev. *V

Revised January 13, 2015

Page 71 of 71

PSoC Designer™ is a trademark and PSoC® is a registered trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.