E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 8x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24223a-24sxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pinouts

This section describes, lists, and illustrates the CY8C24x23A PSoC device pins and pinout configurations. Every port pin (labeled with a "P") is capable of digital I/O. However, V_{SS} , V_{DD} , SMP, and XRES are not capable of digital I/O.

8-Pin Part Pinout

Pin	Ту	ре	Pin	Description
No.	Digital	Analog	Name	Description
1	I/O	I/O	P0[5]	Analog column mux input and column output
2	I/O	I/O	P0[3]	Analog column mux input and column output
3	I/O		P1[1]	Crystal input (XTALin), I ² C serial clock (SCL), ISSP-SCLK ^[4]
4	Pov	wer	V _{SS}	Ground connection
5	I/O		P1[0]	Crystal output (XTALout), I ² C serial data (SDA), ISSP-SDATA ^[4]
6	I/O	I	P0[2]	Analog column mux input
7	I/O	I	P0[4]	Analog column mux input
8	Pov	wer	V _{DD}	Supply voltage

Table 2. 8-Pin PDIP and SOIC

LEGEND: A = Analog, I = Input, and O = Output.

32-Pin Part Pinout

Table 5. 32-Pin QFN^[7]

Din No	Ту	pe	Pin	Description			
1 111 140.	Digital	Analog	Name	Description			
1	I/O		P2[7]				
2	I/O		P2[5]				
3	I/O	I	P2[3]	Direct switched capacitor block input			
4	I/O	I	P2[1]	Direct switched capacitor block input			
5	Po	wer	V _{SS}	Ground connection			
6	Po	wer	SMP	SMP connection to external components required			
7	I/O		P1[7]	I ² C SCL			
8	I/O		P1[5]	I ² C SDA			
9		•	NC	No connection. Pin must be left floating			
10	I/O		P1[3]				
11	I/O		P1[1]	XTALin, I ² C SCL, ISSP-SCLK ^[8]			
12	Po	wer	V _{SS}	Ground Connection			
13	I/O		P1[0]	XTALout, I ² C SDA, ISSP-SDATA ^[8]			
14	I/O		P1[2]				
15	I/O		P1[4]	Optional EXTCLK			
16			NC	No connection. Pin must be left floating			
17	I/O		P1[6]				
18	Inj	put	XRES	Active high external reset with internal pull-down			
19	I/O	I	P2[0]	Direct switched capacitor block input			
20	I/O	I	P2[2]	Direct switched capacitor block input			
21	I/O		P2[4]	External AGND			
22	I/O		P2[6]	External V _{REF}			
23	I/O	I	P0[0]	Analog column mux input			
24	I/O	I	P0[2]	Analog column mux input			
25		•	NC	No connection. Pin must be left floating			
26	I/O	I	P0[4]	Analog column mux input			
27	I/O	I	P0[6]	Analog column mux input			
28	Po	wer	V _{DD}	Supply voltage			
29	I/O	I	P0[7]	Analog column mux input			
30	I/O	I/O	P0[5]	Analog column mux input and column output			
31	I/O	I/O	P0[3]	Analog column mux input and column output			
32	I/O	I	P0[1]	Analog column mux input			

Figure 7. CY8C24423A 32-Pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

Notes

- The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not high Z at POR. See the PSoC Technical Reference Manual for details.

Table 0-1. Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASC10CR0	80	RW		C0	
PRT0DM1	01	RW		41		ASC10CR1	81	RW		C1	
PRT0IC0	02	RW		42		ASC10CR2	82	RW		C2	
PRT0IC1	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DM0	04	RW		44		ASD11CR0	84	RW		C4	
PRT1DM1	05	RW		45		ASD11CR1	85	RW		C5	
PRT1IC0	06	RW		46		ASD11CR2	86	RW		C6	
PRT1IC1	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DM0	08	RW		48			88			C8	
PRT2DM1	09	RW		49			89			C9	
PRT2IC0	0A	RW		4A			8A			CA	
PRT2IC1	0B	RW		4B			8B			CB	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F		4000000	8F	DW/		CF	DW
	10			50		ASD20CR0	90	RW	GDI_O_IN	DU	RW
-	11			51		ASD20CR1	91	RW	GDI_E_IN	D1	RW
	12			52		ASD20CR2	92	RW	GDI_O_OU	D2	RW
	13			53		ASD20CR3	93	RW	GDI_E_00	D3	RW
	14			54		ASC21CRU	94	RW		D4	
	15			55		ASC21CR1	95	RW		D5	
	10			50		ASC21CR2	90			D0	
	17			59		ASCZICKS	97				
	10			50			90			D0	
	19			59			99			D9	
	1A 1B			5R			9A 9B			DB	
	10			50			90			DC	
	10	-		5D		-	90		OSC GO EN	מס	RW
	1E			5E			9F		OSC_CR4	DE	RW
	1E			5E			9F		OSC CR3	DF	RW
DBB00FN	20	RW	CLK CR0	60	RW		A0		OSC CR0	E0	RW
DBB00IN	21	RW	CLK CR1	61	RW		A1		OSC CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC CR2	E2	RW
	23		AMD CR0	63	RW		A3		VLT CR	E3	RW
DBB01FN	24	RW	_	64			A4		VLT CMP	E4	R
DBB01IN	25	RW		65			A5		_	E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW		6C			AC			EC	
DCB03IN	2D	RW		6D			AD			ED	
DCB03OU	2E	RW		6E			AE			EE	
	2F			6F			AF			EF	
	30		ACB00CR3	70	RW	RDIORI	B0	RW		F0	
	31		ACB00CR0	71	RW	RDIOSYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDIOIS	В2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		ACB01CR3	74	RW	RDIOLT1	В4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36	L	ACB01CR1	/6	RW	KDI0RO1	B6	RW		F6	DI
	3/	ļ	ACB01CR2	//	RW		в/		CPU_F	F/	KL
	38	ļ		78			88			F8	
	39			79			ВЭ			F9	
	3A 2D			7A 7D			BA				
	30		l	70						LR LR	
	30	ļ	l	70							
	3D 3E	ļ	}	70 7E			BE			FU	#
	3E	<u> </u>		7E			BE			FE	# #
Blank fields or		not ho occ		''		# Access is hit of			01 0_00R0		π

nk fields are Reserved and must not be accessed.

Access is bit specific.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C24x23A PSoC device. For the latest electrical specifications, check if you have the most recent datasheet by visiting the website at http://www.cypress.com.

Specifications are valid for –40 $^\circ C \le T_A \le 85 \ ^\circ C$ and $T_J \le 100 \ ^\circ C,$ except where noted.

Refer to Table 29 on page 37 for the electrical specifications for the IMO using SLIMO mode.

Figure 8. IMO Frequency Trim Options

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+100	ç	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrades reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
t _{ВАКЕТІМЕ}	Bake time	See package label	-	72	Hours	
T _A	Ambient temperature with power applied	-40	-	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	$V_{\rm SS}-0.5$	-	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tri-state	$V_{SS} - 0.5$	١	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
ESD	Electrostatic discharge voltage	2000	_	-	V	Human body model ESD.
LU	Latch up current	-	-	200	mA	

Table 9. Absolute Maximum Ratings

Table 23. 3.3-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Мах	Units
0b100	All power settings Not allowed at 3.3 V	-	_	-	-	-	-	-
0b101	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.211	P2[4] + 1.285	P2[4] + 1.348	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.354 P2[4] – 1.290		P2[4] – 1.197	V
	RefPower = high Opamp bias = low	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.209	P2[4] + 1.289	P2[4] + 1.353	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.352	P2[4] – 1.294	P2[4] – 1.222	V
	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.218	P2[4] + 1.291	P2[4] + 1.351	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.351	P2[4] – 1.296	P2[4] – 1.224	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	P2[4] + Bandgap (P2[4] = V _{DD} /2)	P2[4] + 1.215	P2[4] + 1.292	P2[4] + 1.354	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V _{REFLO}	Ref Low	P2[4] – Bandgap (P2[4] = V _{DD} /2)	P2[4] – 1.352	P2[4] – 1.297	P2[4] – 1.227	V
0b110	RefPower = high	V _{REFHI}	Ref High	2 × Bandgap	2.460	2.594	2.695	V
	Opamp blas = high	V _{AGND}	AGND	Bandgap	1.257	1.302	1.335	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.01	V _{SS} + 0.029	V
	RefPower = high	V _{REFHI}	Ref High	2 × Bandgap	2.462	2.592	2.692	V
	Opartip blas – low	V _{AGND}	AGND	Bandgap	1.256	1.301	1.332	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.005	V _{SS} + 0.017	V
	RefPower = medium	V _{REFHI}	Ref High	2 × Bandgap	2.473	2.593	2.682	V
	Opamp blas = high	V _{AGND}	AGND	Bandgap	1.257	1.301	1.330	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.014	V
	RefPower = medium	V _{REFHI}	Ref High	2 × Bandgap	2.470	2.594	2.685	V
	Opanip bias – 10W	V _{AGND}	AGND	Bandgap	1.256	1.300	1.332	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.012	V
0b111	All power settings Not allowed at 3.3 V	_	_	-	-	-	_	_

DC POR, SMP, and LVD Specifications

Table 24 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Note The bits PORLEV and VM in the following table refer to bits in the VLT_CR register. See the PSoC Programmable Sytem-on-Chip Technical Reference Manual for more information on the VLT_CR register.

Table 26. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0} V _{PPOR1} V _{PPOR2}	V _{DD} value for PPOR trip PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.36 2.82 4.55	2.40 2.95 4.70	V V V	V_{DD} must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from watchdog.
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	$\begin{array}{l} V_{DD} \text{ value for LVD trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 111b \\ VM[2:0] = 111b \end{array}$	2.40 2.85 2.95 3.06 4.37 4.50 4.62 4.71	2.45 2.92 3.02 3.13 4.48 4.64 4.73 4.81	2.51 ^[12] 2.99 ^[13] 3.09 3.20 4.55 4.75 4.83 4.95	> > > > > > > > > > > > > > > > > > >	
Vpumpo Vpump1 Vpump2 Vpump3 Vpump4 Vpump5 Vpump6 Vpump7	$\begin{array}{l} V_{DD} \text{ value for SMP trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 111b \\ VM[2:0] = 111b \end{array}$	2.50 2.96 3.03 3.18 4.54 4.62 4.71 4.89	2.55 3.02 3.10 3.25 4.64 4.73 4.82 5.00	2.62 ^[14] 3.09 3.16 3.32 ^[15] 4.74 4.83 4.92 5.12	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	

Notes

- 12. Always greater than 50 mV above V_{PPOR} (PORLEV=00) for falling supply. 13. Always greater than 50 mV above V_{PPOR} (PORLEV=01) for falling supply. 14. Always greater than 50 mV above V_{LVD0}. 15. Always greater than 50 mV above V_{LVD0}.

DC Programming Specifications

Table 27 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 27.	DC Program	nming Spe	cifications
-----------	------------	-----------	-------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional require- ments of external programmer tools
V _{DDLV}	Low V _{DD} for verify	2.4	2.5	2.6	V	This specification applies to the functional require- ments of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional require- ments of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	2.7		5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	_		0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.1	-	_	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	-	-	0.2	mA	Driving internal pull-down resistor
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	_	-	1.5	mA	Driving internal pull-down resistor
V _{OLV}	Output low voltage during programming or verify	-	-	V _{SS} + 0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	-	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block)	50,000 ^[16]	-	-	-	Erase/write cycles per block
Flash _{ENT}	Flash endurance (total) ^[17]	1,800,000	-	-	-	Erase/write cycles
Flash _{DR}	Flash data retention	10	_	_	Years	

DC I²C Specifications

Table 28 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at $25 \degree C$ and are for design guidance only.

Table 28. DC I²C Specifications^[18]

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ILI2C}	Input low level	-	-	$0.3 \times V_{DD}$	V	$2.4~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C}	Input high level	$0.7 \times V_{DD}$	_	-	V	$2.4~V \leq V_{DD} \leq 5.25~V$

Notes

^{16.} The 50,000 cycle flash endurance per block is only guaranteed if the flash is operating within one voltage range. Voltage ranges are 2.4 V to 3.0 V, 3.0 V to 3.6 V, and 4.75 V to 5.25 V.

 ^{4.} A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36 × 2 blocks of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 × 50,000 and that no single block ever sees more than 50,000 cycles).

ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note Design Aids – Reading and Writing PSoC[®] Flash – AN2015 for more information.

^{18.} All GPIOs meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO Specifications sections. The I²C GPIO pins also meet the above specs.

AC GPIO Specifications

These tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12	MHz	Normal Strong Mode
tRiseF	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% to 90%
tFallF	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% to 90%
tRiseS	Rise time, slow strong mode, Cload = 50 pF	10	27	-	ns	V _{DD} = 3 to 5.25 V, 10% to 90%
tFallS	Fall time, slow strong mode, Cload = 50 pF	10	22	_	ns	V _{DD} = 3 to 5.25 V, 10% to 90%

Table 32. 2.7-V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	3	MHz	Normal strong mode
tRiseF	Rise time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%
tFallF	Fall time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%
tRiseS	Rise time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%
tFallS	Fall time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%

Figure 0-1. GPIO Timing Diagram

Table 35. 2.7-V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Мах	Units
t _{ROA}	Rising settling time from 80% of ∆V to 0.1% of ∆V (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high		-	3.92 0.72	μs μs
t _{SOA}	Falling settling time from 20% of ∆V to 0.1% of ∆V (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high		-	5.41 0.72	μs μs
SR _{ROA}	Rising slew rate (20% to 80%) (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high	0.31 2.7			V/µs V/µs
SR _{FOA}	Falling slew rate (20% to 80%) (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high	0.24 1.8			V/µs V/µs
BW _{OA}	Gain bandwidth product Power = low, Opamp bias = low Power = medium, Opamp bias = high	0.67 2.8			MHz MHz
E _{NOA}	Noise at 1 kHz (Power = medium, Opamp bias = high)	-	100	-	nV/rt-Hz

When bypassed by a capacitor on P2[4], the noise of the analog ground signal distributed to each block is reduced by a factor of up to 5 (14 dB). This is at frequencies above the corner frequency defined by the on-chip 8.1 K resistance and the external capacitor.

Figure 14. Typical AGND Noise with P2[4] Bypass

At low frequencies, the opamp noise is proportional to 1/f, power independent, and determined by device geometry. At high frequencies, increased power level reduces the noise spectrum level.

AC Digital Block Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Function	Description	Min	Тур	Max	Unit	Notes
All functions	Block input clock frequency	•	•	•	•	
	$V_{DD} \ge 4.75 V$	-	-	50.4	MHz	
	V _{DD} < 4.75 V	-	-	25.2	MHz	
Timer	Input clock frequency				•	
	No capture, $V_{DD} \ge 4.75 V$	-	-	50.4	MHz	
	No capture, V _{DD} < 4.75 V	-	-	25.2	MHz	
	With capture	-	-	25.2	MHz	
	Capture pulse width	50 ^[30]	-	-	ns	
Counter	Input clock frequency					
	No enable input, $V_{DD} \ge 4.75 V$	-	-	50.4	MHz	
	No enable input, V _{DD} < 4.75 V	-	-	25.2	MHz	
	With enable input	-	-	25.2	MHz	
	Enable input pulse width	50 ^[30]	-	-	ns	
Dead Band	Kill pulse width					
	Asynchronous restart mode	20	-	-	ns	
	Synchronous restart mode	50 ^[30]	-	-	ns	
	Disable mode	50 ^[30]	-	-	ns	
	Input clock frequency					
	$V_{DD} \ge 4.75 \text{ V}$	-	-	50.4	MHz	
	V _{DD} < 4.75 V	-	-	25.2	MHz	
CRCPRS	Input clock frequency					
Mode)	$V_{DD} \ge 4.75 \text{ V}$	-	-	50.4	MHz	
,	V _{DD} < 4.75 V	-	-	25.2	MHz	
CRCPRS (CRC Mode)	Input clock frequency	-	-	25.2	MHz	
SPIM	Input clock frequency	_	-	8.2	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.
SPIS	Input clock (SCLK) frequency	-	-	4.1	MHz	The input clock is the SPI SCLK in SPIS mode.
	Width of SS_negated between transmissions	50 ^[30]	-	-	ns	
Transmitter	Input clock frequency					The baud rate is equal to the input clock frequency
	$V_{DD} \ge 4.75$ V, 2 stop bits	-	-	50.4	MHz	
	$V_{DD} \ge 4.75$ V, 1 stop bit	-	-	25.2	MHz	
	V _{DD} < 4.75 V	-	-	25.2	MHz	
Receiver	Input clock frequency					The baud rate is equal to the input clock frequency divided by 8.
	$V_{DD} \ge 4.75$ V, 2 stop bits	_	-	50.4	MHz	
	$V_{DD} \ge 4.75$ V, 1 stop bit	_	-	25.2	MHz	
	V _{DD} < 4.75 V	-	-	25.2	MHz	

Note 30.50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

AC Analog Output Buffer Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 39.	5-V AC Analog	Output Buffer S	Specifications
	J-V AO Allalog	Output Dunier v	specifications

Symbol	Description	Min	Тур	Мах	Units
t _{ROB}	Rising settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high	_	_ _	2.5 2.5	μs μs
t _{SOB}	Falling settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high	-		2.2 2.2	µs µs
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100 pF load Power = low Power = high	0.65 0.65		-	V/µs V/µs
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100 pF load Power = low Power = high	0.65 0.65	_ _		V/µs V/µs
BW _{OB}	Small signal bandwidth, 20mV _{pp} , 3dB BW, 100 pF load Power = low Power = high	0.8 0.8			MHz MHz
BW _{OB}	Large signal bandwidth, 1V _{pp} , 3dB BW, 100 pF load Power = low Power = high	300 300			kHz kHz

Table 40. 3.3-V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Мах	Units
t _{ROB}	Rising settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high		-	3.8 3.8	μs μs
t _{SOB}	Falling settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high		-	2.6 2.6	μs μs
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100 pF load Power = low Power = high	0.5 0.5	-	-	V/µs V/µs
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100 pF load Power = low Power = high	0.5 0.5	-	-	V/µs V/µs
BW _{OB}	Small signal bandwidth, 20mV _{pp} , 3dB BW, 100 pF load Power = low Power = high	0.7 0.7	-		MHz MHz
BW _{OB}	Large signal bandwidth, 1V _{pp} , 3dB BW, 100 pF load Power = low Power = high	200 200	-	-	kHz kHz

Table 44. 2.7-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1 ^[34]	0.093	-	12.3	MHz	
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater ^[35]	0.186	-	12.3	MHz	
-	High period with CPU clock divide by 1	41.7	-	5300	ns	
-	Low period with CPU clock divide by 1	41.7	-	_	ns	
-	Power-up IMO to switch	150	-	-	μs	

AC Programming Specifications

Table 45 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 45. AC Programming Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
t _{RSCLK}	Rise time of SCLK	1	-	20	ns	
t _{FSCLK}	Fall time of SCLK	1	-	20	ns	
t _{SSCLK}	Data setup time to falling edge of SCLK	40	-	-	ns	
t _{HSCLK}	Data hold time from falling edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
t _{ERASEB}	Flash erase time (block)	-	20	-	ms	
t _{WRITE}	Flash block write time	-	80	-	ms	
t _{DSCLK}	Data out delay from falling edge of SCLK	-	-	45	ns	V _{DD} > 3.6
t _{DSCLK3}	Data out delay from falling edge of SCLK	-	-	50	ns	$3.0 \leq V_{DD} \leq 3.6$
t _{DSCLK2}	Data out delay from falling edge of SCLK	-	-	70	ns	$2.4 \leq V_{DD} \leq 3.0$
t _{ERASEALL}	Flash erase time (Bulk)	-	20	-	ms	Erase all blocks and protection fields at once
t _{PROGRAM_HOT}	Flash block erase + flash block write time	-	-	200 ^[36]	ms	$0 \ ^{\circ}C \le Tj \le 100 \ ^{\circ}C$
t _{PROGRAM_COLD}	Flash block erase + flash block write time	-	-	400 ^[36]	ms	$-40~^\circ C \leq Tj \leq 0~^\circ C$

Notes

34. Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.

^{35.} If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.

^{36.} For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing Refer to the Flash APIs application note Design Aids – Reading and Writing PSoC[®] Flash – AN2015 for more information.

Packaging Information

This section illustrates the packaging specifications for the CY8C24x23A PSoC device, along with the thermal impedances for each package and the typical package capacitance on crystal pins.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, see the emulator pod drawings at http://www.cypress.com/design/MR10161.

Packaging Dimensions

0.050[1.270] TYP.

0.013[0.330] 0.019[0.482]

0.015[0.381] 0.050[1.270]

51-85024 *F

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular programmer base
- Three programming module cards
- MiniProg programming unit
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Accessories (Emulation and Programming)

Table 51. Emulation and Programming Accessories

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

Note CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 programmer unit
- PSoC ISSP software CD
- 110 ~ 240 V power supply, Euro-Plug adapter
- USB 2.0 cable

Part Number	Pin Package	Flex-Pod Kit ^[40]	Foot Kit ^[41]	Adapter ^[42]
All non-QFN	All non-QFN	CY3250-24X23A	CY3250-8DIP-FK, CY3250-8SOIC-FK, CY3250-20DIP-FK, CY3250-20SOIC-FK, CY3250-20SSOP-FK, CY3250-28DIP-FK, CY3250-28SOIC-FK, CY3250-28SSOP-FK	Adapters can be found at http://www.emulation.com.

Notes

40. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

41. Foot kit includes surface mount feet that can be soldered to the target PCB.

^{42.} Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

Ordering Information

The following table lists the CY8C24x23A PSoC device's key package features and ordering codes. **Table 52.** CY8C24x23A PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	Switch Mode Pump	Temperature Range	Digital Blocks	Analog Blocks	Digital I/O Pins	Analog Inputs	Analog Outputs	XRES Pin
8-pin (300-mil) DIP	CY8C24123A-24PXI	4 K	256	No	–40 °C to +85 °C	4	6	6	4	2	No
8-pin (150-mil) SOIC	CY8C24123A-24SXI	4 K	256	No	–40 °C to +85 °C	4	6	6	4	2	No
8-pin (150-mil) SOIC (Tape and Reel)	CY8C24123A-24SXIT	4 K	256	No	–40 °C to +85 °C	4	6	6	4	2	No
20-pin (300-mil) DIP	CY8C24223A-24PXI	4 K	256	Yes	–40 °C to +85 °C	4	6	16	8	2	Yes
20-pin (210-mil) SSOP	CY8C24223A-24PVXI	4 K	256	Yes	-40 °C to +85 °C	4	6	16	8	2	Yes
20-pin (210-mil) SSOP (Tape and Reel)	CY8C24223A-24PVXIT	4 K	256	Yes	–40 °C to +85 °C	4	6	16	8	2	Yes
20-pin (300-mil) SOIC	CY8C24223A-24SXI	4 K	256	Yes	–40 °C to +85 °C	4	6	16	8	2	Yes
20-pin (300-mil) SOIC (Tape and Reel)	CY8C24223A-24SXIT	4 K	256	Yes	–40 °C to +85 °C	4	6	16	8	2	Yes
28-pin (300-mil) DIP	CY8C24423A-24PXI	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
28-pin (210-mil) SSOP	CY8C24423A-24PVXI	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
28-pin (210-mil) SSOP (Tape and Reel)	CY8C24423A-24PVXIT	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
28-pin (300-mil) SOIC	CY8C24423A-24SXI	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
28-pin (300-mil) SOIC (Tape and Reel)	CY8C24423A-24SXIT	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
32-pin (5 × 5 mm 1.00 max) Sawn QFN	CY8C24423A-24LTXI	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
32-pin (5 × 5 mm 1.00 max) Sawn QFN (Tape and Reel)	CY8C24423A-24LTXIT	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
56-pin OCD SSOP	CY8C24000A-24PVXI ^[43]	4 K	256	Yes	-40 °C to +85 °C	4	6	24	10	2	Yes

Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).

Ordering Code Definitions

Thermal Rating: C = Commercial I = Industrial E = Extended

Note

43. This part may be used for in-circuit debugging. It is NOT available for production.

Document Conventions

Units of Measure

Table 54 lists the unit sof measures.

Table 54. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
kB	1024 bytes	μs	microsecond
dB	decibels	ms	millisecond
°C	degree Celsius	ns	nanosecond
fF	femto farad	ps	picosecond
pF	picofarad	μV	microvolts
kHz	kilohertz	mV	millivolts
MHz	megahertz	mVpp	millivolts peak-to-peak
rt-Hz	root hertz	nV	nanovolts
kΩ	kilohm	V	volts
Ω	ohm	μW	microwatts
μA	microampere	W	watt
mA	milliampere	mm	millimeter
nA	nanoampere	ppm	parts per million
рА	pikoampere	%	percent
mH	millihenry		•

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	10.A logic signal having its asserted state as the logic 1 state. 11.A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
API (Application Programming Interface)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
Bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

Glossary (continued)

shift register	A memory storage device that sequentially shifts a word either left or right to output a stream of serial data.
slave device	A device that allows another device to control the timing for data exchanges between two devices. Or when devices are cascaded in width, the slave device is the one that allows another device to control the timing of data exchanges between the cascaded devices and an external interface. The controlling device is called the master device.
SRAM	An acronym for static random access memory. A memory device allowing users to store and retrieve data at a high rate of speed. The term static is used because, after a value has been loaded into an SRAM cell, it remains unchanged until it is explicitly altered or until power is removed from the device.
SROM	An acronym for supervisory read only memory. The SROM holds code that is used to boot the device, calibrate circuitry, and perform Flash operations. The functions of the SROM may be accessed in normal user code, operating from Flash.
stop bit	A signal following a character or block that prepares the receiving device to receive the next character or block.
synchronous	 A signal whose data is not acknowledged or acted upon until the next active edge of a clock signal. A system whose operation is synchronized by a clock signal.
tri-state	A function whose output can adopt three states: 0, 1, and Z (high-impedance). The function does not drive any value in the Z state and, in many respects, may be considered to be disconnected from the rest of the circuit, allowing another output to drive the same net.
UART	A UART or universal asynchronous receiver-transmitter translates between parallel bits of data and serial bits.
user modules	Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high level API (Application Programming Interface) for the peripheral function.
user space	The bank 0 space of the register map. The registers in this bank are more likely to be modified during normal program execution and not just during initialization. Registers in bank 1 are most likely to be modified only during the initialization phase of the program.
V _{DD}	A name for a power net meaning "voltage drain." The most positive power supply signal. Usually 5 V or 3.3 V.
V _{SS}	A name for a power net meaning "voltage source." The most negative power supply signal.
watchdog timer	A timer that must be serviced periodically. If it is not serviced, the CPU resets after a specified period of time.

Errata

This section describes the errata for the CY8C24xxxA device family. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Ordering Information		
CY8C24123A	CY8C24123A-24PXI		
	CY8C24123A-24SXI		
	CY8C24123A-24SXIT		
	CY8C24223A-24PXI		
	CY8C24223A-24PVXI		
	CY8C24223A-24PVXIT		
	CY8C24223A-24SXI		
	CY8C24223A-24SXIT		
	CY8C24423A-24PXI		
	CY8C24423A-24PVXI		
	CY8C24423A-24PVXIT		
	CY8C24423A-24SXI		
	CY8C24423A-24SXIT		
	CY8C24423A-24LFXI		
	CY8C24423A-24LTXI		
	CY8C24423A-24LTXIT		
	CY8C24000A-24PVXI		

CY8C24123A Qualification Status

Product Status: Production

CY8C24123A Errata Summary

The following table defines the errata applicability to available CY8C24123A family devices.

Items	Part Number	Silicon Revision	Fix Status
[1.]. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes	CY8C24123A	*A	No silicon fix planned. Workaround is required.

1. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes

Problem Definition

Asynchronous Digital Communications Interfaces may fail framing beyond 0 to 70 °C. This problem does not affect end-product usage between 0 and 70 °C.

Parameters Affected

The IMO frequency tolerance. The worst case deviation when operated below 0° C and above +70 °C and within the upper and lower datasheet temperature range is $\pm 5\%$.

Trigger Condition(S)

The asynchronous Rx/Tx clock source IMO frequency tolerance may deviate beyond the data sheet limit of $\pm 2.5\%$ when operated beyond the temperature range of 0 to +70 °C.

- Scope of Impact
 - This problem may affect UART, IrDA, and FSK implementations.
- Workaround

Implement a quartz crystal stabilized clock source on at least one end of the asynchronous digital communications interface.

Fix Status

Silicon fix is not planned. The workaround mentioned above should be used.