E·XFL

NXP USA Inc. - MKV31F128VLL10 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	100MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	70
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 2x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkv31f128vll10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Rati	ngs		.5
	1.1	Therma	al handling ratings	. 5
	1.2	Moistu	re handling ratings	5
	1.3	ESD ha	andling ratings	.5
	1.4	Voltage	e and current operating ratings	5
2	Gen	eral		. 6
	2.1	AC ele	ctrical characteristics	.6
	2.2	Nonsw	itching electrical specifications	.6
		2.2.1	Voltage and current operating requirements	. 6
		2.2.2	LVD and POR operating requirements	.7
		2.2.3	Voltage and current operating behaviors	.8
		2.2.4	Power mode transition operating behaviors	. 9
		2.2.5	Power consumption operating behaviors	. 10
		2.2.6	EMC radiated emissions operating behaviors	. 16
		2.2.7	Designing with radiated emissions in mind	.17
		2.2.8	Capacitance attributes	.17
	2.3	Switch	ing specifications	.17
		2.3.1	Device clock specifications	.17
		2.3.2	General switching specifications	. 18
	2.4	Therma	al specifications	. 18
		2.4.1	Thermal operating requirements	. 18
		2.4.2	Thermal attributes	.19
3	Peri	pheral o	operating requirements and behaviors	. 20
	3.1	Core m	nodules	. 20
		3.1.1	SWD electricals	. 20
		3.1.2	JTAG electricals	. 21
	3.2	System	n modules	. 24
	3.3	Clock r	nodules	. 24
		3.3.1	MCG specifications	.24
		3.3.2	IRC48M specifications	.26
		3.3.3	Oscillator electrical specifications	.27
	3.4	Memor	ies and memory interfaces	. 29
		3.4.1	Flash electrical specifications	. 29
		3.4.2	EzPort switching specifications	. 30
	3.5	Securit	ty and integrity modules	31

	3.6	Analog	J	. 31
		3.6.1	ADC electrical specifications	. 31
		3.6.2	CMP and 6-bit DAC electrical specifications	. 36
		3.6.3	12-bit DAC electrical characteristics	38
		3.6.4	Voltage reference electrical specifications	. 41
	3.7	Timers	5	42
	3.8	Comm	unication interfaces	. 42
		3.8.1	DSPI switching specifications (limited voltage	
			range)	. 43
		3.8.2	DSPI switching specifications (full voltage	
			range)	. 44
		3.8.3	Inter-Integrated Circuit Interface (I2C) timing	. 46
		3.8.4	UART switching specifications	. 48
	3.9	Kinetis	Motor Suite	. 48
4	Dim	ensions	3	. 48
	4.1	Obtain	ing package dimensions	. 48
5	Pino	out		49
	5.1	KV31F	Signal Multiplexing and Pin Assignments	49
	5.2	Recon	nmended connection for unused analog and	
		digital	pins	53
	5.3	KV31F	Pinouts	54
6	Par	identifi	cation	57
	6.1	Descri	ption	57
	6.2	Forma	t	. 57
	6.3	Fields.		. 57
	6.4	Examp	ble	58
7	Teri	ninolog	y and guidelines	. 58
	7.1	Definit	ions	58
	7.2	Examp	bles	58
	7.3	Typica	I-value conditions	. 59
	7.4	Relatio	onship between ratings and operating	
		require	ements	59
_	7.5	Guidel	ines for ratings and operating requirements	60
8	Hev	ision Hi	istory	. 60

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Analog supply voltage	1.71	3.6	V	
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
VIH	Input high voltage	$0.7 \times V_{DD}$	_	V	
	• $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 3.6 \text{ V}$	$0.75 \times V_{DD}$	—	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$				
V _{IL}	Input low voltage		$0.35 \times V_{DD}$	V	
	• 2.7 V \leq V _{DD} \leq 3.6 V	_	$0.3 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$				
V _{HYS}	Input hysteresis	$0.06 \times V_{DD}$	_	V	
I _{ICIO}	Analog and I/O pin DC injection current — single pin				1
	• $V_{IN} < V_{SS}$ -0.3V (Negative current injection)	-3	—	mA	
I _{ICcont}	Contiguous pin DC injection current —regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins	05			
	Negative current injection	-25	_	mA	
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	2
V _{RAM}	V _{DD} voltage required to retain RAM	1.2		V	

Table 1. Voltage and current operating requirements (continued)

 All analog and I/O pins are internally clamped to V_{SS} through ESD protection diodes. If V_{IN} is less than V_{IO_MIN} or greater than V_{IO_MAX}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{IO_MIN}-V_{IN})/II_{ICIO}I.

2. Open drain outputs must be pulled to VDD.

2.2.2 LVD and POR operating requirements

Table 2. V_{DD} supply LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Falling VDD POR detect voltage	0.8	1.1	1.5	V	
V _{LVDH}	Falling low-voltage detect threshold — high range (LVDV=01)	2.48	2.56	2.64	V	
	Low-voltage warning thresholds — high range					1
V _{LVW1H}	Level 1 falling (LVWV=00)	2.62	2.70	2.78	V	
V _{LVW2H}	Level 2 falling (LVWV=01)	2.72	2.80	2.88	V	
V _{LVW3H}	 Level 3 falling (LVWV=10) 	2.82	2.90	2.98	V	
V _{LVW4H}	Level 4 falling (LVWV=11)	2.92	3.00	3.08	V	

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	 VLLS3 → RUN 					
		—	—	75	μs	
	• LLS2 → RUN			6		
		—	—	_	μs	
	• LLS3 → RUN			6		
		—	—	_	μs	
	VLPS → RUN					
		—	—	5.7	μs	
	• STOP \rightarrow RUN					
		_	—	5.7	μs	

 Table 4. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_OPT[LPBOOT]=1)

2.2.5 Power consumption operating behaviors

The current parameters in the table below are derived from code executing a while(1) loop from flash, unless otherwise noted.

The IDD typical values represent the statistical mean at 25°C, and the IDD maximum values for RUN, WAIT, VLPR, and VLPW represent data collected at 125°C junction temperature unless otherwise noted. The maximum values represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current		—	See note	mA	1
I _{DD_HSRUN}	SRUN High Speed Run mode current - all peripheral clocks disabled, CoreMark benchmark code executing from flash					
	@ 1.8V	—	19.51	20.24	mA	2, 3, 4
	@ 3.0V	—	19.51	20.24	mA	
I _{DD_HSRUN}	High Speed Run mode current - all peripheral clocks disabled, code executing from flash					
	@ 1.8V	—	16.9	17.63	mA	5
	@ 3.0V	—	17.0	17.73	mA	
I _{DD_HSRUN}	High Speed Run mode current — all peripheral clocks enabled, code executing from flash					
	@ 1.8V	—	22.8	23.53	mA	6
	@ 3.0V	—	22.9	23.63	mA	

 Table 5. Power consumption operating behaviors

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_RUN}	Run mode current in Compute operation — CoreMark benchmark code executing from flash					
	@ 1.8V	—	11.39	12.12	mA	2, 3, 7
	@ 3.0V	—	11.58	12.31	mA	
I _{DD_RUN}	Run mode current in Compute operation — code executing from flash					
	@ 1.8V	—	10.90	11.90	mA	7
	@ 3.0V	—	10.90	12.23	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					
	@ 1.8V	—	11.8	12.53	mA	8
	@ 3.0V	—	11.9	12.63	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash					
	@ 1.8V	—	15.5	16.23	mA	9
	@ 3.0V					
	• @ 25°C	—	15.6	16.33	mA	
	• @ 70°C	—	15.6	16.33	mA	
	• @ 85°C	—	15.6	16.33	mA	
	• @ 105°C	—	16.3	17.03	mA	
I _{DD_RUN}	Run mode current — Compute operation, code executing from flash					
	@ 1.8V	—	10.9	11.63	mA	10
	@ 3.0V					
	• @ 25°C	—	10.9	11.63	mA	
	• @ 70°C	—	10.9	11.63	mA	
	• @ 85°C	—	10.9	11.63	mA	
	• @ 105°C	—	11.5	12.23	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled	_	6.5	7.23	mA	8
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled	—	3.9	4.63	mA	11
I _{DD_VLPR}	Very-low-power run mode current in Compute operation — CoreMark benchmark code executing from flash					
	@ 1.8V	—	0.60	0.88	mA	2, 3, 12
	@ 3.0V	—	0.61	0.89	mA	
I _{DD_VLPR}	Very-low-power run mode current in Compute operation, code executing from flash					

Table 5. Power consumption operating behaviors (continued)

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	@ 70°C	—	1.78	2.09	μA	
	@ 85°C	—	2.8	3.25	μA	
	@ 105°C	—	4.0	6.15	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit enabled					
	@ -40°C to 25°C	—	0.40	0.49	μA	
	@ 70°C	—	1.38	1.49	μA	
	@ 85°C	—	2.40	2.70	μA	
	@ 105°C	—	3.6	5.65	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current at 3.0 V with POR detect circuit disabled					
	@ -40°C to 25°C	—	0.12	0.19	μA	
	@ 70°C	—	1.05	1.13	μA	
	@ 85°C	—	2.1	2.45	μA	
	@ 105°C	—	3.3	5.35	μA	

 Table 5. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. Cache on and prefetch on, low compiler optimization.
- 3. Coremark benchmark compiled using IAR 7.2 withs optimization level low.
- 4. 100 MHz core and system clock, 50 MHz bus clock, and 25 MHz flash clock. MCG configured for FEE mode. All peripheral clocks disabled.
- 100MHz core and system clock, 50MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks disabled.
- 6. 100MHz core and system clock, 50MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled.
- 7. 72 MHz core and system clock, 36 MHz bus clock, and 24 MHz flash clock. MCG configured for FEE mode. All peripheral clocks disabled. Compute operation.
- 8. 72MHz core and system clock, 36MHz bus clock, and 24MHz flash clock. MCG configured for FEI mode. All peripheral clocks disabled.
- 9. 72MHz core and system clock, 36MHz bus clock, and 24MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled.
- 10. 72MHz core and system clock, 36MHz bus clock, and 24MHz flash clock. MCG configured for FEI mode. Compute Operation.
- 11. 25MHz core and system clock, 25MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode.
- 12. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. Compute Operation. Code executing from flash.
- 13. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 14. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 15. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.

Symbol	Description	Temperature (°C)				Unit		
		-40	25	50	70	85	105	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μA
I _{IREFSTEN32KHz}	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	52	μA
I _{EREFSTEN4MHz}	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled.							
	VLLS1	440	490	540	560	570	580	nA
	VLLS3	440	490	540	560	570	580	
	LLS	490	490	540	560	570	680	
	VLPS	510	560	560	560	610	680	
	STOP	510	560	560	560	610	680	
I _{48MIRC}	48 Mhz internal reference clock	350	350	350	350	350	350	μA
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μΑ
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							
	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μA
	>OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V_{DD} and V_{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	42	42	42	42	42	42	μΑ

General

Figure 4. VLPR mode supply current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors

Table 7. EMC radiated emissions operating behaviors for 64 LQFP package

Parame ter	Conditions	Clocks	Frequency range	Level (Typ.)	Unit	Notes
V _{EME}	Device configuration, test	FSYS = 100 MHz	150 kHz–50 MHz	13	dBuV	1, 2, 3
	conditions and EM	FBUS = 50 MHz	50 MHz–150 MHz	24		
	61967-2.	External crystal = 10 MHz	150 MHz–500 MHz	23		
	Supply voltages:	y voltages:	500 MHz–1000 MHz	7		
	Temp = 25°C		IEC level	L		4

1. Measurements were made per IEC 61967-2 while the device was running typical application code.

2. Measurements were performed on a similar 64LQFP device.

3. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

4. IEC Level Maximums: M \leq 18dBmV, L \leq 24dBmV, K \leq 30dBmV, I \leq 36dBmV, H \leq 42dBmV .

16

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

2.3.2 General switching specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and timers.

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1, 2
	External RESET and NMI pin interrupt pulse width — Asynchronous path	100	—	ns	3
	GPIO pin interrupt pulse width (digital glitch filter disabled, passive filter disabled) — Asynchronous path	50		ns	4
	Mode select (EZP_CS) hold time after reset deassertion	2	_	Bus clock cycles	
	Port rise and fall time				5
	Slew disabled	—			
	• $1.71 \le V_{DD} \le 2.7V$	—	10	ns	
	• $2.7 \le V_{DD} \le 3.6V$		5	ns	
	Slew enabled	—			
	• $1.71 \le V_{DD} \le 2.7V$	—	30	ns	
	• $2.7 \le V_{DD} \le 3.6V$		16	ns	

Table 10. General switching specifications

- This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may
 or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can
 be recognized in that case.
- 2. The greater of synchronous and asynchronous timing must be met.
- 3. These pins have a passive filter enabled on the inputs. This is the shortest pulse width that is guaranteed to be recognized.
- 4. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized.
- 5. 25 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
TJ	Die junction temperature	-40	125	°C	
T _A	Ambient temperature	-40	105	°C	1

1. Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is: $T_J = T_A + R_{\Theta JA} \times$ chip power dissipation.

2.4.2 Thermal attributes

Board type	Symbol	Description	100 LQFP	64 LQFP	Unit	Notes
Single-layer (1s)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	63	69	°C/W	1
Four-layer (2s2p)	R _{0JA}	Thermal resistance, junction to ambient (natural convection)	50	51	°C/W	2
Single-layer (1s)	R _{eJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	53	57	°C/W	3
Four-layer (2s2p)	R _{0JMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	44	44	°C/W	3
_	R _{0JB}	Thermal resistance, junction to board	36	33	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	18	18	°C/W	5
-	Ψ _{JT}	Thermal characterizatio n parameter, junction to	3	3	°C/W	6

Board type	Symbol	Description	100 LQFP	64 LQFP	Unit	Notes
		package top outside center (natural convection)				

- 1. Determined according to JEDEC Standard JESD51-2, *Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air)* with the single layer board horizontal. Board meets JESD51-9 specification.
- Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).
- 3. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental Conditions—Forced Convection (Moving Air) with the board horizontal.
- 4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 12. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	SWD_CLK frequency of operation			
	Serial wire debug	0	33	MHz
S2	SWD_CLK cycle period	1/S1	—	ns
S3	SWD_CLK clock pulse width			
	Serial wire debug	15	_	ns
S4	SWD_CLK rise and fall times		3	ns
S9	SWD_DIO input data setup time to SWD_CLK rise	8	—	ns
S10	SWD_DIO input data hold time after SWD_CLK rise	1.4	—	ns
S11	SWD_CLK high to SWD_DIO data valid	_	25	ns
S12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.
- 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	_
t _{hversscr}	Sector Erase high-voltage time	—	13	113	ms	1
t _{hversall}	Erase All high-voltage time	—	104	904	ms	1

 Table 19.
 NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 20. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec2k}	Read 1s Section execution time (flash sector)	—	—	60	μs	1
t _{pgmchk}	Program Check execution time	—	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	—	—	30	μs	1
t _{pgm4}	Program Longword execution time	—	65	145	μs	—
t _{ersscr}	Erase Flash Sector execution time	—	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	—	—	0.9	ms	1
t _{rdonce}	Read Once execution time	—	—	30	μs	1
t _{pgmonce}	Program Once execution time	—	100	—	μs	—
t _{ersall}	Erase All Blocks execution time	—	140	1150	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—	_	30	μs	1

1. Assumes 25 MHz flash clock frequency.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL	_	31/32 * VREFH	V	
		All other modes	VREFL	_	VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	
	capacitance	 8-bit / 10-bit / 12-bit modes 	_	4	5		
R _{ADIN}	Input series resistance		—	2	5	kΩ	
R _{AS}	Analog source	13-bit / 12-bit modes					3
	resistance (external)	f _{ADCK} < 4 MHz	_	_	5	kΩ	
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	24.0	MHz	4
fadck	ADC conversion clock frequency	16-bit mode	2.0	_	12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging	20	—	1200	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging	37	—	461	Ksps	
		Continuous conversions enabled, subsequent conversion time					

 Table 24.
 16-bit ADC operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.</p>
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		 <12-bit modes 	—	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^5$
		 <12-bit modes 	_	-1.4	-1.8		
EQ	Quantization error	16-bit modes	—	-1 to 0	—	LSB ⁴	
		• ≤13-bit modes	_	-	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5		bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9		hito	
		• Avg = 4	11.4	13.1		Dits	
		-				bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02 ×	6.02 × ENOB + 1.76		dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	_	-94	—		
						dB	
		16-bit single-ended mode	_	-85	—		
		• Avg = 32					
SFDR	Spurious free	16-bit differential mode				dB	7
	dynamic range	• Avg = 32	82	95			
						dB	
		16-bit single-ended mode	78	90			
		• Avg = 32					
EIL	Input leakage error			$I_{In} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 25.	16-bit ADC characteristics	$(V_{REFH} = V_{DDA})$, V _{REFL} = V _s	_{SSA}) (continued)
-----------	----------------------------	------------------------	--------------------------------------	------------------------------

1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$ 2. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 2.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.

3.6.2 CMP and 6-bit DAC electrical specifications Table 26. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	—	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	_	—	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3	—	V _{DD}	V
V _{AIO}	Analog input offset voltage	—	—	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	 CR0[HYSTCTR] = 11 	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5		_	V
V _{CMPOI}	Output low	_	—	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	—	—	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	_	0.3	LSB

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} -0.6 V.

 Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

3. 1 LSB = $V_{reference}/64$

Figure 15. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V _{DDA} and temperature=25°C	1.1920	1.1950	1.1980	V	1
V _{out}	Voltage reference output with user trim at nominal V _{DDA} and temperature=25°C	1.1945	1.1950	1.1955	V	1
V _{step}	Voltage reference trim step	—	0.5	—	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	—	15	mV	1
I _{bg}	Bandgap only current	—	—	80	μA	
l _{lp}	Low-power buffer current	—	—	360	uA	1
I _{hp}	High-power buffer current	—	—	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	_	200	_		
T _{stup}	Buffer startup time	—	—	100	μs	
T _{chop_osc_st}	Internal bandgap start-up delay with chop oscillator enabled			35	ms	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)		2		mV	1

Table 30. VI	REF full-range	operating behavior	S
--------------	----------------	--------------------	---

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 31. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	70	°C	

Table 32. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{tdrift}	Temperature drift (V_{max} - V_{min} across the limited temperature range)	_	10	mV	

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

100 LQFP	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
66	_	PTB20	DISABLED		PTB20					CMP0_OUT		
67	_	PTB21	DISABLED		PTB21					CMP1_OUT		
68	_	PTB22	DISABLED		PTB22							
69	_	PTB23	DISABLED		PTB23		SPI0_PCS5					
70	43	PTC0	ADC0_SE14	ADC0_SE14	PTC0	SPI0_PCS4	PDB0_ EXTRG			FTM0_FLT1	SPI0_PCS0	
71	44	PTC1/ LLWU_P6	ADC0_SE15	ADC0_SE15	PTC1/ LLWU_P6	SPI0_PCS3	UART1_ RTS_b	FTM0_CH0			LPUART0_ RTS_b	
72	45	PTC2	ADC0_SE4b/ CMP1_IN0	ADC0_SE4b/ CMP1_IN0	PTC2	SPI0_PCS2	UART1_ CTS_b	FTM0_CH1			LPUART0_ CTS_b	
73	46	PTC3/ LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_PCS1	UART1_RX	FTM0_CH2	CLKOUT		LPUART0_ RX	
74	47	VSS	VSS	VSS								
75	48	VDD	VDD	VDD								
76	49	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	FTM0_CH3		CMP1_OUT	LPUART0_ TX	
77	50	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2			CMP0_OUT	FTM0_CH2	
78	51	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB0_ EXTRG				I2C0_SCL	
79	52	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_SIN					I2C0_SDA	
80	53	PTC8	ADC1_SE4b/ CMP0_IN2	ADC1_SE4b/ CMP0_IN2	PTC8							
81	54	PTC9	ADC1_SE5b/ CMP0_IN3	ADC1_SE5b/ CMP0_IN3	PTC9					FTM2_FLT0		
82	55	PTC10	ADC1_SE6b	ADC1_SE6b	PTC10	I2C1_SCL						
83	56	PTC11/ LLWU_P11	ADC1_SE7b	ADC1_SE7b	PTC11/ LLWU_P11	I2C1_SDA						
84		PTC12	DISABLED		PTC12							
85	_	PTC13	DISABLED		PTC13							
86	—	PTC14	DISABLED		PTC14							
87	—	PTC15	DISABLED		PTC15							
88	_	VSS	VSS	VSS								
89	-	VDD	VDD	VDD								
90	-	PTC16	DISABLED		PTC16		LPUART0_ RX					
91		PTC17	DISABLED		PTC17		LPUART0_ TX					
92	—	PTC18	DISABLED		PTC18		LPUART0_ RTS_b					
93	57	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	SPI0_PCS0	UART2_ RTS_b	FTM0_CH0		LPUART0_ RTS_b		
94	58	PTD1	ADC0_SE5b	ADC0_SE5b	PTD1	SPI0_SCK	UART2_ CTS_b	FTM0_CH1		LPUARTO_ CTS_b		

Figure 25. KV31F 100 LQFP pinout diagram (top view)

Field	Description	Values			
S	Software type	 P = KMS-PMSM and BLDC (Blank) = Not software enabled 			
N	Packaging type	 R = Tape and reel (Blank) = Trays 			

6.4 Example

This is an example part number:

MKV31F128VLL10P

7 Terminology and guidelines

7.1 Definitions

Key terms are defined in the following table:

Term	Definition				
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:				
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered. 				
	NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.				
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip				
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions				
Typical value	A specified value for a technical characteristic that:				
	 Lies within the range of values specified by the operating behavior Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions 				
	NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.				

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM, ARM Powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. SpinTAC is a trademark of LineStream Technologies, Inc. All rights reserved.

© 2014–2016 Freescale Semiconductor, Inc.

Document Number KV31P100M100SF9 Revision 7, 02/2016

