

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.4V ~ 5.25V
Data Converters	A/D 10x14b; D/A 2x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c24423a4-24sxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC Functional Overview

The PSoC family consists of many programmable system-on-chips with on-chip controller devices. These devices are designed to replace multiple traditional MCU-based system components with a low-cost single-chip programmable device. PSoC devices include configurable blocks of analog and digital logic, and programmable interconnects. This architecture makes it possible for you to create customized peripheral configurations that match the requirements of each individual application. Additionally, a fast CPU, flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts and packages.

The PSoC architecture, shown in Figure 2, consists of four main areas: PSoC core, digital system, analog system, and system resources. Configurable global busing allows combining all the device resources into a complete custom system. The PSoC CY8C24x23A family can have up to three I/O ports that connect to the global digital and analog interconnects, providing access to four digital blocks and six analog blocks.

PSoC Core

The PSoC core is a powerful engine that supports a rich feature set. The core includes a CPU, memory, clocks, and configurable GPIOs.

The M8C CPU core is a powerful processor with speeds up to 24 Hz, providing a four-MIPS 8-bit Harvard-architecture microprocessor. The CPU uses an interrupt controller with 11 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included sleep and watchdog timers (WDT).

Memory encompasses 4 KB of flash for program storage, 256 bytes of SRAM for data storage, and up to 2 KB of EEPROM emulated using the flash. Program flash uses four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The PSoC device incorporates flexible internal clock generators, including a 24 MHz internal main oscillator (IMO) accurate to $\pm 2.5\%$ to $\pm 5\%$ over temperature and voltage^[1]. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz internal low speed oscillator (ILO) is provided for the sleep timer and WDT. If crystal accuracy is required, the ECO (32.768 kHz external crystal oscillator) is available for use as a real time clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the PSoC device.

PSoC GPIOs provide connection to the CPU, digital, and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin can generate a system interrupt on high level, low level, and change from last read.

Digital System

The digital system consists of four digital PSoC blocks. Each block is an 8-bit resource that may be used alone or combined with other blocks to form 8-, 16-, 24-, and 32-bit peripherals, which are called user module references.

Digital peripheral configurations are:

- PWMs (8- and 16-bit)
- PWMs with dead band (8- and 16-bit)
- Counters (8- to 32-bit)
- Timers (8- to 32-bit)
- UART 8-bit with selectable parity
- SPI master and slave
- \blacksquare I²C slave and multi-master (one is available as a system resource)
- CRC generator (8- to 32-bit)
- IrDA
- PRS generators (8- to 32-bit)

The digital blocks may be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This gives a choice of system resources for your application. Family resources are shown in Table 1 on page 6.

Note

Errata: When the device is operated within 0 °C to 70 °C, the frequency tolerance is reduced to ±2.5%, but if operated at extreme temperature (below 0 °C or above 70 °C), frequency tolerance deviates from ±2.5% to ±5%. For more information, see "Errata" on page 67.

Development Tools

PSoC Designer™ is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.

56-Pin Part Pinout

The 56-pin SSOP part is for the CY8C24000A On-Chip Debug (OCD) PSoC device. **Note** This part is only used for in-circuit debugging. It is NOT available for production.

Table 6. 56-Pin SSOP OCD

Din No	Ту	ре	Pin	Description
PIN NO.	Digital	Analog	Name	Description
1	-	-	NC	No connection. Pin must be left floating
2	I/O		P0[7]	Analog column mux input
3	I/O	I	P0[5]	Analog column mux input and column output
4	I/O	1	P0[3]	Analog column mux input and column output
5	I/O	1	P0[1]	Analog column mux input
6	I/O		P2[7]	
7	I/O		P2[5]	
8	I/O	I	P2[3]	Direct switched capacitor block input
9	I/O	I	P2[1]	Direct switched capacitor block input
10			NC	No connection. Pin must be left floating
11			NC	No connection. Pin must be left floating
12			NC	No connection. Pin must be left floating
13			NC	No connection. Pin must be left floating
14	OCD		OCDE	OCD even data I/O
15	OCD		OCDO	OCD odd data output
16	Pov	wer	SMP	SMP connection to required external compo-
				nents
17			NC	No connection. Pin must be left floating
18			NC	No connection. Pin must be left floating
19			NC	No connection. Pin must be left floating
20			NC	No connection. Pin must be left floating
21			NC	No connection. Pin must be left floating
22			NC	No connection. Pin must be left floating
23	I/O		P1[7]	I ² C SCL
24	I/O		P1[5]	I ² C SDA
25			NC	No connection. Pin must be left floating
26	I/O		P1[3]	
27	I/O		P1[1]	XTALin, I ² C SCL, ISSP-SCLK ^{19]}
28	Pov	ver	V _{DD}	Supply voltage
29			NC	No connection. Pin must be left floating
30			NC	No connection. Pin must be left floating
31	I/O		P1[0]	XTALout, I ² C SDA, ISSP-SDATA ^[9]
32	I/O		P1[2]	
33	I/O		P1[4]	Optional EXTCLK
34	I/O		P1[6]	
35			NC	No connection. Pin must be left floating
36			NC	No connection. Pin must be left floating
37			NC	No connection. Pin must be left floating
38			NC	No connection. Pin must be left floating
39			NC	No connection. Pin must be left floating
40			NC	No connection. Pin must be left floating
41	Inp	out	XRES	Active high external reset with internal pull-down.
42	OCD		HCLK	OCD high speed clock output.
43	OCD		CCLK	OCD CPU clock output.
44			NC	No connection. Pin must be left floating
45			NC	No connection. Pin must be left floating
46			NC	No connection. Pin must be left floating
47		-	NC	No connection. Pin must be left floating
48	I/O		P2[0]	Direct switched capacitor block input.
49	I/O	I	P2[2]	Direct switched capacitor block input.
50	I/O		P2[4]	External AGND.
51	I/O		P2[6]	External V _{REF} .
52	I/O		P0[0]	Analog column mux input.
53	I/O		P0[2]	Analog column mux input and column output.
54	I/O		P0[4]	Analog column mux input and column output.
55	I/O	I	P0[6]	Analog column mux input.
56	Pov	ver	V _{DD}	Supply voltage.

Figure 8. CY8C24000A 56-Pin PSoC Device

	0	~]
NC	1		56	
AI, P0[7] =	2		55	P0[6], AI
AIO, P0[5]	3		54	P0[4], AIO
AIO, P0[3]	4		53	P0[2], AIO
AI, P0[1]	5		52	■ P0[0], AI
P2[7]	6		51	P2[6], External VRef
P2[5] 🖬	7		50	P2[4], External AGND
AI, P2[3] 🖬	8		49	■ P2[2], AI
AI, P2[1]	9		48	■ P2[0], AI
NC	10		47	■ NC
NC=	11		46	■ NC
NC	12		45	■ NC
NC =	13		44	■ NC
OCDE =	14	SSOP	43	- CCLK
OCDO =	15	0001	42	HCLK
SMP =	16		41	= XRES
NC 🖬	17		40	■ NC
NC 🖬	18		39	NC
NC 🗖	19		38	■ NC
NC	20		37	■ NC
NC =	21		36	NC
NC=	22		35	■ NC
I2C SCL, P1[7]	23		34	P P1[6]
I2C SDA, P1[5]	24		33	P1[4], EXTCLK
NC	25		32	P P1[2]
P1[3]	26		31	P1[0], XTALOut, I2C SDA, SDATA
2C SCL, XTALIn, P1[1]	27		30	NC
V _{ss} =	28		29	NC
			_	1

SCLK,

LEGEND: A = Analog, I = Input, O = Output, and OCD = On-Chip Debug.

Note

9. These are the ISSP pins, which are not high Z at POR. See the PSoC Technical Reference Manual for details.

Table 8. Register Map Bank 0 Table: User Space

Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASC10CR0	80	RW		C0	
PRT0IE	01	RW		41		ASC10CR1	81	RW		C1	
PRT0GS	02	RW		42		ASC10CR2	82	RW		C2	
PRT0DM2	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DR	04	RW		44		ASD11CR0	84	RW		C4	
PRT1IE	05	RW		45		ASD11CR1	85	RW		C5	
PRT1GS	06	RW		46		ASD11CR2	86	RW		C6	
PRT1DM2	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DR	08	RW		48			88			C8	
PRT2IE	09	RW		49			89			C9	
PRT2GS	0A	RW		4A			8A			CA	
PRT2DM2	0B	RW		4B			8B			CB	
	00			40			80			00	
	0D			4D			8D			CD	
	0E			4F			8E			CE	
	0E			4F			8E	-		CE	-
	10			50			90	RW/			-
	10			51		ASD20CR1	01	DW/		D0	
	12			52		ASD20CR1	91			D1 D2	
	12			52		ASD20CR2	92			D2	
	13		-	53		ASD20CR3	93	RW	-	D3	
	14			54		ASC21CR0	94	RW		D4	
	15			55		ASC21CR1	95	RW		D5	
	16			56		ASC21CR2	96	RW	I2C_CFG	D6	RW
	17			57		ASC21CR3	97	RW	I2C_SCR	D7	#
	18			58			98		I2C_DR	D8	RW
	19			59			99		I2C_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C			DC	
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F			DF	
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W		61			A1		INT MSK1	E1	RW
DBB00DR2	22	RW		62			A2		INT VC	E2	RC
DBB00CR0	23	#	ARF CR	63	RW		A3		RES WDT	E3	W
DBB01DR0	24	#	CMP_CR0	64	#		A4		DEC DH	E4	RC
DBB01DR1	25	W	ASY CR	65	#		A5		DEC DI	E5	RC
DBB01DR2	26	RW	CMP_CR1	66	 RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			Δ7		DEC_CR1	E0 E7	RW
DCB02DR0	28	#		68			48		MUL X	E9	W
	20	π \\\/		60			A0			E0	VV \\/
DCB02DR1	25			64			A9 AA				P
DCB02DR2	28	#		0A 6B					MUL_DI		
DCB02CR0	26	#		06			AD			ED	R DW
	20	#	ł					ļ			
	20		l			I			ACC_DRU		KW DW
DCB03DR2	2E	KW		0E			AE		ACC_DR3		RW DW
DCB03CK0	21	#	400000000	01	DW	DDIAC'	AF	DW	ACC_DR2		RW
	30		ACBUUCR3	70	RW	RDIURI	RÛ	RW		FU	ļ
	31		ACB00CR0	/1	RW	RDIOSYN	В1	RW		F1	
	32		ACB00CR1	72	RW	RDIOIS	B2	RW		+2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		ACB01CR3	74	RW	RDI0LT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36		ACB01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37		ACB01CR2	77	RW		B7	ſ	CPU_F	F7	RL
	38			78		1	B8			F8	
	39	1		79	l		B9	İ		F9	İ
	3A			7A			BA			FA	
	3B			7B			BB			FB	
	3C		l –	7C		l –	BC	İ	l –	FC	l
	3D		l	7D		l	BD	1	l	FD	1
	3E			7E			BE		CPU SCR1	FE	#
	3F			7F			BF		CPU SCR0	FF	#
Discip field	<u> </u>	L	I	L · '	l	L <u>., , , ,</u>	<u> </u>	L			

Blank fields are Reserved and must not be accessed.

Access is bit specific.

Table 0-1. Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASC10CR0	80	RW		C0	
PRT0DM1	01	RW		41		ASC10CR1	81	RW		C1	
PRT0IC0	02	RW		42		ASC10CR2	82	RW		C2	
PRT0IC1	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DM0	04	RW		44		ASD11CR0	84	RW		C4	
PRT1DM1	05	RW		45		ASD11CR1	85	RW		C5	
PRT1IC0	06	RW		46		ASD11CR2	86	RW		C6	
PRT1IC1	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DM0	08	RW		48			88			C8	
PRT2DM1	09	RW		49			89			C9	
PRT2IC0	0A	RW		4A			8A			CA	
PRT2IC1	0B	RW		4B			8B			CB	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F		4000000	8F	DW/		CF	DW
	10			50		ASD20CR0	90	RW	GDI_O_IN	DU	RW
-	11			51		ASD20CR1	91	RW	GDI_E_IN	D1	RW
	12			52		ASD20CR2	92	RW	GDI_O_OU	D2	RW
	13			53		ASD20CR3	93	RW	GDI_E_00	D3	RW
	14			54		ASC21CRU	94	RW		D4	
	15			55		ASC21CR1	95	RW		D5	
	10			50		ASC21CR2	90			D0	
	17			59		ASCZICKS	97				
	10			50			90			D0	
	19			59			99			D9	
	1A 1B			5R			9A 9B			DB	
	10			50			90			DC	
	10	-		5D		-	90		OSC GO EN	מס	RW
	1E	-		5E			9F		OSC_CR4	DE	RW
	1E			5E			9F		OSC CR3	DF	RW
DBB00FN	20	RW	CLK CR0	60	RW		A0		OSC CR0	E0	RW
DBB00IN	21	RW	CLK CR1	61	RW		A1		OSC CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC CR2	E2	RW
	23		AMD CR0	63	RW		A3		VLT CR	E3	RW
DBB01FN	24	RW	_	64			A4		VLT CMP	E4	R
DBB01IN	25	RW		65			A5		_	E5	
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW		6C			AC			EC	
DCB03IN	2D	RW		6D			AD			ED	
DCB03OU	2E	RW		6E			AE			EE	
	2F			6F			AF			EF	
	30		ACB00CR3	70	RW	RDIORI	B0	RW		F0	
	31		ACB00CR0	71	RW	RDIOSYN	B1	RW		F1	
	32		ACB00CR1	72	RW	RDIOIS	В2	RW		F2	
	33		ACB00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34		ACB01CR3	74	RW	RDIOLT1	B4	RW		F4	
	35		ACB01CR0	75	RW	RDI0RO0	B5	RW		F5	
	36	L	ACB01CR1	/6	RW	KDI0RO1	B6	RW		F6	DI
	3/	ļ	ACB01CR2	//	RW		в/		CPU_F	F/	KL
	38			78			88			F8	
	39			79			ВЭ			F9	
	3A 2D			7A 7D			BA				
	30		l	70						LR LR	
	30	ļ	l	70							
	3D 3E	ļ	}	70 7E			BE			FU	#
	3E	<u> </u>		7E			BE			FE	# #
Blank fields or		not be easy		''		# Access is hit of			01 0_00R0		π

nk fields are Reserved and must not be accessed.

Access is bit specific.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C24x23A PSoC device. For the latest electrical specifications, check if you have the most recent datasheet by visiting the website at http://www.cypress.com.

Specifications are valid for –40 $^\circ C \le T_A \le 85 \ ^\circ C$ and $T_J \le 100 \ ^\circ C,$ except where noted.

Refer to Table 29 on page 37 for the electrical specifications for the IMO using SLIMO mode.

Figure 8. IMO Frequency Trim Options

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Symbol	Description	Min	Тур	Max	Units	Notes
T _{STG}	Storage temperature	-55	25	+100	ç	Higher storage temperatures reduce data retention time. Recommended storage temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 65 °C degrades reliability.
T _{BAKETEMP}	Bake temperature	-	125	See package label	°C	
t _{ВАКЕТІМЕ}	Bake time	See package label	-	72	Hours	
T _A	Ambient temperature with power applied	-40	-	+85	°C	
V _{DD}	Supply voltage on V_{DD} relative to V_{SS}	-0.5	-	+6.0	V	
V _{IO}	DC input voltage	$V_{\rm SS}-0.5$	-	V _{DD} + 0.5	V	
V _{IOZ}	DC voltage applied to tri-state	$V_{\rm SS}-0.5$	Ι	V _{DD} + 0.5	V	
I _{MIO}	Maximum current into any port pin	-25	-	+50	mA	
ESD	Electrostatic discharge voltage	2000	_	-	V	Human body model ESD.
LU	Latch up current	-	-	200	mA	

Table 9. Absolute Maximum Ratings

Operating Temperature

Table 10. Operating Temperature

Symbol	Description	Min	Тур	Max	Units	Notes
T _A	Ambient temperature	-40	-	+85	°C	
Τ _J	Junction temperature	-40	-	+100	°C	The temperature rise from ambient to junction is package specific. See Table 48 on page 57. You must limit the power consumption to comply with this requirement

DC Electrical Characteristics

DC Chip-Level Specifications

Table 11 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 11. DC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DD}	Supply voltage	2.4	-	5.25	V	See DC POR and LVD specifications, Table 26 on page 35
I _{DD}	Supply current	-	5	8	mA	Conditions are $V_{DD} = 5.0 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, analog power = off SLIMO mode = 0. IMO = 24 MHz
I _{DD3}	Supply current	_	3.3	6.0	mA	Conditions are V_{DD} = 3.3 V, T_A = 25 °C, CPU = 3 MHz, SYSCLK doubler disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz, analog power = off. SLIMO mode = 0. IMO = 24 MHz
I _{DD27}	Supply current	_	2	4	mA	Conditions are $V_{DD} = 2.7 \text{ V}$, $T_A = 25 \text{ °C}$, CPU = 0.75 MHz, SYSCLK doubler disabled, VC1 = 0.375 MHz, VC2 = 23.44 kHz, VC3 = 0.09 kHz, analog power = off. SLIMO mode = 1. IMO = 6 MHz
I _{SB}	Sleep (mode) current with POR, LVD, sleep timer, and WDT. $\ensuremath{^{[10]}}$	-	3	6.5	μA	Conditions are with internal slow speed oscillator, V_{DD} = 3.3 V, –40 °C \leq T _A \leq 55 °C, analog power = off
I _{SBH}	Sleep (mode) current with POR, LVD, sleep timer, and WDT at high temperature. ^[10]	-	4	25	μA	Conditions are with internal slow speed oscillator, V _{DD} = 3.3 V, 55 °C < $T_A \le$ 85 °C, analog power = off
I _{SBXTL}	Sleep (mode) current with POR, LVD, sleep timer, WDT, and external crystal. ^[10]	-	4	7.5	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. V _{DD} = 3.3 V, -40 °C \leq T _A \leq 55 °C, analog power = off
I _{SBXTLH}	Sleep (Mode) current with POR, LVD, sleep timer. WDT, and external crystal at high temperature. ^[10]	-	5	26	μA	Conditions are with properly loaded, 1 μ W max, 32.768 kHz crystal. V _{DD} = 3.3 V, 55 °C < T _A \leq 85 °C, analog power = off
V _{REF}	Reference voltage (Bandgap)	1.28	1.30	1.32	V	Trimmed for appropriate V_{DD} . $V_{DD} > 3.0 V$
V _{REF27}	Reference voltage (Bandgap)	1.16	1.30	1.32	V	Trimmed for appropriate V_{DD} . V_{DD} = 2.4 V to 3.0 V

Note

10. Standby current includes all functions (POR, LVD, WDT, sleep time) needed for reliable system operation. This must be compared with devices that have similar functions enabled.

DC Operational Amplifier Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

The operational amplifier is a component of both the analog continuous time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the analog continuous time PSoC block. Typical parameters are measured at 5 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Мах	Units	Notes
V _{OSOA}	Input offset voltage (absolute value) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high		1.6 1.3 1.2	10 8 7.5	mV mV mV	
TCV _{OSOA}	Average input offset voltage drift	-	7.0	35.0	µV/°C	
I _{EBOA}	Input leakage current (port 0 analog pins)	-	20	-	pА	Gross tested to 1 µA
C _{INOA}	Input capacitance (port 0 analog pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C
V _{CMOA}	Common mode voltage range Common mode voltage range (high power or high Opamp bias)	0.0 0.5	_	V _{DD} V _{DD} – 0.5	V	The common mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
G _{OLOA}	Open loop gain Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	60 60 80	_ _ _	- - -	dB dB dB	Specification is applicable at high Opamp bias. For low Opamp bias mode, minimum is 60 dB.
V _{OHIGHOA}	High output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	V _{DD} - 0.2 V _{DD} - 0.2 V _{DD} - 0.5	_ _ _	- - -	V V V	
V _{OLOWOA}	Low output voltage swing (internal signals) Power = low, Opamp bias = high Power = medium, Opamp bias = high Power = high, Opamp bias = high	- - -	- - -	0.2 0.2 0.5	V V V	
I _{SOA}	Supply current (including associated AGND buffer) Power = low, Opamp bias = low Power = low, Opamp bias = high Power = medium, Opamp bias = low Power = medium, Opamp bias = high Power = high, Opamp bias = low Power = high, Opamp bias = high	- - - - -	150 300 600 1200 2400 4600	200 400 800 1600 3200 6400	μΑ μΑ μΑ μΑ μΑ	
PSRR _{OA}	Supply voltage rejection ratio	64	80	_	dB	$V_{SS} \leq V_{IN} \leq (V_{DD} - 2.25)$ or $(V_{DD} - 1.25~V) \leq V_{IN} \leq V_{DD}$

Table 14. 5-V DC Operational Amplifier Specifications

Table 20. 2.7-V DC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
CL	Load Capacitance	-	_	200	pF	This specification applies to the external circuit that is being driven by the analog output buffer.
V _{OSOB}	Input offset voltage (absolute value)	-	3	12	mV	
TCV _{OSOB}	Average input offset voltage drift	-	+6	-	μV/°C	
V _{CMOB}	Common mode input voltage range	0.5	_	V _{DD} – 1.0	V	
R _{OUTOB}	Output resistance Power = low Power = high		1 1		Ω Ω	
V _{OHIGHOB}	High output voltage swing (Load = 1 K ohms to V _{DD/2}) Power = low Power = high	0.5 × V _{DD} + 0.2 0.5 × V _{DD} + 0.2			V V	
V _{OLOWOB}	Low output voltage swing (Load = 1 K ohms to $V_{DD/2}$) Power = low Power = high		-	0.5 × V _{DD} – 0.7 0.5 × V _{DD} – 0.7	V V	
I _{SOB}	Supply current including Opamp bias cell (No Load) Power = low Power = high	_	0.8 2.0	2.0 4.3	mA mA	
PSRR _{OB}	Supply voltage rejection ratio	52	64	_	dB	V _{OUT} > (V _{DD} – 1.25).

DC Switch Mode Pump Specifications

Table 21 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at $25 \degree C$ and are for design guidance only.

Table 21.	DC Switch Mode	Pump (SMP)) Specifications

Symbol	Description	Min	Тур	Мах	Units	Notes
V _{PUMP} 5 V	5 V output voltage from pump	4.75	5.0	5.25	V	Configuration listed in footnote. ^[11] Average, neglecting ripple. SMP trip voltage is set to 5.0 V.
V _{PUMP} 3 V	3.3 V output voltage from pump	3.00	3.25	3.60	V	Configuration listed in footnote. ^[11] Average, neglecting ripple. SMP trip voltage is set to 3.25 V.
V _{PUMP} 2 V	2.6 V output voltage from pump	2.45	2.55	2.80	V	Configuration listed in footnote. ^[11] Average, neglecting ripple. SMP trip voltage is set to 2.55 V.
I _{PUMP}	$\begin{array}{l} \mbox{Available output current} \\ \mbox{V}_{BAT} = 1.8 \mbox{ V}, \mbox{V}_{PUMP} = 5.0 \mbox{ V} \\ \mbox{V}_{BAT} = 1.5 \mbox{ V}, \mbox{V}_{PUMP} = 3.25 \mbox{ V} \\ \mbox{V}_{BAT} = 1.3 \mbox{ V}, \mbox{V}_{PUMP} = 2.55 \mbox{ V} \end{array}$	5 8 8			mA mA mA	Configuration listed in footnote. ^[11] SMP trip voltage is set to 5.0 V. SMP trip voltage is set to 3.25 V. SMP trip voltage is set to 2.55 V.
V _{BAT} 5 V	Input voltage range from battery	1.8	-	5.0	V	Configuration listed in footnote. ^[11] SMP trip voltage is set to 5.0 V.
V _{BAT} 3 V	Input voltage range from battery	1.0	-	3.3	V	Configuration listed in footnote. ^[11] SMP trip voltage is set to 3.25 V.
V _{BAT} 2 V	Input voltage range from battery	1.0	-	3.0	V	Configuration listed in footnote. ^[11] SMP trip voltage is set to 2.55 V.
VBATSTART	Minimum input voltage from battery to start pump	1.2	-	-	V	Configuration listed in footnote. ^[11] 0 °C \leq T _A \leq 100. 1.25 V at T _A = -40 °C
ΔV_{PUMP}_{Line}	Line regulation (over V _{BAT} range)	-	5	-	%V _O	Configuration listed in footnote. ^[11] V_0 is the V_{DD} Value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 26 on page 35.
ΔV_{PUMP_Load}	Load regulation	_	5	_	%V _O	Configuration listed in footnote. ^[11] V_0 is the " V_{DD} value for PUMP Trip" specified by the VM[2:0] setting in the DC POR and LVD Specification, Table 26 on page 35.
$\Delta V_{\text{PUMP}}_{\text{Ripple}}$	Output voltage ripple (depends on capacitor/load)	-	100	_	mVpp	Configuration listed in footnote. ^[11] Load is 5 mA.
E ₃	Efficiency	35	50	-	%	Configuration listed in footnote. ^[11] Load is 5 mA. SMP trip voltage is set to 3.25 V.
E ₂	Efficiency	_	-	_		
F _{PUMP}	Switching frequency	_	1.3	-	MHz	
DC _{PUMP}	Switching duty cycle	_	50	_	%	

Figure 10. Basic Switch Mode Pump Circuit

DC Programming Specifications

Table 27 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 27.	DC Program	nming Spe	cifications
-----------	------------	-----------	-------------

Symbol	Description	Min	Тур	Max	Units	Notes
V _{DDP}	V _{DD} for programming and erase	4.5	5	5.5	V	This specification applies to the functional require- ments of external programmer tools
V _{DDLV}	Low V _{DD} for verify	2.4	2.5	2.6	V	This specification applies to the functional require- ments of external programmer tools
V _{DDHV}	High V _{DD} for verify	5.1	5.2	5.3	V	This specification applies to the functional require- ments of external programmer tools
V _{DDIWRITE}	Supply voltage for flash write operation	2.7		5.25	V	This specification applies to this device when it is executing internal flash writes
I _{DDP}	Supply current during programming or verify	-	5	25	mA	
V _{ILP}	Input low voltage during programming or verify	_		0.8	V	
V _{IHP}	Input high voltage during programming or verify	2.1	-	_	V	
I _{ILP}	Input current when applying V _{ILP} to P1[0] or P1[1] during programming or verify	-	-	0.2	mA	Driving internal pull-down resistor
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	_	-	1.5	mA	Driving internal pull-down resistor
V _{OLV}	Output low voltage during programming or verify	-	-	V _{SS} + 0.75	V	
V _{OHV}	Output high voltage during programming or verify	V _{DD} – 1.0	-	V _{DD}	V	
Flash _{ENPB}	Flash endurance (per block)	50,000 ^[16]	-	-	-	Erase/write cycles per block
Flash _{ENT}	Flash endurance (total) ^[17]	1,800,000	-	-	-	Erase/write cycles
Flash _{DR}	Flash data retention	10	_	_	Years	

DC I²C Specifications

Table 28 lists the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and $-40 \degree C \le T_A \le 85 \degree C$, 3.0 V to 3.6 V and $-40 \degree C \le T_A \le 85 \degree C$, or 2.4 V to 3.0 V and $-40 \degree C \le T_A \le 85 \degree C$, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at $25 \degree C$ and are for design guidance only.

Table 28. DC I²C Specifications^[18]

Symbol	Description	Min	Тур	Max	Units	Notes
V _{ILI2C}	Input low level	-	-	$0.3 \times V_{DD}$	V	$2.4~V \leq V_{DD} \leq 3.6~V$
		-	-	$0.25 \times V_{DD}$	V	$4.75~V \leq V_{DD} \leq 5.25~V$
V _{IHI2C}	Input high level	$0.7 \times V_{DD}$	_	-	V	$2.4~V \leq V_{DD} \leq 5.25~V$

Notes

^{16.} The 50,000 cycle flash endurance per block is only guaranteed if the flash is operating within one voltage range. Voltage ranges are 2.4 V to 3.0 V, 3.0 V to 3.6 V, and 4.75 V to 5.25 V.

 ^{4.} A maximum of 36 × 50,000 block endurance cycles is allowed. This may be balanced between operations on 36 × 1 blocks of 50,000 maximum cycles each, 36 × 2 blocks of 25,000 maximum cycles each, or 36 × 4 blocks of 12,500 maximum cycles each (to limit the total number of cycles to 36 × 50,000 and that no single block ever sees more than 50,000 cycles).

ever sees more than 50,000 cycles). For the full industrial range, the user must employ a temperature sensor user module (FlashTemp) and feed the result to the temperature argument before writing. Refer to the Flash APIs application note Design Aids – Reading and Writing PSoC[®] Flash – AN2015 for more information.

^{18.} All GPIOs meet the DC GPIO V_{IL} and V_{IH} specifications found in the DC GPIO Specifications sections. The I²C GPIO pins also meet the above specs.

AC Analog Output Buffer Specifications

The following tables list the guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, and 2.7 V at 25 °C and are for design guidance only.

Table 39.	5-V AC Analog	Output Buffer S	Specifications
	J-V AO Allalog	Output Dunier v	specifications

Symbol	Description	Min	Тур	Мах	Units
t _{ROB}	Rising settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high	_	_ _	2.5 2.5	μs μs
t _{SOB}	Falling settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high	-		2.2 2.2	µs µs
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100 pF load Power = low Power = high	0.65 0.65		-	V/µs V/µs
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100 pF load Power = low Power = high	0.65 0.65	_ _		V/µs V/µs
BW _{OB}	Small signal bandwidth, 20mV _{pp} , 3dB BW, 100 pF load Power = low Power = high	0.8 0.8			MHz MHz
BW _{OB}	Large signal bandwidth, 1V _{pp} , 3dB BW, 100 pF load Power = low Power = high	300 300			kHz kHz

Table 40. 3.3-V AC Analog Output Buffer Specifications

Symbol	Description	Min	Тур	Мах	Units
t _{ROB}	Rising settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high		-	3.8 3.8	μs μs
t _{SOB}	Falling settling time to 0.1%, 1 V Step, 100 pF load Power = low Power = high		-	2.6 2.6	μs μs
SR _{ROB}	Rising slew rate (20% to 80%), 1 V Step, 100 pF load Power = low Power = high	0.5 0.5	-	-	V/µs V/µs
SR _{FOB}	Falling slew rate (80% to 20%), 1 V Step, 100 pF load Power = low Power = high	0.5 0.5	-	-	V/µs V/µs
BW _{OB}	Small signal bandwidth, 20mV _{pp} , 3dB BW, 100 pF load Power = low Power = high	0.7 0.7	-		MHz MHz
BW _{OB}	Large signal bandwidth, 1V _{pp} , 3dB BW, 100 pF load Power = low Power = high	200 200	-	-	kHz kHz

4

5

Figure 18. 8-Pin (150-Mil) SOIC

PIN 1 ID

0.150[3.810] 0.157[3.987]

> 0.230[5.842] 0.244[6.197]

1

8

- 1. DIMENSIONS IN INCHES[MM] MIN. MAX.
- 2. PIN 1 ID IS OPTIONAL, ROUND ON SINGLE LEADFRAME
- RECTANGULAR ON MATRIX LEADFRAME
- 3. REFERENCE JEDEC MS-012
- 4. PACKAGE WEIGHT 0.07gms

	PART #
S08.15	STANDARD PKG
SZ08.15	LEAD FREE PKG
SW8.15	LEAD FREE PKG

51-85011 *D

0.050[1.270] TYP.

0.013[0.330] 0.019[0.482]

0.015[0.381] 0.050[1.270]

51-85024 *F

HHHH

ННН

Н

Figure 24. 28-Pin (300-Mil) Molded SOIC

- 1. JEDEC STD REF MO-119
- BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH, BUT DOES INCLUDE MOLD MISMATCH AND ARE MEASURED AT THE MOLD PARTING LINE. MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.010 in (0.254 mm) PER SIDE

3. DIMENSIONS IN INCHES

MIN.
ΜΔΧ

Ð

PIN 1 ID

0.291[7.39] 0.300[7.62]

> 0.394[10.01] 0.419[10.64]

	PARI#	
S28.3	STANDARD PKG.	
SZ28.3	LEAD FREE PKG.	
SX28.3	LEAD FREE PKG.	

51-85026 *H

Device Programmers

All device programmers can be purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular programmer base
- Three programming module cards
- MiniProg programming unit
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Accessories (Emulation and Programming)

Table 51. Emulation and Programming Accessories

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

Note CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 programmer unit
- PSoC ISSP software CD
- 110 ~ 240 V power supply, Euro-Plug adapter
- USB 2.0 cable

Part Number	Pin Package	Flex-Pod Kit ^[40]	Foot Kit ^[41]	Adapter ^[42]
All non-QFN	All non-QFN	CY3250-24X23A	CY3250-8DIP-FK, CY3250-8SOIC-FK, CY3250-20DIP-FK, CY3250-20SOIC-FK, CY3250-20SSOP-FK, CY3250-28DIP-FK, CY3250-28SOIC-FK, CY3250-28SSOP-FK	Adapters can be found at http://www.emulation.com.

Notes

40. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.

41. Foot kit includes surface mount feet that can be soldered to the target PCB.

^{42.} Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at http://www.emulation.com.

Glossary (continued)

bias	 A systematic deviation of a value from a reference value. The amount by which the average of a set of values departs from a reference value. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.
block	 A functional unit that performs a single function, such as an oscillator. A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block.
buffer	 A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written.
	2. A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
	3. An amplifier used to lower the output impedance of a system.
bus	1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
	 A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
	3. One or more conductors that serve as a common connection for a group of related devices.
clock	The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.
comparator	An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.
compiler	A program that translates a high level language, such as C, into machine language.
configuration space	In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to '1'.
crystal oscillator	An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.
cyclic redundancy check (CRC)	A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.
data bus	A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.
debugger	A hardware and software system that allows the user to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory.
dead band	A period of time when neither of two or more signals are in their active state or in transition.
digital blocks	The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.
digital-to-analog (DAC)	A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC) converter performs the reverse operation.

Glossary (continued)

duty cycle	The relationship of a clock period high time to its low time, expressed as a percent.
emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.
external reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.
flash	An electrically programmable and erasable, non-volatile technology that provides users with the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is off.
Flash block	The smallest amount of Flash ROM space that may be programmed at one time and the smallest amount of Flash space that may be protected. A Flash block holds 64 bytes.
frequency	The number of cycles or events per unit of time, for a periodic function.
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I2C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I2C uses only two bi-directional pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.
ICE	The in-circuit emulator that allows users to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside a PSoC by interfacing to the Flash, SRAM, and register space.
master device	A device that controls the timing for data exchanges between two devices. Or when devices are cascaded in width, the master device is the one that controls the timing for data exchanges between the cascaded devices and an external interface. The controlled device is called the <i>slave device</i> .

Document History Page (continued)

Document Title: CY8C24123A/CY8C24223A/CY8C24423A, PSoC [®] Programmable System-on-Chip Document Number: 38-12028				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*L	2897881	MAXK / NJF	03/23/2010	Add "More Information" on page 2. Update unit in Table 10-28 and Table 38 of SPIS Maximum Input Clock Frequency from ns to MHz. Update revision of package diagrams for 8 PDIP, 8 SOIC, 20 PDIP, 20 SSOP, 20 SOIC, 28 PDIP, 28 SSOP, 28 SOIC, 32 QFN. Updated Cypress website links. Removed reference to PSoC Designer 4.4. Updated 56-Pin SSOP definitions and diagram. Added T _{BAKETEMP} and T _{BAKETIME} parameters in Absolute Maximum Ratings. Updated 5-V DC Analog Reference Specifications table. Updated Note in Packaging Information. Added Note 29. Updated Solder Reflow Specifications table. Removed Third Party Tools and Build a PSoC Emulator into your Board. Removed inactive parts from Ordering Information. Update trademark info. and Sales, Solutions, and Legal Information.
*M	2942375	VMAD	06/02/2010	Updated content to match current style guide and datasheet template. No technical updates.
*N	3032514	NJF	09/17/10	Added PSoC Device Characteristics table. Added DC I ² C Specifications table. Added T _{32K U} max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Analog reference tables. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changes were made to AC Digital Block Specifications table and I ² C Timing Diagram. They were updated for clearer understanding. Updated Figure 13 since the labelling for y-axis was incorrect. Template and styles update.
*0	3098766	YJI	12/01/2010	Sunset review; no content update
*P	3351721	YJI	08/31/2011	Full annual review of document. No changes are required.
*Q	3367463	BTK / GIR	09/22/2011	Updated text under DC Analog Reference Specifications on page 28. Removed package diagram spec 51-85188 as there is no active MPN using this outline drawing. The text "Pin must be left floating" is included under Description of NC pin in Table 5 on page 13 and Table 6 on page 14. Updated Table 50 on page 57 to give more clarity. Removed Footnote #35.
*R	3598291	LURE / XZNG	04/24/2012	Changed the PWM description string from "8- to 32-bit" to "8- and 16-bit".
*S	3991993	PMAD	05/08/2013	Updated Packaging Information: spec 51-85066 – Changed revision from *E to *F. spec 51-85014 – Changed revision from *F to *G. spec 51-85026 – Changed revision from *F to *G. spec 001-30999 – Changed revision from *C to *D. spec 51-85062 – Changed revision from *E to *F. Updated Reference Documents (Removed 001-17397 spec, 001-14503 spec related information). Added Errata.