

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 10x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24423a-24pvxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

PSoC Functional Overview	3
PSoC Core	3
Digital System	3
Analog System	4
Additional System Resources	5
PSoC Device Characteristics	5
Getting Started	6
Application Notes	
Development Kits	6
Training	6
CYPros Consultants	6
Solutions Library	6
Technical Support	6
Development Tools	
PSoC Designer Software Subsystems	7
Designing with PSoC Designer	8
Select User Modules	8
Configure User Modules	8
Organize and Connect	8
Generate, Verify, and Debug	8
Pinouts	
8-Pin Part Pinout	9
20-Pin Part Pinout	10
28-Pin Part Pinout	11
32-Pin Part Pinout	12
56-Pin Part Pinout	13
Register Reference	
Register Conventions	14
Register Mapping Tables	
Electrical Specifications	
Absolute Maximum Ratings	17
Operating Temperature	18
DC Electrical Characteristics	18

AC Electrical Characteristics	
Packaging Information	50
Packaging Dimensions	50
Thermal Impedances	
Capacitance on Crystal Pins	56
Solder Reflow Specifications	
Development Tool Selection	57
Software	
Development Kits	57
Evaluation Tools	57
Device Programmers	58
Accessories (Emulation and Programming)	58
Ordering Information	59
Ordering Code Definitions	59
Acronyms	60
Acronyms Used	
Reference Documents	
Document Conventions	61
Units of Measure	61
Numeric Conventions	61
Glossary	61
Errata	
Part Numbers Affected	
CY8C24123A Qualification Status	
CY8C24123A Errata Summary	
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	70
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	70

Additional System Resources

System resources, some of which are listed in the previous sections, provide additional capability useful to complete systems. Additional resources include a multiplier, decimator, switch-mode pump, low-voltage detection, and power-on-reset (POR). Statements describing the merits of each system resource follow:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks may be generated using digital PSoC blocks as clock dividers.
- A multiply accumulate (MAC) provides a fast 8-bit multiplier with 32-bit accumulate, to assist in both general math and digital filters.

- The decimator provides a custom hardware filter for digital signal processing applications including the creation of Delta Sigma ADCs.
- The I²C module provides 100- and 400-kHz communication over two wires. slave, master, and multi-master are supported.
- Low-voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced POR circuit eliminates the need for a system supervisor.
- An internal 1.3 V reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch-mode pump generates normal operating voltages from a single 1.2 V battery cell, providing a low cost boost converter.

PSoC Device Characteristics

Depending on your PSoC device characteristics, the digital and analog systems can have 16, 8, or 4 digital blocks, and 12, 6, or 4 analog blocks. Table 1 on page 6 lists the resources available for specific PSoC device groups. The PSoC device covered by this datasheet is highlighted in this table.

PSoC Part Number	Digital I/O	Digital Rows	Digital Blocks	Analog Inputs	Analog Outputs	Analog Columns	Analog Blocks	SRAM Size	Flash Size
CY8C29x66	up to 64	4	16	up to 12	4	4	12	2 K	32 K
CY8C28xxx	up to 44	up to 3	up to 12	up to 44	up to 4	up to 6	up to 12 + 4 ^[2]	1 K	16 K
CY8C27x43	up to 44	2	8	up to 12	4	4	12	256	16 K
CY8C24x94	up to 56	1	4	up to 48	2	2	6	1 K	16 K
CY8C24x23A	up to 24	1	4	up to 12	2	2	6	256	4 K
CY8C23x33	up to 26	1	4	up to 12	2	2	4	256	8 K
CY8C22x45	up to 38	2	8	up to 38	0	4	6 ^[2]	1 K	16 K
CY8C21x45	up to 24	1	4	up to 24	0	4	6 ^[2]	512	8 K
CY8C21x34	up to 28	1	4	up to 28	0	2	4 ^[2]	512	8 K
CY8C21x23	up to 16	1	4	up to 8	0	2	4 ^[2]	256	4 K
CY8C20x34	up to 28	0	0	up to 28	0	0	3 ^[2,3]	512	8 K
CY8C20xx6	up to 36	0	0	up to 36	0	0	3 ^[2,3]	up to 2 K	up to 32 K

Table 1. PSoC Device Characteristics

2. Limited analog functionality.

3. Two analog blocks and one CapSense[®].

Development Tools

PSoC Designer™ is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.

Designing with PSoC Designer

The development process for the PSoC device differs from that of a traditional fixed-function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and lowering inventory costs. These configurable resources, called PSoC blocks, have the ability to implement a wide variety of user-selectable functions. The PSoC development process is:

- 6. Select user modules.
- 7. Configure user modules.
- 8. Organize and connect.
- 9. Generate, verify, and debug.

Select User Modules

PSoC Designer provides a library of prebuilt, pretested hardware peripheral components called "user modules." User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure User Modules

Each user module that you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. For example, a PWM User Module configures one or more digital PSoC blocks, one for each eight bits of resolution. Using these parameters, you can establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All of the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the user module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information that you may need to successfully implement your design.

Organize and Connect

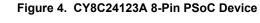
Build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. Perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides APIs with high-level functions to control and respond to hardware events at run time, and interrupt service routines that you can adapt as needed.

A complete code development environment lets you to develop and customize your applications in C, assembly language, or both.

The last step in the development process takes place inside PSoC Designer's Debugger (accessed by clicking the Connect icon). PSoC Designer downloads the HEX image to the ICE where it runs at full-speed. PSoC Designer debugging capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint, and watch-variable features, the debug interface provides a large trace buffer. It lets you to define complex breakpoint events that include monitoring address and data bus values, memory locations, and external signals.

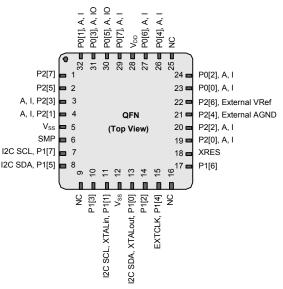

Pinouts


This section describes, lists, and illustrates the CY8C24x23A PSoC device pins and pinout configurations. Every port pin (labeled with a "P") is capable of digital I/O. However, V_{SS} , V_{DD} , SMP, and XRES are not capable of digital I/O.

8-Pin Part Pinout

Pin	Ту	ре	Pin	Description
No.	Digital	Analog	Name	Description
1	I/O	I/O	P0[5]	Analog column mux input and column output
2	I/O	I/O	P0[3]	Analog column mux input and column output
3	I/O		P1[1]	Crystal input (XTALin), I ² C serial clock (SCL), ISSP-SCLK ^[4]
4	Po	wer	V _{SS}	Ground connection
5	I/O		P1[0]	Crystal output (XTALout), I ² C serial data (SDA), ISSP-SDATA ^[4]
6	I/O	I	P0[2]	Analog column mux input
7	I/O	I	P0[4]	Analog column mux input
8	Po	wer	V_{DD}	Supply voltage

Table 2. 8-Pin PDIP and SOIC


LEGEND: A = Analog, I = Input, and O = Output.

32-Pin Part Pinout

Table 5. 32-Pin QFN^[7]

Pin No.	Ту	vpe	Pin	Description	1
PIII NO.	Digital	Analog	Name	Description	l
1	I/O		P2[7]		
2	I/O		P2[5]		1
3	I/O	I	P2[3]	Direct switched capacitor block input	1
4	I/O	1	P2[1]	Direct switched capacitor block input	1
5	Po	wer	V _{SS}	Ground connection	
6	Po	wer	SMP	SMP connection to external components required	
7	I/O		P1[7]	I ² C SCL	1
8	I/O		P1[5]	I ² C SDA	
9			NC	No connection. Pin must be left floating	
10	I/O		P1[3]		
11	I/O		P1[1]	XTALin, I ² C SCL, ISSP-SCLK ^[8]	
12	Po	wer	V _{SS}	Ground Connection	
13	I/O		P1[0]	XTALout, I ² C SDA, ISSP-SDATA ^[8]	
14	I/O		P1[2]		
15	I/O		P1[4]	Optional EXTCLK	
16		•	NC	No connection. Pin must be left floating	
17	I/O		P1[6]		
18	In	put	XRES	Active high external reset with internal pull-down	
19	I/O	I	P2[0]	Direct switched capacitor block input	
20	I/O	I	P2[2]	Direct switched capacitor block input	
21	I/O		P2[4]	External AGND	
22	I/O		P2[6]	External V _{REF}	
23	I/O	I	P0[0]	Analog column mux input	
24	I/O	I	P0[2]	Analog column mux input	
25		•	NC	No connection. Pin must be left floating	
26	I/O	I	P0[4]	Analog column mux input	
27	I/O	I	P0[6]	Analog column mux input	
28	Po	wer	V _{DD}	Supply voltage	1
29	I/O	I	P0[7]	Analog column mux input	
30	I/O	I/O	P0[5]	Analog column mux input and column output	1
31	I/O	I/O	P0[3]	Analog column mux input and column output	
32	I/O	I	P0[1]	Analog column mux input	1
LEOFND.	$\Lambda = \Lambda$ polog	I = Input and			~

Figure 7. CY8C24423A 32-Pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

Notes

- The center pad on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 These are the ISSP pins, which are not high Z at POR. See the PSoC Technical Reference Manual for details.

Table 8. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASC10CR0	80	RW		C0	
PRT0IE	01	RW		41		ASC10CR1	81	RW		C1	
PRT0GS	02	RW		42		ASC10CR2	82	RW		C2	
PRT0DM2	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DR	04	RW		44		ASD11CR0	84	RW		C4	
PRT1IE	05	RW		45		ASD11CR1	85	RW		C5	
PRT1GS	06	RW		46		ASD11CR2	86	RW		C6	1
PRT1DM2	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DR	08	RW		48			88			C8	
PRT2IE	09	RW		49			89			C9	
PRT2GS	0A	RW		4A			8A			CA	+
PRT2DM2	0B	RW		4B			8B			СВ	1
	0C			4C			8C			CC	+
	0D			4D			8D			CD	
	0E			4E			8E			CE	+
	0F			4F			8E			CF	+
	10			50		ASD20CR0	90	RW		D0	+
	10			51		ASD20CR1	91	RW		D1	+
	12			52		ASD20CR2	92	RW		D2	+
	13			53	-	ASD20CR3	93	RW		D3	
	13			53		ASD20CR3 ASC21CR0	93	RW	 	D3	
	14			55		ASC21CR0 ASC21CR1	95	RW	 	D4 D5	
	16			56		ASC21CR1 ASC21CR2	96	RW	I2C CFG	D5	RW
	10			57		ASC21CR2 ASC21CR3	97	RW	I2C_CFG	D7	#
	17			58		ASCZICKS	98	RVV	I2C_SCR	D7 D8	# RW
	10			59			99		I2C_DR I2C_MSCR	D9	#
									_		
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C			DC	DW
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F			DF	
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W		61			A1		INT_MSK1	E1	RW
DBB00DR2	22	RW		62			A2		INT_VC	E2	RC
DBB00CR0	23	#	ARF_CR	63	RW		A3		RES_WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4		DEC_DH	E4	RC
DBB01DR1	25	W	ASY_CR	65	#		A5		DEC_DL	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#		68			A8		MUL_X	E8	W
DCB02DR1	29	W		69			A9		MUL_Y	E9	W
DCB02DR2	2A	RW		6A			AA		MUL_DH	EA	R
DCB02CR0	2B	#		6B			AB		MUL_DL	EB	R
DCB03DR0	2C	#		6C			AC		ACC_DR1	EC	RW
DCB03DR1	2D	W		6D			AD		ACC_DR0	ED	RW
DCB03DR2	2E	RW		6E			AE		ACC_DR3	EE	RW
DCB03CR0	2F	#		6F			AF		ACC_DR2	EF	RW
	30		ACB00CR3	70	RW	RDI0RI	B0	RW		F0	1
	31		ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	1
	32		ACB00CR1	72	RW	RDI0IS	B2	RW		F2	1
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	1
	34		ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	1
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	1
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW	l	F6	1
	37		ACB01CR2	77	RW	-	B7		CPU F	F7	RL
	38			78			B8			F8	1
	39			79			B9			F9	+
	3A			76 7A			BA		 	FA	+
	3B			7B			BB		l	FB	+
	3C			7C	<u> </u>		BC		 	FC	+
									 	FD	+
				7D							
	3D			7D 7E			BD BE				#
				7D 7E 7F			BE		CPU_SCR1 CPU SCR0	FD FE FF	#

Operating Temperature

Table 10. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-40	-	+85	°C	
TJ	Junction temperature	-40	-	+100		The temperature rise from ambient to junction is package specific. See Table 48 on page 57. You must limit the power consumption to comply with this requirement

DC Electrical Characteristics

DC Chip-Level Specifications

Table 11 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 11. DC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage	2.4	-	5.25	V	See DC POR and LVD specifications, Table 26 on page 35
I _{DD}	Supply current	-	5	8	mA	Conditions are V_{DD} = 5.0 V, T_A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, analog power = off SLIMO mode = 0. IMO = 24 MHz
I _{DD3}	Supply current	_	3.3	6.0	mA	Conditions are V_{DD} = 3.3 V, T_A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, analog power = off. SLIMO mode = 0. IMO = 24 MHz
I _{DD27}	Supply current	-	2	4	mA	Conditions are V_{DD} = 2.7 V, T_A = 25 °C, CPU = 0.75 MHz, SYSCLK doubler disabled, VC1 = 0.375 MHz, VC2 = 23.44 kHz, VC3 = 0.09 kHz, analog power = off. SLIMO mode = 1. IMO = 6 MHz
I _{SB}	Sleep (mode) current with POR, LVD, sleep timer, and WDT. $^{[10]}$	-	3	6.5	μA	Conditions are with internal slow speed oscillator, V_{DD} = 3.3 V, –40 $^\circ C \leq T_A \leq$ 55 $^\circ C$, analog power = off
I _{SBH}	Sleep (mode) current with POR, LVD, sleep timer, and WDT at high temperature. ^[10]	_	4	25	μA	Conditions are with internal slow speed oscillator, V_DD = 3.3 V, 55 °C < T_A \leq 85 °C, analog power = off
I _{SBXTL}	Sleep (mode) current with POR, LVD, sleep timer, WDT, and external crystal. ^[10]	_	4	7.5	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. V _{DD} = 3.3 V, -40 °C \leq T _A \leq 55 °C, analog power = off
I _{SBXTLH}	Sleep (Mode) current with POR, LVD, sleep timer, WDT, and external crystal at high temperature. ^[10]	_	5	26	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. V _{DD} = 3.3 V, 55 °C < T _A \leq 85 °C, analog power = off
V _{REF}	Reference voltage (Bandgap)	1.28	1.30	1.32	V	Trimmed for appropriate V_{DD} . $V_{DD} > 3.0 V$
V _{REF27}	Reference voltage (Bandgap)	1.16	1.30	1.32	V	Trimmed for appropriate V_{DD} . V_{DD} = 2.4 V to 3.0 V

Note

10. Standby current includes all functions (POR, LVD, WDT, sleep time) needed for reliable system operation. This must be compared with devices that have similar functions enabled.

Table 15. 3.3-V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = Iow, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high		1.65 1.32 –	10 8 -	mV mV mV	Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation.
TCV _{OSOA}	Average input offset voltage drift	-	7.0	35.0	µV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	20	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range	0.2	_	V _{DD} – 0.2	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain Power = low, ppamp Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low	60 60 80	_ _ _	- - -	dB dB dB	Specification is applicable at low Opamp bias. For high Opamp bias mode (except high power, high Opamp bias), minimum is 60 dB.
V _{OHIGHOA}	High output voltage swing (internal signals) Power = low, Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low	$V_{DD} - 0.2$ $V_{DD} - 0.2$ $V_{DD} - 0.2$	_ _ _	- - -	V V V	Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation.
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, ppamp Opamp bias = low Power = medium, Opamp bias = low Power = high, Opamp bias = low		_ _ _	0.2 0.2 0.2	V V V	Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation.
I _{SOA}	Supply current (including associated AGND buffer) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high	- - - - -	150 300 600 1200 2400 -	200 400 800 1600 3200 -	μΑ μΑ μΑ μΑ μΑ	Power = high, Opamp bias = high setting is not allowed for 3.3 V V _{DD} operation.
PSRR _{OA}	Supply voltage rejection ratio	64	80	_	dB	$V_{SS} \leq V_{IN} \leq (V_{DD}-2.25) \text{ or } \\ (V_{DD}-1.25 \text{ V}) \leq V_{IN} \leq V_{DD}$

DC Analog Output Buffer Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
CL	Load Capacitance	_	_	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	-	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	-	+6	-	μV/°C	
V _{CMOB}	Common mode input voltage range	0.5	-	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high		1 1		W W	
V _{OHIGHOB}	High output voltage swing (Load = 32 ohms to V _{DD/2}) Power = low Power = high	0.5 × V _{DD} + 1.1 0.5 × V _{DD} + 1.1	-		V V	
V _{OLOWOB}	Low output voltage swing (Load = 32 ohms to V _{DD/2}) Power = low Power = high		-	.5 × V _{DD} – 1.3 0.5 × V _{DD} – 1.3	V V	
I _{SOB}	Supply current including Opamp bias cell (No Load) Power = low Power = high		1.1 2.6	5.1 8.8	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	52	64	-	dB	V _{OUT} > (V _{DD} – 1.25)

Table 19. 3.3-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
CL	Load Capacitance	-	-	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	—	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	-	+6	-	μV/°C	
V _{CMOB}	Common mode input voltage range	0.5	-	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high		1 1		$\Omega \Omega$	
V _{OHIGHOB}	High output voltage swing (Load = 1 K ohms to $V_{DD/2}$) Power = Iow Power = high	0.5 × V _{DD} + 1.0 0.5 × V _{DD} + 1.0			V V	
V _{OLOWOB}	Low output voltage swing (Load = 1 K ohms to $V_{DD/2}$) Power = low Power = high		-	0.5 × V _{DD} – 1.0 0.5 × V _{DD} – 1.0	V V	
I _{SOB}	Supply current including Opamp bias cell (no load) Power = low Power = high	- -	0.8 2.0	2.0 4.3	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	52	64	-	dB	V _{OUT} > (V _{DD} - 1.25)

Table 20. 2.7-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
CL	Load Capacitance	-	_	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	-	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	-	+6	-	μV/°C	
V _{CMOB}	Common mode input voltage range	0.5	_	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high	-	1 1		Ω Ω	
V _{OHIGHOB}	High output voltage swing (Load = 1 K ohms to V _{DD/2}) Power = low Power = high	0.5 × V _{DD} + 0.2 0.5 × V _{DD} + 0.2			V V	
V _{OLOWOB}	Low output voltage swing (Load = 1 K ohms to $V_{DD/2}$) Power = low Power = high		-	0.5 × V _{DD} – 0.7 0.5 × V _{DD} – 0.7	V V	
I _{SOB}	Supply current including Opamp bias cell (No Load) Power = low Power = high	_	0.8 2.0	2.0 4.3	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	52	64	-	dB	V _{OUT} > (V _{DD} – 1.25).

DC POR, SMP, and LVD Specifications

Table 24 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Note The bits PORLEV and VM in the following table refer to bits in the VLT_CR register. See the PSoC Programmable Sytem-on-Chip Technical Reference Manual for more information on the VLT_CR register.

Table 26. DC POR and LVD Specifications

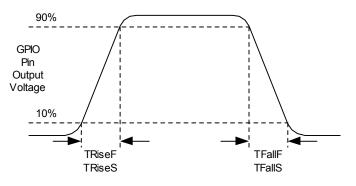
Symbol	Description	Min	Тур	Max	Units	Notes
V _{PPOR0} V _{PPOR1} V _{PPOR2}	V _{DD} value for PPOR trip PORLEV[1:0] = 00b PORLEV[1:0] = 01b PORLEV[1:0] = 10b	_	2.36 2.82 4.55	2.40 2.95 4.70	V V V	V _{DD} must be greater than or equal to 2.5 V during startup, reset from the XRES pin, or reset from watchdog.
V _{LVD0} V _{LVD1} V _{LVD2} V _{LVD3} V _{LVD4} V _{LVD5} V _{LVD6} V _{LVD7}	$V_{DD} \text{ value for LVD trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 111b \\ VM[2:0] = 100 \\ VM[2:0] = 100$	2.40 2.85 2.95 3.06 4.37 4.50 4.62 4.71	2.45 2.92 3.02 3.13 4.48 4.64 4.73 4.81	2.51 ^[12] 2.99 ^[13] 3.09 3.20 4.55 4.75 4.83 4.95	V V V V V V V V	
Vpumpo Vpump1 Vpump2 Vpump3 Vpump3 Vpump5 Vpump5 Vpump6 Vpump7	$\begin{array}{l} V_{DD} \text{ value for SMP trip} \\ VM[2:0] = 000b \\ VM[2:0] = 001b \\ VM[2:0] = 010b \\ VM[2:0] = 011b \\ VM[2:0] = 100b \\ VM[2:0] = 101b \\ VM[2:0] = 110b \\ VM[2:0] = 111b \end{array}$	2.50 2.96 3.03 3.18 4.54 4.62 4.71 4.89	2.55 3.02 3.10 3.25 4.64 4.73 4.82 5.00	2.62 ^[14] 3.09 3.16 3.32 ^[15] 4.74 4.83 4.92 5.12	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	

Notes

- 12. Always greater than 50 mV above V_{PPOR} (PORLEV=00) for falling supply. 13. Always greater than 50 mV above V_{PPOR} (PORLEV=01) for falling supply. 14. Always greater than 50 mV above V_{LVD0}. 15. Always greater than 50 mV above V_{LVD0}.

AC GPIO Specifications

These tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.


Table 31.	5-V and 3.3-V	AC GPIO	Specifications
-----------	---------------	---------	----------------

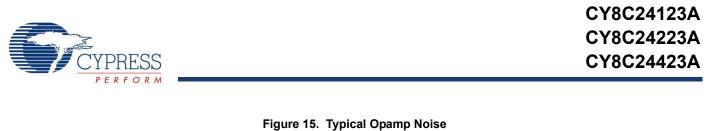

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12	MHz	Normal Strong Mode
tRiseF	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% to 90%
tFallF	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% to 90%
tRiseS	Rise time, slow strong mode, Cload = 50 pF	10	27	-	ns	V _{DD} = 3 to 5.25 V, 10% to 90%
tFallS	Fall time, slow strong mode, Cload = 50 pF	10	22	-	ns	V _{DD} = 3 to 5.25 V, 10% to 90%

Table 32. 2.7-V AC GPIO Specifications

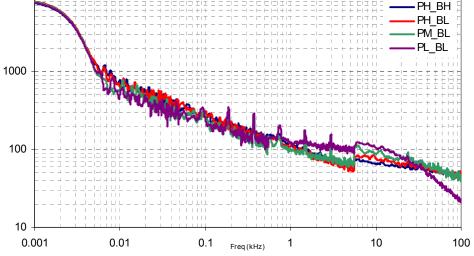

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	3	MHz	Normal strong mode
tRiseF	Rise time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%
tFallF	Fall time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%
tRiseS	Rise time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%
tFallS	Fall time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 to 3.0 V, 10% to 90%

Figure 0-1. GPIO Timing Diagram

AC Low Power Comparator Specifications

nV/rtHz 10000 -

Table 36 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V at 25 °C and are for design guidance only.

Table 36. AC Low Power Comparator Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
t _{RLPC}	LPC response time	-	-	50	μs	≥ 50 mV overdrive comparator reference set within V _{REFLPC}

AC Analog Output Buffer Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 39.	5-V AC Analog	Output Buffer	Specifications
10010 001	V T AO Analog	output bullor	opoonnoutionio

Symbol	Description	Min	Тур	Мах	Units
t _{ROB}	Rising settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high			2.5 2.5	μs μs
t _{SOB}	Falling settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high			2.2 2.2	μs μs
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100 pF load Power = low Power = high	0.65 0.65	-		V/µs V/µs
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100 pF load Power = low Power = high	0.65 0.65			V/µs V/µs
BW _{OB}	Small signal bandwidth, 20mV _{pp} , 3dB BW, 100 pF load Power = low Power = high	0.8 0.8			MHz MHz
BW _{OB}	Large signal bandwidth, 1V _{pp} , 3dB BW, 100 pF load Power = low Power = high	300 300			kHz kHz

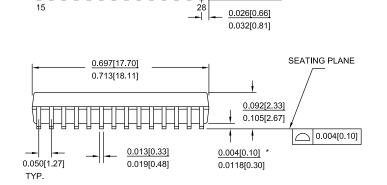
Table 40. 3.3-V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Мах	Units
t _{ROB}	Rising settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high			3.8 3.8	μs μs
t _{SOB}	Falling settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high	_		2.6 2.6	μs μs
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100 pF load Power = low Power = high	0.5 0.5	-		V/µs V/µs
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100 pF load Power = low Power = high	0.5 0.5			V/µs V/µs
BW _{OB}	Small signal bandwidth, 20mV _{pp} , 3dB BW, 100 pF load Power = low Power = high	0.7 0.7			MHz MHz
BW _{OB}	Large signal bandwidth, 1V _{pp} , 3dB BW, 100 pF load Power = low Power = high	200 200			kHz kHz

HHHH

ННН

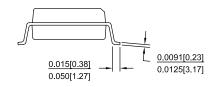
Н


Figure 24. 28-Pin (300-Mil) Molded SOIC

- 1. JEDEC STD REF MO-119
- BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH, BUT DOES INCLUDE MOLD MISMATCH AND ARE MEASURED AT THE MOLD PARTING LINE. MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.010 in (0.254 mm) PER SIDE

3. DIMENSIONS IN INCHES

MIN.
MAX


Ð

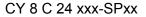
PIN 1 ID

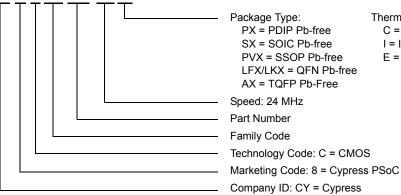
0.291[7.39] 0.300[7.62]

> 0.394[10.01] 0.419[10.64]

	PART#	
S28.3	STANDARD PKG.	
SZ28.3	LEAD FREE PKG.	
SX28.3	LEAD FREE PKG.	

51-85026 *H


Ordering Information


The following table lists the CY8C24x23A PSoC device's key package features and ordering codes. **Table 52.** CY8C24x23A PSoC Device Key Features and Ordering Information

Package	Ordering Code	Flash (Bytes)	SRAM (Bytes)	Switch Mode Pump	Temperature Range	Digital Blocks	Analog Blocks	Digital I/O Pins	Analog Inputs	Analog Outputs	XRES Pin
8-pin (300-mil) DIP	CY8C24123A-24PXI	4 K	256	No	–40 °C to +85 °C	4	6	6	4	2	No
8-pin (150-mil) SOIC	CY8C24123A-24SXI	4 K	256	No	–40 °C to +85 °C	4	6	6	4	2	No
8-pin (150-mil) SOIC (Tape and Reel)	CY8C24123A-24SXIT	4 K	256	No	–40 °C to +85 °C	4	6	6	4	2	No
20-pin (300-mil) DIP	CY8C24223A-24PXI	4 K	256	Yes	–40 °C to +85 °C	4	6	16	8	2	Yes
20-pin (210-mil) SSOP	CY8C24223A-24PVXI	4 K	256	Yes	–40 °C to +85 °C	4	6	16	8	2	Yes
20-pin (210-mil) SSOP (Tape and Reel)	CY8C24223A-24PVXIT	4 K	256	Yes	–40 °C to +85 °C	4	6	16	8	2	Yes
20-pin (300-mil) SOIC	CY8C24223A-24SXI	4 K	256	Yes	–40 °C to +85 °C	4	6	16	8	2	Yes
20-pin (300-mil) SOIC (Tape and Reel)	CY8C24223A-24SXIT	4 K	256	Yes	–40 °C to +85 °C	4	6	16	8	2	Yes
28-pin (300-mil) DIP	CY8C24423A-24PXI	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
28-pin (210-mil) SSOP	CY8C24423A-24PVXI	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
28-pin (210-mil) SSOP (Tape and Reel)	CY8C24423A-24PVXIT	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
28-pin (300-mil) SOIC	CY8C24423A-24SXI	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
28-pin (300-mil) SOIC (Tape and Reel)	CY8C24423A-24SXIT	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
32-pin (5 × 5 mm 1.00 max) Sawn QFN	CY8C24423A-24LTXI	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
32-pin (5 × 5 mm 1.00 max) Sawn QFN (Tape and Reel)	CY8C24423A-24LTXIT	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes
56-pin OCD SSOP	CY8C24000A-24PVXI ^[43]	4 K	256	Yes	–40 °C to +85 °C	4	6	24	10	2	Yes

Note For Die sales information, contact a local Cypress sales office or Field Applications Engineer (FAE).

Ordering Code Definitions

Thermal Rating: C = Commercial I = Industrial E = Extended

Note

43. This part may be used for in-circuit debugging. It is NOT available for production.

Document Conventions

Units of Measure

Table 54 lists the unit sof measures.

Table 54. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
kB	1024 bytes	μs	microsecond
dB	decibels	ms	millisecond
°C	degree Celsius	ns	nanosecond
fF	femto farad	ps	picosecond
pF	picofarad	μV	microvolts
kHz	kilohertz	mV	millivolts
MHz	megahertz	mVpp	millivolts peak-to-peak
rt-Hz	root hertz	nV	nanovolts
kΩ	kilohm	V	volts
Ω	ohm	μW	microwatts
μA	microampere	W	watt
mA	milliampere	mm	millimeter
nA	nanoampere	ppm	parts per million
pА	pikoampere	%	percent
mH	millihenry		· ·

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	10.A logic signal having its asserted state as the logic 1 state. 11.A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
API (Application Programming Interface)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
Bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

Glossary (continued)

duty cycle	The relationship of a clock period high time to its low time, expressed as a percent.
emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.
external reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.
flash	An electrically programmable and erasable, non-volatile technology that provides users with the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is off.
Flash block	The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.
frequency	The number of cycles or events per unit of time, for a periodic function.
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.
ICE	The in-circuit emulator that allows users to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space.
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2004-2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-12028 Rev. *V

Revised January 13, 2015

Page 71 of 71

PSoC Designer™ is a trademark and PSoC® is a registered trademark of Cypress Semiconductor Corporation. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

Purchase of I²C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.