

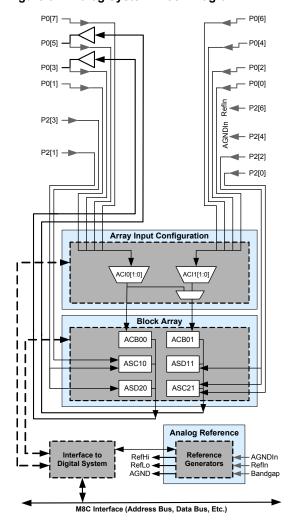
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	16
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 8x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24223a4-24pvxi

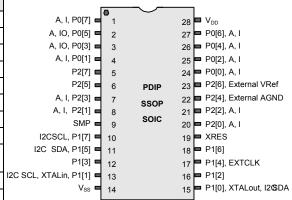

Analog System

The analog system consists of six configurable blocks, each consisting of an opamp circuit that allows the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are:

- ADCs (up to two, with 6- to 14-bit resolution, selectable as incremental, delta sigma, and SAR)
- Filters (two and four pole band-pass, low-pass, and notch)
- Amplifiers (up to two, with selectable gain to 48x)
- Instrumentation amplifiers (one with selectable gain to 93x)
- Comparators (up to two, with 16 selectable thresholds)
- DACs (up to two, with 6 to 9-bit resolution)
- Multiplying DACs (up to two, with 6 to 9-bit resolution)
- High current output drivers (two with 30 mA drive as a PSoC Core resource)
- 1.3 V reference (as a system resource)
- DTMF dialer
- Modulators
- Correlators
- Peak detectors
- Many other topologies possible

Analog blocks are arranged in a column of three, which includes one continuous time (CT) and two switched capacitor (SC) blocks, as shown in Figure 3

Figure 3. Analog System Block Diagram



28-Pin Part Pinout

Table 4. 28-Pin PDIP, SSOP, and SOIC

Pin	Ту	pe	Pin	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P0[7]	Analog column mux input
2	I/O	I/O	P0[5]	Analog column mux input and column output
3	I/O	I/O	P0[3]	Analog column mux input and column output
4	I/O	I	P0[1]	Analog column mux input
5	I/O		P2[7]	
6	I/O		P2[5]	
7	I/O	I	P2[3]	Direct switched capacitor block input
8	I/O	I	P2[1]	Direct switched capacitor block input
9	Po	wer	SMP	SMP connection to external components required
10	I/O		P1[7]	I ² C SCL
11	I/O		P1[5]	I ² C SDA
12	I/O		P1[3]	
13	I/O		P1[1]	XTALin, I ² C SCL, ISSP-SCLK ^[6]
14	Po	wer	V_{SS}	Ground connection.
15	I/O		P1[0]	XTALout, I ² C SDA, ISSP-SDATA ^[6]
16	I/O		P1[2]	
17	I/O		P1[4]	Optional EXTCLK
18	I/O		P1[6]	
19	Inp	out	XRES	Active high external reset with internal pull-down
20	I/O	I	P2[0]	Direct switched capacitor block input
21	I/O	I	P2[2]	Direct switched capacitor block input
22	I/O		P2[4]	External analog ground (AGND)
23	I/O		P2[6]	External voltage reference (V _{REF})
24	1/0	I	P0[0]	Analog column mux input
25	I/O	I	P0[2]	Analog column mux input
26	I/O	I	P0[4]	Analog column mux input
27	I/O	I	P0[6]	Analog column mux input
28	Po	wer	V_{DD}	Supply voltage

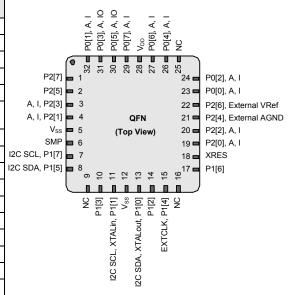
Figure 6. CY8C24423A 28-Pin PSoC Device

Not for Production

LEGEND : A = Analog, I = Input, and O = Output.

Note

^{6.} These are the ISSP pins, which are not high Z at POR. See the PSoC Technical Reference Manual for details.



32-Pin Part Pinout

Table 5. 32-Pin QFN^[7]

Table 5. 52-Fill Qi N-								
Pin No.	Ty Digital	pe Analog	Pin Name	Description				
1	I/O	Allalog	P2[7]					
2	I/O		P2[5]					
3	I/O	ı	P2[3]	Direct switched capacitor block input				
4	1/0	ı	P2[1]	Direct switched capacitor block input				
5	_	wer		Ground connection				
6		wer	V _{SS}	SMP connection to external components				
0	FU	wei	0	required				
7	I/O		P1[7]	I ² C SCL				
8	I/O		P1[5]	I ² C SDA				
9			NC	No connection. Pin must be left floating				
10	I/O		P1[3]					
11	I/O		P1[1]	XTALin, I ² C SCL, ISSP-SCLK ^[8]				
12	Po	wer	V_{SS}	Ground Connection				
13	I/O		P1[0]	XTALout, I ² C SDA, ISSP-SDATA ^[8]				
14	I/O		P1[2]					
15	I/O		P1[4]	Optional EXTCLK				
16			NC	No connection. Pin must be left floating				
17	I/O		P1[6]					
18	In	put	XRES	Active high external reset with internal pull-down				
19	I/O	I	P2[0]	Direct switched capacitor block input				
20	I/O	I	P2[2]	Direct switched capacitor block input				
21	I/O		P2[4]	External AGND				
22	I/O		P2[6]	External V _{REF}				
23	I/O	I	P0[0]	Analog column mux input				
24	I/O	I	P0[2]	Analog column mux input				
25			NC	No connection. Pin must be left floating				
26	I/O	I	P0[4]	Analog column mux input				
27	I/O	I	P0[6]	Analog column mux input				
28	Po	wer	V_{DD}	Supply voltage				
29	I/O	I	P0[7]	Analog column mux input				
30	I/O	I/O	P0[5]	Analog column mux input and column output				
31	I/O	I/O	P0[3]	Analog column mux input and column output				
32	I/O	I	P0[1]	Analog column mux input				

Figure 7. CY8C24423A 32-Pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not high Z at POR. See the PSoC Technical Reference Manual for details.

Register Reference

This section lists the registers of the CY8C24x23A PSoC device. For detailed register information, see the PSoC Programmable Sytem-on-Chip Reference Manual.

Register Conventions

Abbreviations Used

The register conventions specific to this section are listed in the following table.

Table 7. Abbreviations

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The PSoC device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks, Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set, the user is in Bank 1.

Note In the following register mapping tables, blank fields are reserved and must not be accessed.

DC Operational Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

The operational amplifier is a component of both the analog continuous time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the analog continuous time PSoC block. Typical parameters are measured at 5 V at 25 °C and are for design guidance only.

Table 14. 5-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	1.6 1.3 1.2	10 8 7.5	mV mV mV	
TCV _{OSOA}	Average input offset voltage drift	_	7.0	35.0	μV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	_	20	_	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range Common mode voltage range (high power or high Opamp bias)	0.0 0.5	1	V _{DD} V _{DD} – 0.5	V	The common mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	60 60 80	_ _ _	- - -	dB dB dB	Specification is applicable at high Opamp bias. For low Opamp bias mode, minimum is 60 dB.
V _{OHIGHOA}	High output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	V _{DD} - 0.2 V _{DD} - 0.2 V _{DD} - 0.5	- - -	- - -	V V V	
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	111	0.2 0.2 0.5	V V V	
I _{SOA}	Supply current (including associated AGND buffer) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high	- - - - -	150 300 600 1200 2400 4600	200 400 800 1600 3200 6400	4 4 4 4 4 4 4 4 4 4	
PSRR _{OA}	Supply voltage rejection ratio	64	80	_	dB	$V_{SS} \le V_{IN} \le (V_{DD} - 2.25)$ or $(V_{DD} - 1.25 \ V) \le V_{IN} \le V_{DD}$

DC Analog Output Buffer Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 18. 5-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
C _L	Load Capacitance	-	_	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	-	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	-	+6	_	μV/°C	
V _{CMOB}	Common mode input voltage range	0.5	-	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high	_ _	1	_ _	W W	
V _{OHIGHOB}	High output voltage swing (Load = 32 ohms to V _{DD/2}) Power = low Power = high	0.5 × V _{DD} + 1.1 0.5 × V _{DD} + 1.1	_ _	_ _	V	
V _{OLOWOB}	Low output voltage swing (Load = 32 ohms to V _{DD/2}) Power = low Power = high	- -	_ _	.5 × V _{DD} – 1.3 0.5 × V _{DD} – 1.3	V	
I _{SOB}	Supply current including Opamp bias cell (No Load) Power = low Power = high	- -	1.1 2.6	5.1 8.8	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	52	64	_	dB	$V_{OUT} > (V_{DD} - 1.25)$

Table 19. 3.3-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
C _L	Load Capacitance	-	-	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	_	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	_	+6	_	μV/°C	
V_{CMOB}	Common mode input voltage range	0.5	-	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high		1	_ _	Ω	
V _{OHIGHOB}	High output voltage swing (Load = 1 K ohms to V _{DD/2}) Power = low Power = high	0.5 × V _{DD} + 1.0 0.5 × V _{DD} + 1.0	_ _	- -	V	
V _{OLOWOB}	Low output voltage swing (Load = 1 K ohms to V _{DD/2}) Power = low Power = high	- -	_ _	0.5 × V _{DD} – 1.0 0.5 × V _{DD} – 1.0	V	
I _{SOB}	Supply current including Opamp bias cell (no load) Power = low Power = high		0.8 2.0	2.0 4.3	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	52	64	_	dB	V _{OUT} > (V _{DD} – 1.25)

Table 22. 5-V DC Analog Reference Specifications (continued)

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b010	RefPower = high	V _{REFHI}	Ref High	V_{DD}	V _{DD} – 0.121	V _{DD} – 0.003	V _{DD}	V
	Opamp bias = high	V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.040	V _{DD} /2	$V_{DD}/2 + 0.034$	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.006	V _{SS} + 0.019	V
	RefPower = high	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.083	V _{DD} – 0.002	V_{DD}	V
	Opamp bias = low		AGND	V _{DD} /2	V _{DD} /2 – 0.040	V _{DD} /2 – 0.001	$V_{DD}/2 + 0.033$	V
		V _{AGND}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.004	V _{SS} + 0.016	V
	RefPower = medium	V _{REFHI}	Ref High	V_{DD}	V _{DD} – 0.075	V _{DD} – 0.002	V_{DD}	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.040	V _{DD} /2 – 0.001	$V_{DD}/2 + 0.032$	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.015	V
	RefPower = medium	V _{REFHI}	Ref High	V_{DD}	V _{DD} – 0.074	V _{DD} – 0.002	V_{DD}	V
	Opamp bias = low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.040	V _{DD} /2 – 0.001	V _{DD} /2 + 0.032	V
		V _{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.014	V
0b011	RefPower = high	V _{REFHI}	Ref High	3 × Bandgap	3.753	3.874	3.979	V
	Opamp bias = high	V _{AGND}	AGND	2 × Bandgap	2.511	2.590	2.657	V
		V _{REFLO}	Ref Low	Bandgap	1.243	1.297	1.333	V
	RefPower = high	V _{REFHI}	Ref High	3 × Bandgap	3.767	3.881	3.974	V
	Opamp bias = low	V _{AGND}	AGND	2 × Bandgap	2.518	2.592	2.652	V
		V _{REFLO}	Ref Low	Bandgap	1.241	1.295	1.330	V
	RefPower = medium	V _{REFHI}	Ref High	3 × Bandgap	2.771	3.885	3.979	V
	Opamp bias = high	V _{AGND}	AGND	2 × Bandgap	2.521	2.593	2.649	V
		V _{REFLO}	Ref Low	Bandgap	1.240	1.295	1.331	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	3 × Bandgap	3.771	3.887	3.977	V
		V _{AGND}	AGND	2 × Bandgap	2.522	2.594	2.648	V
		V _{REFLO}	Ref Low	Bandgap	1.239	1.295	1.332	V
0b100	RefPower = high Opamp bias = high	V _{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.481 + P2[6]	2.569 + P2[6]	2.639 + P2[6]	V
		V _{AGND}	AGND	2 × Bandgap	2.511	2.590	2.658	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.515 – P2[6]	2.602 - P2[6]	2.654 - P2[6]	V
	RefPower = high Opamp bias = low	V_{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.498 + P2[6]	2.579 + P2[6]	2.642 + P2[6]	V
		V_{AGND}	AGND	2 × Bandgap	2.518	2.592	2.652	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.513 – P2[6]	2.598 - P2[6]	2.650 - P2[6]	V
	RefPower = medium Opamp bias = high	V_{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.504 + P2[6]	2.583 + P2[6]	2.646 + P2[6]	V
		V_{AGND}	AGND	2 × Bandgap	2.521	2.592	2.650	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.513 – P2[6]	2.596 - P2[6]	2.649 - P2[6]	V
	RefPower = medium Opamp bias = low	V_{REFHI}	Ref High	2 × Bandgap + P2[6] (P2[6] = 1.3 V)	2.505 + P2[6]	2.586 + P2[6]	2.648 + P2[6]	V
		V_{AGND}	AGND	2 × Bandgap	2.521	2.594	2.648	V
		V _{REFLO}	Ref Low	2 × Bandgap – P2[6] (P2[6] = 1.3 V)	2.513 – P2[6]	2.595 – P2[6]	2.648 – P2[6]	V

Table 24. 2.7-V DC Analog Reference Specifications

Reference ARF_CR [5:3]	Reference Power Settings	Symbol	Reference	Description	Min	Тур	Max	Units
0b000	All power settings Not allowed at 2.7 V	-	_	_	_	_	-	_
0b001	RefPower = medium Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.739	P2[4] + P2[6] – 0.016	P2[4] + P2[6] + 0.759	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 1.675	P2[4]-P2[6]+ 0.013	P2[4]-P2[6]+ 1.825	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.098	P2[4] + P2[6] – 0.011	P2[4] + P2[6] + 0.067	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.308	P2[4]-P2[6]+ 0.004	P2[4] – P2[6] + 0.362	V
	RefPower = low Opamp bias = high	V _{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.042	P2[4] + P2[6] – 0.005	P2[4] + P2[6] + 0.035	V
		V _{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	_
		V _{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.030	P2[4] – P2[6]	P2[4]-P2[6]+ 0.030	V
	RefPower = low Opamp bias = low	V_{REFHI}	Ref High	P2[4]+P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] + P2[6] - 0.367	P2[4] + P2[6] – 0.005	P2[4] + P2[6] + 0.308	V
		V_{AGND}	AGND	P2[4]	P2[4]	P2[4]	P2[4]	-
		V_{REFLO}	Ref Low	P2[4]–P2[6] (P2[4] = V _{DD} /2, P2[6] = 0.5 V)	P2[4] – P2[6] – 0.345	P2[4] – P2[6]	P2[4]-P2[6]+ 0.301	V
0b010	RefPower = high	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.100	$V_{DD} - 0.003$	V_{DD}	V
	Opamp bias = high	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.038	V _{DD} /2	V _{DD} /2 + 0.036	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.005	V _{SS} + 0.016	V
	RefPower = high Opamp bias = low	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.065	$V_{DD} - 0.002$	V_{DD}	V
	Opamp blas – low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.025	V _{DD} /2	V _{DD} /2 + 0.023	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.003	V _{SS} + 0.012	V
	RefPower = medium Opamp bias = high	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.054	V _{DD} – 0.002	V_{DD}	V
	Opamp blas – mgn	V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.024			V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.002	V _{SS} + 0.012	V
	RefPower = medium Opamp bias = low	V _{REFHI}	Ref High	V _{DD}	V _{DD} – 0.042	V _{DD} – 0.002	V_{DD}	V
	Opamp blas – low	V _{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.027		V _{DD} /2 + 0.022	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.001	V _{SS} + 0.010	V
	RefPower = low	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.042	V _{DD} – 0.002	V_{DD}	V
	Opamp bias = high	V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.028	V _{DD} /2 – 0.001	V _{DD} /2 + 0.023	V
		V_{REFLO}	Ref Low	V _{SS}	V _{SS}	V _{SS} + 0.001	V _{SS} + 0.010	V
	RefPower = low	V_{REFHI}	Ref High	V_{DD}	V _{DD} – 0.036	V _{DD} – 0.002	V_{DD}	V
	Opamp bias = low	V_{AGND}	AGND	V _{DD} /2	V _{DD} /2 – 0.184	V _{DD} /2 – 0.001	V _{DD} /2 + 0.159	V
		V _{REFLO}	Ref Low	V_{SS}	V _{SS}	V _{SS} + 0.001	V _{SS} + 0.009	V

DC POR, SMP, and LVD Specifications

Table 24 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 2.4 V to 3.0 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Note The bits PORLEV and VM in the following table refer to bits in the VLT_CR register. See the PSoC Programmable Sytem-on-Chip Technical Reference Manual for more information on the VLT_CR register.

Table 26. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0} V _{PPOR1} V _{PPOR2}	V _{DD} value for PPOR trip PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	-	2.36 2.82 4.55	2.40 2.95 4.70	V V	V _{DD} must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from watchdog.
VLVD0 VLVD1 VLVD2 VLVD3 VLVD4 VLVD5 VLVD6 VLVD7	V _{DD} value for LVD trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.40 2.85 2.95 3.06 4.37 4.50 4.62 4.71	2.45 2.92 3.02 3.13 4.48 4.64 4.73 4.81	2.51 ^[12] 2.99 ^[13] 3.09 3.20 4.55 4.75 4.83 4.95	V V V V V V	
VPUMP0 VPUMP1 VPUMP2 VPUMP3 VPUMP4 VPUMP5 VPUMP6 VPUMP7	V _{DD} value for SMP trip VM[2:0] = 000b VM[2:0] = 001b VM[2:0] = 010b VM[2:0] = 011b VM[2:0] = 100b VM[2:0] = 101b VM[2:0] = 110b VM[2:0] = 111b	2.50 2.96 3.03 3.18 4.54 4.62 4.71 4.89	2.55 3.02 3.10 3.25 4.64 4.73 4.82 5.00	2.62 ^[14] 3.09 3.16 3.32 ^[15] 4.74 4.83 4.92 5.12	\ \ \ \ \ \ \	

^{12.} Always greater than 50 mV above $V_{\rm PPOR}$ (PORLEV=00) for falling supply. 13. Always greater than 50 mV above $V_{\rm PPOR}$ (PORLEV=01) for falling supply. 14. Always greater than 50 mV above $V_{\rm LVD0}$. 15. Always greater than 50 mV above $V_{\rm LVD3}$.

Table 29. 5-V and 3.3-V AC Chip-Level Specifications (continued)

Symbol	Description	Min	Тур	Max	Units	Notes
DC24M	24 MHz duty cycle	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
Step24M	24 MHz trim step size	_	50	_	kHz	
Fout48M	48 MHz output frequency	46.8	48.0	49.2 ^[24, 25]	MHz	Trimmed. Using factory trim values.
F _{MAX}	Maximum frequency of signal on row input or row output.	_	-	12.3	MHz	
SR _{POWER_UP}	Power supply slew rate	_	_	250	V/ms	V _{DD} slew rate during power-up.
t _{POWERUP}	Time from end of POR to CPU executing code	-	16	100	ms	Power-up from 0 V. See the System Resets section of the PSoC Technical Reference Manual.
t _{jit_IMO} ^[26]	24 MHz IMO cycle-to-cycle jitter (RMS)	_	200	700	ps	N = 32
-	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	_	300	900	ps	
	24 MHz IMO period jitter (RMS)	_	100	400	ps	
t _{jit_PLL} ^[26]	24 MHz IMO cycle-to-cycle jitter (RMS)	-	200	800	ps	N = 32
	24 MHz IMO long term N cycle-to-cycle jitter (RMS)	_	300	1200		
	24 MHz IMO period jitter (RMS)	1	100	700		

24.4.75 V < V_{DD} < 5.25 V.
25.3.0 V < V_{DD} < 3.6 V. See application note Adjusting PSoC[®] Trims for 3.3 V and 2.7 V Operation – AN2012 for information on trimming for operation at 3.3 V.
26. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

Table 30. 2.7-V AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO12}	IMO frequency for 12 MHz	11.5	12	12.7 ^[27, 28]	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 8 on page 18. SLIMO mode = 1.
F _{IMO6}	IMO frequency for 6 MHz	5.5	6	6.5 ^[27, 28]	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 8 on page 18. SLIMO mode = 1.
F _{CPU1}	CPU frequency (2.7 V nominal)	0.937	3	3.15 ^[27]	MHz	SLIMO mode = 0.
F _{BLK27}	Digital PSoC block frequency (2.7 V nominal)	0	12	12.7 ^[27, 28]	MHz	Refer to the AC Digital Block Specifications.
F _{32K1}	ILO frequency	8	32	96	kHz	
F _{32K_U}	ILO untrimmed frequency	5	_	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the System Resets section of the PSoC Technical Reference Manual for details on timing this
t _{XRST}	External reset pulse width	10	_	_	μs	
DC12M	12 MHz duty cycle	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
F _{MAX}	Maximum frequency of signal on row input or row output.	_	-	12.7	MHz	
SR _{POWER_UP}	Power supply slew rate	_	_	250	V/ms	V _{DD} slew rate during power-up.
t _{POWERUP}	Time from end of POR to CPU executing code	_	16	100	ms	Power-up from 0 V. See the System Resets section of the PSoC Technical Reference Manual.
t _{jit_IMO} ^[29]	12 MHz IMO cycle-to-cycle jitter (RMS)	_	400	1000	ps	N = 32
7 -	12 MHz IMO long term N cycle-to-cycle jitter (RMS)	-	600	1300	ps	
	12 MHz IMO period jitter (RMS)	-	100	500	ps	
t _{jit_PLL} ^[29]	12 MHz IMO cycle-to-cycle jitter (RMS)	-	400	1000	ps	N = 32
	12 MHz IMO long term N cycle-to-cycle jitter (RMS)	_	700	1300		
	12 MHz IMO period jitter (RMS)	_	300	500		

Notes
27. 2.4 V < V_{DD} < 3.0 V.
28. Refer to application note Adjusting PSoC® Trims for 3.3 V and 2.7 V Operation – AN2012 for information on trimming for operation at 3.3 V.
29. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

AC Operational Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Settling times, slew rates, and gain bandwidth are based on the analog continuous time PSoC block.

Power = high and Opamp bias = high is not supported at 3.3 V and 2.7 V.

Table 33. 5-V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units
t _{ROA}	Rising settling time from 80% of ΔV to 0.1% of ΔV (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	_ _ _	3.9 0.72 0.62	μs μs μs
t _{SOA}	Falling settling time from 20% of ΔV to 0.1% of ΔV (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = high	= =	_ _ _	5.9 0.92 0.72	μs μs μs
SR _{ROA}	Rising slew rate (20% to 80%) (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = high	0.15 1.7 6.5	- - -	- - -	V/µs V/µs V/µs
SR _{FOA}	Falling slew rate (20% to 80%) (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = high	0.01 0.5 4.0	- - -	- - -	V/µs V/µs V/µs
BW _{OA}	Gain bandwidth product Power = low, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = high	0.75 3.1 5.4	- - -	- - -	MHz MHz MHz
E _{NOA}	Noise at 1 kHz (Power = medium, Opamp bias = high)	_	100	-	nV/rt-Hz

Table 34. 3.3-V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units
t _{ROA}	Rising settling time from 80% of ΔV to 0.1% of ΔV (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high	_ _		3.92 0.72	μs μs
t _{SOA}	Falling settling time from 20% of ΔV to 0.1% of ΔV (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high	_ _	_ _	5.41 0.72	μs μs
SR _{ROA}	Rising slew rate (20% to 80%) (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high	0.31 2.7		_ _	V/µs V/µs
SR _{FOA}	Falling slew rate (20% to 80%) (10 pF load, unity gain) Power = low, Opamp bias = low Power = medium, Opamp bias = high	0.24 1.8		_ _	V/µs V/µs
BW _{OA}	Gain bandwidth product Power = low, Opamp bias = low Power = medium, Opamp bias = high	0.67 2.8	_ _	_ _	MHz MHz
E _{NOA}	Noise at 1 kHz (Power = medium, Opamp bias = high)	_	100	_	nV/rt-Hz

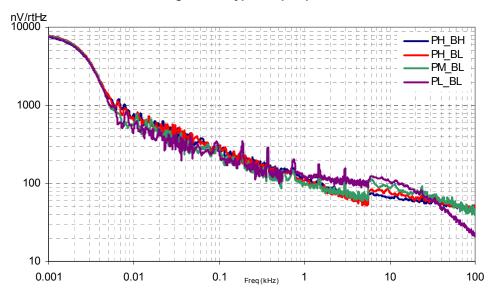


Figure 15. Typical Opamp Noise

AC Low Power Comparator Specifications

Table 36 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 2.4 V to 3.0 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters are measured at 5 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 36. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RLPC}	LPC response time	-	-	50	μs	≥ 50 mV overdrive comparator reference set within V _{REFLPC}

Table 44. 2.7-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1 ^[34]	0.093	_	12.3	MHz	
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater ^[35]	0.186	_	12.3	MHz	
_	High period with CPU clock divide by 1		_	5300	ns	
_	Low period with CPU clock divide by 1	41.7	-	-	ns	
_	Power-up IMO to switch	150	_	-	μs	

AC Programming Specifications

Table 45 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, 3.0 V to 3.6 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, or 2.4 V to 3.0 V and $-40~^{\circ}\text{C} \le T_{A} \le 85~^{\circ}\text{C}$, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 45. AC Programming Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RSCLK}	Rise time of SCLK	1	_	20	ns	
t _{FSCLK}	Fall time of SCLK	1	_	20	ns	
t _{SSCLK}	Data setup time to falling edge of SCLK	40	_	_	ns	
t _{HSCLK}	Data hold time from falling edge of SCLK	40	_	-	ns	
F _{SCLK}	Frequency of SCLK	0	_	8	MHz	
t _{ERASEB}	Flash erase time (block)	_	20	_	ms	
t _{WRITE}	Flash block write time	_	80	-	ms	
t _{DSCLK}	Data out delay from falling edge of SCLK	_	_	45	ns	V _{DD} > 3.6
t _{DSCLK3}	Data out delay from falling edge of SCLK	_	_	50	ns	$3.0 \leq V_{DD} \leq 3.6$
t _{DSCLK2}	Data out delay from falling edge of SCLK	_	_	70	ns	$2.4 \leq V_{DD} \leq 3.0$
t _{ERASEALL}	Flash erase time (Bulk)	-	20	_	ms	Erase all blocks and protection fields at once
t _{PROGRAM_HOT}	Flash block erase + flash block write time	_	_	200 ^[36]	ms	0 °C ≤ Tj ≤ 100 °C
t _{PROGRAM_COLD}	Flash block erase + flash block write time	_	_	400 ^[36]	ms	$-40 ^{\circ}\text{C} \le \text{Tj} \le 0 ^{\circ}\text{C}$

Notes

^{34.} Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.

^{35.} If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider ensures that the fifty percent duty cycle requirement is met.

^{36.} For the full industrial range, you must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing Refer to the Flash APIs application note Design Aids – Reading and Writing PSoC® Flash – AN2015 for more information.

Packaging Information

This section illustrates the packaging specifications for the CY8C24x23A PSoC device, along with the thermal impedances for each package and the typical package capacitance on crystal pins.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, see the emulator pod drawings at http://www.cypress.com/design/MR10161.

Packaging Dimensions

Figure 17. 8-Pin (300-Mil) PDIP

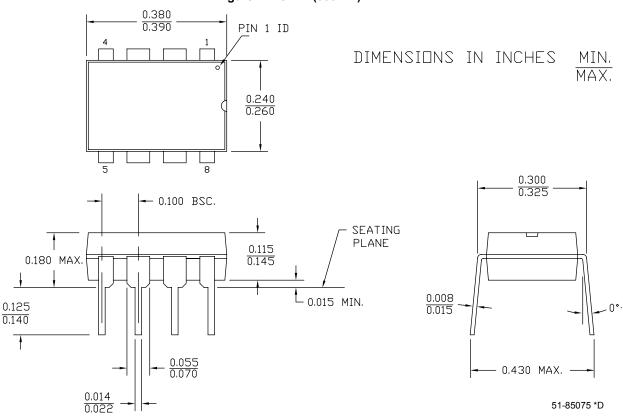


Figure 22. 28-Pin (300-Mil) Molded DIP

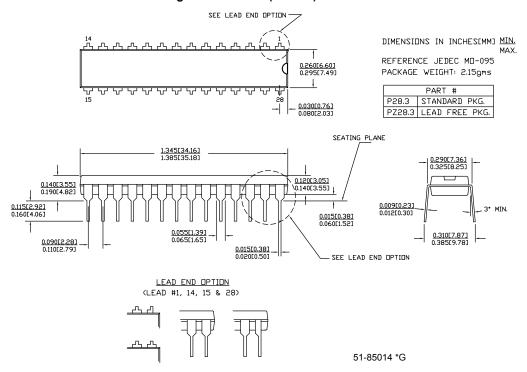
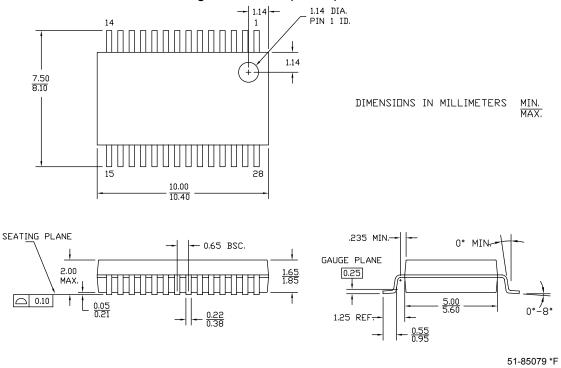



Figure 23. 28-Pin (210-Mil) SSOP

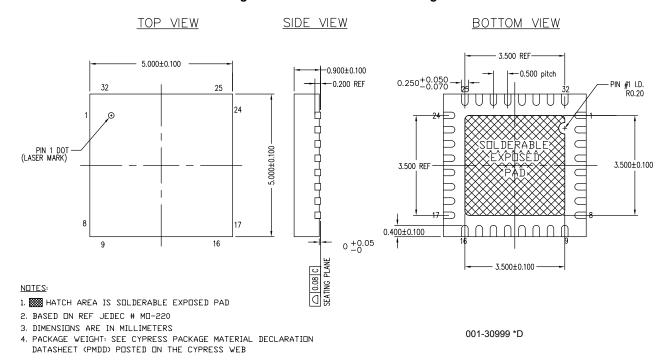
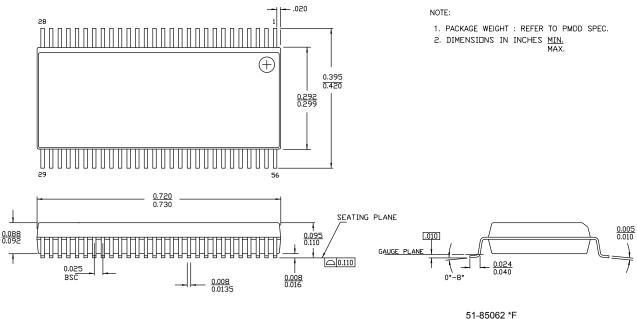



Figure 25. 32-Pin Sawn QFN Package

Important Note For information on the preferred dimensions for mounting QFN packages, see the application note, *Application Notes* for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages available at http://www.amkor.com.

Figure 26. 56-Pin (300-Mil) SSOP

Glossary (continued)

bias

- 1. A systematic deviation of a value from a reference value.
- The amount by which the average of a set of values departs from a reference value.
- 3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.

block

- 1. A functional unit that performs a single function, such as an oscillator.
- A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block.

buffer

- 1. A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written.
- 2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
- 3. An amplifier used to lower the output impedance of a system.

bus

- 1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
- 2. A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
- 3. One or more conductors that serve as a common connection for a group of related devices.

clock

The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.

comparator

An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.

compiler

A program that translates a high level language, such as C, into machine language.

configuration space

In PSoC devices, the register space accessed when the XIO bit, in the CPU F register, is set to '1'.

crystal oscillator

An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.

check (CRC)

cyclic redundancy A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.

data bus

A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.

debugger

A hardware and software system that allows the user to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and

analyze memory.

dead band

A period of time when neither of two or more signals are in their active state or in transition.

digital blocks

The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.

digital-to-analog (DAC)

A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC) converter performs the reverse operation.

Errata

This section describes the errata for the CY8C24xxxA device family. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability. Contact your local Cypress Sales Representative if you have questions.

Part Numbers Affected

Part Number	Ordering Information
CY8C24123A	CY8C24123A-24PXI
	CY8C24123A-24SXI
	CY8C24123A-24SXIT
	CY8C24223A-24PXI
	CY8C24223A-24PVXI
	CY8C24223A-24PVXIT
	CY8C24223A-24SXI
	CY8C24223A-24SXIT
	CY8C24423A-24PXI
	CY8C24423A-24PVXI
	CY8C24423A-24PVXIT
	CY8C24423A-24SXI
	CY8C24423A-24SXIT
	CY8C24423A-24LFXI
	CY8C24423A-24LTXI
	CY8C24423A-24LTXIT
	CY8C24000A-24PVXI

CY8C24123A Qualification Status

Product Status: Production

CY8C24123A Errata Summary

The following table defines the errata applicability to available CY8C24123A family devices.

Items	Part Number	Silicon Revision	Fix Status
[1.]. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes	CY8C24123A		No silicon fix planned. Workaround is required.

1. Internal Main Oscillator (IMO) Tolerance Deviation at Temperature Extremes

■ Problem Definition

Asynchronous Digital Communications Interfaces may fail framing beyond 0 to 70 $^{\circ}$ C. This problem does not affect end-product usage between 0 and 70 $^{\circ}$ C.

■ Parameters Affected

The IMO frequency tolerance. The worst case deviation when operated below 0° C and above +70 $^{\circ}$ C and within the upper and lower datasheet temperature range is $\pm 5\%$.

■ Trigger Condition(S)

The asynchronous Rx/Tx clock source IMO frequency tolerance may deviate beyond the data sheet limit of $\pm 2.5\%$ when operated beyond the temperature range of 0 to ± 70 °C.

■ Scope of Impact

This problem may affect UART, IrDA, and FSK implementations.

■ Workaround

Implement a quartz crystal stabilized clock source on at least one end of the asynchronous digital communications interface.

Fix Status

Silicon fix is not planned. The workaround mentioned above should be used.

Document History Page (continued)

	Oocument Title: CY8C24123A/CY8C24223A/CY8C24423A, PSoC [®] Programmable System-on-Chip Oocument Number: 38-12028					
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
*[2897881	MAXK / NJF	03/23/2010	Add "More Information" on page 2. Update unit in Table 10-28 and Table 38 of SPIS Maximum Input Clock Frequency from ns to MHz. Update revision of package diagrams for 8 PDIP, 8 SOIC, 20 PDIP, 20 SSOP, 20 SOIC, 28 PDIP, 28 SSOP, 28 SOIC, 32 QFN. Updated Cypress website links. Removed reference to PSoC Designer 4.4. Updated 56-Pin SSOP definitions and diagram. Added TBAKETIME parameters in Absolute Maximum Ratings. Updated 5-V DC Analog Reference Specifications table. Updated Note in Packaging Information. Added Note 29. Updated Solder Reflow Specifications table. Removed Third Party Tools and Build a PSoC Emulator into your Board. Removed inactive parts from Ordering Information. Update trademark info. and Sales, Solutions, and Legal Information.		
*M	2942375	VMAD	06/02/2010	Updated content to match current style guide and datasheet template. No technical updates.		
*N	3032514	NJF	09/17/10	Added PSoC Device Characteristics table. Added DC I ² C Specifications table. Added F _{32K U} max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Analog reference tables. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changes were made to AC Digital Block Specifications table and I ² C Timing Diagram. They were updated for clearer understanding. Updated Figure 13 since the labelling for y-axis was incorrect. Template and styles update.		
*O	3098766	YJI	12/01/2010	Sunset review; no content update		
*P	3351721	YJI	08/31/2011	Full annual review of document. No changes are required.		
*Q	3367463	BTK / GIR	09/22/2011	Updated text under DC Analog Reference Specifications on page 28. Removed package diagram spec 51-85188 as there is no active MPN using this outline drawing. The text "Pin must be left floating" is included under Description of NC pin in Table 5 on page 13 and Table 6 on page 14. Updated Table 50 on page 57 to give more clarity. Removed Footnote #35.		
*R	3598291	LURE / XZNG	04/24/2012	Changed the PWM description string from "8- to 32-bit" to "8- and 16-bit".		
*S	3991993	PMAD	05/08/2013	Updated Packaging Information: spec 51-85066 – Changed revision from *E to *F. spec 51-85014 – Changed revision from *F to *G. spec 51-85026 – Changed revision from *F to *G. spec 001-30999 – Changed revision from *C to *D. spec 51-85062 – Changed revision from *E to *F. Updated Reference Documents (Removed 001-17397 spec, 001-14503 spec related information). Added Errata.		