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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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chain in order to better match the reference and feedback signals. This digital code from the ALU is also transmit-
ted via the Digital Control bus (DCNTL) bus to its associated Slave Delay lines (two per DLL). The ALUHOLD input 
allows the user to suspend the ALU output at its current value. The UDDCNTL signal allows the user to latch the 
current value on the DCNTL bus. 

The DLL has two clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from 
the tapped delay line. The CLKOS has optional fine delay shift and divider blocks to allow this output to be further 
modified, if required. The fine delay shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 
degrees relative to its normal position. Both the CLKOS and CLKOP outputs are available with optional duty cycle 
correction. Divide by two and divide by four frequencies are available at CLKOS. The LOCK output signal is 
asserted when the DLL is locked. Figure 2-5 shows the DLL block diagram and Table 2-5 provides a description of 
the DLL inputs and outputs. 

The user can configure the DLL for many common functions such as time reference delay mode and clock injection 
removal mode. Lattice provides primitives in its design tools for these functions.

Figure 2-5. Delay Locked Loop Diagram (DLL)
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Table 2-5. DLL Signals

LatticeECP3 devices have two general DLLs and four Slave Delay lines, two per DLL. The DLLs are in the lowest 
EBR row and located adjacent to the EBR. Each DLL replaces one EBR block. One Slave Delay line is placed adja-
cent to the DLL and the duplicate Slave Delay line (in Figure 2-6) for the DLL is placed in the I/O ring between 
Banks 6 and 7 and Banks 2 and 3. 

The outputs from the DLL and Slave Delay lines are fed to the clock distribution network.

For more information, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide.

Figure 2-6. Top-Level Block Diagram, High-Speed DLL and Slave Delay Line

Signal I/O Description

CLKI I Clock input from external pin or routing 

CLKFB I DLL feed input from DLL output, clock net, routing or external pin 

RSTN I Active low synchronous reset
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UDDCNTL I Synchronous enable signal (hold high for two cycles) from routing
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Figure 2-8. Clock Divider Connections

Clock Distribution Network 
LatticeECP3 devices have eight quadrant-based primary clocks and eight secondary clock/control sources. Two 
high performance edge clocks are available on the top, left, and right edges of the device to support high speed 
interfaces. These clock sources are selected from external I/Os, the sysCLOCK PLLs, DLLs or routing. These clock 
sources are fed throughout the chip via a clock distribution system. 

Primary Clock Sources 
LatticeECP3 devices derive clocks from six primary source types: PLL outputs, DLL outputs, CLKDIV outputs, ded-
icated clock inputs, routing and SERDES Quads. LatticeECP3 devices have two to ten sysCLOCK PLLs and two 
DLLs, located on the left and right sides of the device. There are six dedicated clock inputs: two on the top side, two 
on the left side and two on the right side of the device. Figures 2-9, 2-10 and 2-11 show the primary clock sources 
for LatticeECP3 devices.

Figure 2-9. Primary Clock Sources for LatticeECP3-17
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Single, Dual and Pseudo-Dual Port Modes 
In all the sysMEM RAM modes the input data and address for the ports are registered at the input of the memory 
array. The output data of the memory is optionally registered at the output. 

EBR memory supports the following forms of write behavior for single port or dual port operation: 

1. Normal – Data on the output appears only during a read cycle. During a write cycle, the data (at the current 
address) does not appear on the output. This mode is supported for all data widths. 

2. Write Through – A copy of the input data appears at the output of the same port during a write cycle. This 
mode is supported for all data widths. 

3. Read-Before-Write (EA devices only) – When new data is written, the old content of the address appears at 
the output. This mode is supported for x9, x18, and x36 data widths.

Memory Core Reset 
The memory array in the EBR utilizes latches at the A and B output ports. These latches can be reset asynchro-
nously or synchronously. RSTA and RSTB are local signals, which reset the output latches associated with Port A 
and Port B, respectively. The Global Reset (GSRN) signal can reset both ports. The output data latches and asso-
ciated resets for both ports are as shown in Figure 2-22. 

Figure 2-22. Memory Core Reset

For further information on the sysMEM EBR block, please see the list of technical documentation at the end of this 
data sheet. 

sysDSP™ Slice
The LatticeECP3 family provides an enhanced sysDSP architecture, making it ideally suited for low-cost, high-per-
formance Digital Signal Processing (DSP) applications. Typical functions used in these applications are Finite 
Impulse Response (FIR) filters, Fast Fourier Transforms (FFT) functions, Correlators, Reed-Solomon/Turbo/Convo-
lution encoders and decoders. These complex signal processing functions use similar building blocks such as mul-
tiply-adders and multiply-accumulators. 

sysDSP Slice Approach Compared to General DSP
Conventional general-purpose DSP chips typically contain one to four (Multiply and Accumulate) MAC units with 
fixed data-width multipliers; this leads to limited parallelism and limited throughput. Their throughput is increased by 
higher clock speeds. The LatticeECP3, on the other hand, has many DSP slices that support different data widths. 
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Figure 2-31. MULTADDSUBSUM Slice 1

Advanced sysDSP Slice Features
Cascading
The LatticeECP3 sysDSP slice has been enhanced to allow cascading. Adder trees are implemented fully in sys-
DSP slices, improving the performance. Cascading of slices uses the signals CIN, COUT and C Mux of the slice.

Addition
The LatticeECP3 sysDSP slice allows for the bypassing of multipliers and cascading of adder logic. High perfor-
mance adder functions are implemented without the use of LUTs. The maximum width adders that can be imple-
mented are 54-bit.

Rounding
The rounding operation is implemented in the ALU and is done by adding a constant followed by a truncation oper-
ation. The rounding methods supported are:

• Rounding to zero (RTZ)

• Rounding to infinity (RTI)

• Dynamic rounding

• Random rounding

• Convergent rounding 

R= A ± B ± C
R = Logic (B, C)

AA AB BA BB

MULTA MULTB

BMUXAMUX

C
M

U
X

ALU

A_ALU B_ALU

IR

PR PR

OR

Rounding
A_ALU

OPCODEC

CIN COUT

SROB

SROA

SRIB

SRIA

C_ALU

0

0 0

From FPGA Core

To FPGA Core

IR = Input Register
PR = Pipeline Register
OR = Output Register
FR = Flag Register

Next
DSP Slice

Previous
DSP Slice

IR 

IR IR 

IR 

IR IR 

OROR

  =

FR

=

PR

SEE Latt
ice

ECP3-E
A 

DATA SHEET FOR  

CURRENT IN
FORMATIO

N



2-32

Architecture
Lattice Semiconductor LatticeECP3 Family Data Sheet

Two adjacent PIOs can be joined to provide a differential I/O pair (labeled as “T” and “C”) as shown in Figure 2-32. 
The PAD Labels “T” and “C” distinguish the two PIOs. Approximately 50% of the PIO pairs on the left and right 
edges of the device can be configured as true LVDS outputs. All I/O pairs can operate as LVDS inputs. 

Table 2-11. PIO Signal List 

PIO 
The PIO contains four blocks: an input register block, output register block, tristate register block and a control logic 
block. These blocks contain registers for operating in a variety of modes along with the necessary clock and selec-
tion logic.

Input Register Block 
The input register blocks for the PIOs, in the left, right and top edges, contain delay elements and registers that can 
be used to condition high-speed interface signals, such as DDR memory interfaces and source synchronous inter-
faces, before they are passed to the device core. Figure 2-33 shows the input register block for the left, right and 
top edges. The input register block for the bottom edge contains one element to register the input signal and no 
DDR registers. The following description applies to the input register block for PIOs in the left, right and top edges 
only.

Name Type Description

INDD Input Data Register bypassed input. This is not the same port as INCK.

IPA, INA, IPB, INB Input Data Ports to core for input data

OPOSA, ONEGA1, 
OPOSB, ONEGB1

Output Data Output signals from core. An exception is the ONEGB port, used for tristate logic 
at the DQS pad.

CE PIO Control Clock enables for input and output block flip-flops.

SCLK PIO Control System Clock (PCLK) for input and output/TS blocks. Connected from clock ISB.

LSR PIO Control Local Set/Reset

ECLK1, ECLK2 PIO Control Edge clock sources. Entire PIO selects one of two sources using mux.

ECLKDQSR1 Read Control From DQS_STROBE, shifted strobe for memory interfaces only.

DDRCLKPOL1 Read Control Ensures transfer from DQS domain to SCLK domain.

DDRLAT1 Read Control Used to guarantee INDDRX2 gearing by selectively enabling a D-Flip-Flop in dat-
apath.

DEL[3:0] Read Control Dynamic input delay control bits.

INCK To Clock Distribution 
and PLL

PIO treated as clock PIO, path to distribute to primary clocks and PLL.

TS Tristate Data Tristate signal from core (SDR)

DQCLK01, DQCLK11 Write Control Two clocks edges, 90 degrees out of phase, used in output gearing.

DQSW2 Write Control Used for output and tristate logic at DQS only.

DYNDEL[7:0] Write Control Shifting of write clocks for specific DQS group, using 6:0 each step is approxi-
mately 25ps, 128 steps. Bit 7 is an invert (timing depends on input frequency). 
There is also a static control for this 8-bit setting, enabled with a memory cell.

DCNTL[6:0] PIO Control Original delay code from DDR DLL

DATAVALID1 Output Data Status flag from DATAVALID logic, used to indicate when input data is captured in 
IOLOGIC and valid to core.

READ For DQS_Strobe Read signal for DDR memory interface

DQSI For DQS_Strobe Unshifted DQS strobe from input pad

PRMBDET For DQS_Strobe DQSI biased to go high when DQSI is tristate, goes to input logic block as well as 
core logic.

GSRN Control from routing Global Set/Reset

1. Signals available on left/right/top edges only.
2. Selected PIO.
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To accomplish write leveling in DDR3, each DQS group has a slightly different delay that is set by DYN DELAY[7:0] 
in the DQS Write Control logic block. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. 

LatticeECP3 input and output registers can also support DDR gearing that is used to receive and transmit the high 
speed DDR data from and to the DDR3 Memory. 

LatticeECP3 supports the 1.5V SSTL I/O standard required for the DDR3 memory interface. In addition, it supports 
on-chip termination to VTT on the DDR3 memory input pins. For more information, refer to the sysIO section of this 
data sheet. 

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on DDR Memory interface imple-
mentation in LatticeECP3.

sysI/O Buffer 
Each I/O is associated with a flexible buffer referred to as a sysI/O buffer. These buffers are arranged around the 
periphery of the device in groups referred to as banks. The sysI/O buffers allow users to implement the wide variety 
of standards that are found in today’s systems including LVDS, BLVDS, HSTL, SSTL Class I & II, LVCMOS, LVTTL, 
LVPECL, PCI.

sysI/O Buffer Banks 
LatticeECP3 devices have six sysI/O buffer banks: six banks for user I/Os arranged two per side. The banks on the 
bottom side are wraparounds of the banks on the lower right and left sides. The seventh sysI/O buffer bank (Config-
uration Bank) is located adjacent to Bank 2 and has dedicated/shared I/Os for configuration. When a shared pin is 
not used for configuration it is available as a user I/O. Each bank is capable of supporting multiple I/O standards. 
Each sysI/O bank has its own I/O supply voltage (VCCIO). In addition, each bank, except the Configuration Bank, 
has voltage references, VREF1 and VREF2, which allow it to be completely independent from the others. The Config-
uration Bank top side shares VREF1 and VREF2 from sysI/O bank 1 and right side shares VREF1 and VREF2 from 
sysI/O bank 2. Figure 2-38 shows the seven banks and their associated supplies. 

In LatticeECP3 devices, single-ended output buffers and ratioed input buffers (LVTTL, LVCMOS and PCI) are pow-
ered using VCCIO. LVTTL, LVCMOS33, LVCMOS25 and LVCMOS12 can also be set as fixed threshold inputs inde-
pendent of VCCIO. 

Each bank can support up to two separate VREF voltages, VREF1 and VREF2, that set the threshold for the refer-
enced input buffers. Some dedicated I/O pins in a bank can be configured to be a reference voltage supply pin. 
Each I/O is individually configurable based on the bank’s supply and reference voltages. SEE Latt

ice
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Figure 2-40. SERDES/PCS Quads (LatticeECP3-150)

Table 2-13. LatticeECP3 SERDES Standard Support

Standard
Data Rate 

(Mbps)
Number of 

General/Link Width Encoding Style

PCI Express 1.1 2500 x1, x2, x4 8b10b

Gigabit Ethernet 1250, 2500 x1 8b10b

SGMII 1250 x1 8b10b

XAUI 3125 x4 8b10b

Serial RapidIO Type I,
Serial RapidIO Type II,
Serial RapidIO Type III

1250,
2500,
3125

x1, x4 8b10b

CPRI-1,
CPRI-2,
CPRI-3,
CPRI-4

614.4,
1228.8,
2457.6,
3072.0

x1 8b10b

SD-SDI
(259M, 344M)

1431,
1771, 
270,
360,
540

x1 NRZI/Scrambled

HD-SDI
(292M)

1483.5,
1485 x1 NRZI/Scrambled

3G-SDI
(424M)

2967,
2970 x1 NRZI/Scrambled

SONET-STS-32 155.52 x1 N/A

SONET-STS-122 622.08 x1 N/A

SONET-STS-482 2488 x1 N/A

1. For slower rates, the SERDES are bypassed and CML signals are directly connected to the FPGA routing.
2. The SONET protocol is supported in 8-bit SERDES mode. See TN1176 Lattice ECP3 SERDES/PCS Usage Guide for more information.
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Table 2-14. Available SERDES Quads per LatticeECP3 Devices

SERDES Block
A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and 
Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The 
SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit 
stream through the differential drivers. Figure 2-41 shows a single-channel SERDES/PCS block. Each SERDES 
channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output 
and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-41. Simplified Channel Block Diagram for SERDES/PCS Block

PCS
As shown in Figure 2-41, the PCS receives the parallel digital data from the deserializer and selects the polarity, 
performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock 
domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, 
selects the polarity and passes the 8/10 bit data to the transmit SERDES channel. 

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA 
logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to 
the FPGA logic. 

SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

Package ECP3-17 ECP3-35 ECP3-70 ECP3-95 ECP3-150

256 ftBGA 1 1 — — —

484 ftBGA 1 1 1 1

672 ftBGA — 1 2 2 2

1156 ftBGA — — 3 3 4

HDOUTP

HDOUTN

* 1/8 or 1/10 line rate
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BLVDS25
The LatticeECP3 devices support the BLVDS standard. This standard is emulated using complementary LVCMOS 
outputs in conjunction with a parallel external resistor across the driver outputs. BLVDS is intended for use when 
multi-drop and bi-directional multi-point differential signaling is required. The scheme shown in Figure 3-2 is one 
possible solution for bi-directional multi-point differential signals.

Figure 3-2. BLVDS25 Multi-point Output Example

Table 3-2. BLVDS25 DC Conditions1

Over Recommended Operating Conditions

Parameter Description

Typical

UnitsZo = 45 Zo = 90

VCCIO Output Driver Supply (+/- 5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/- 1%) 90.00 90.00 

RTL Driver Parallel Resistor (+/- 1%) 45.00 90.00 

RTR Receiver Termination (+/- 1%) 45.00 90.00 

VOH Output High Voltage 1.38 1.48 V

VOL Output Low Voltage 1.12 1.02 V

VOD Output Differential Voltage 0.25 0.46 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 11.24 10.20 mA

1. For input buffer, see LVDS table.

Heavily loaded backplane, effective Zo ~ 45 to 90 ohms differential
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RSDS25E
The LatticeECP3 devices support differential RSDS and RSDSE standards. This standard is emulated using com-
plementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input stan-
dard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for 
RSDS standard implementation. Resistor values in Figure 3-4 are industry standard values for 1% resistors. 

Figure 3-4. RSDS25E (Reduced Swing Differential Signaling)

Table 3-4. RSDS25E DC Conditions1

Over Recommended Operating Conditions

Parameter  Description Typical Units

VCCIO Output Driver Supply (+/-5%) 2.50 V

ZOUT Driver Impedance 20 

RS Driver Series Resistor (+/-1%) 294 

RP Driver Parallel Resistor (+/-1%) 121 

RT Receiver Termination (+/-1%) 100 

VOH Output High Voltage 1.35 V

VOL Output Low Voltage 1.15 V

VOD Output Differential Voltage 0.20 V

VCM Output Common Mode Voltage 1.25 V

ZBACK Back Impedance 101.5 

IDC DC Output Current 3.66 mA

1. For input buffer, see LVDS table.

RS = 294 ohms
(+/-1%)

RS = 294 ohms
(+/-1%)

RP = 121 ohms
(+/-1%)

RT = 100 ohms
(+/-1%)

On-chip On-chip

8mA

8mA

VCCIO = 2.5V
(+/-5%)

VCCIO = 2.5V
(+/-5%)

Transmission line, 
Zo = 100 ohm differential

+

-

Off-chipOff-chip

SEE Latt
ice

ECP3-E
A 

DATA SHEET FOR  

CURRENT IN
FORMATIO

N



3-13

DC and Switching Characteristics
Lattice Semiconductor LatticeECP3 Family Data Sheet

MLVDS25
The LatticeECP3 devices support the differential MLVDS standard. This standard is emulated using complemen-
tary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The MLVDS input standard is 
supported by the LVDS differential input buffer. The scheme shown in Figure 3-5 is one possible solution for 
MLVDS standard implementation. Resistor values in Figure 3-5 are industry standard values for 1% resistors. 

Figure 3-5. MLVDS25 (Multipoint Low Voltage Differential Signaling)

Table 3-5. MLVDS25 DC Conditions1 

Parameter Description

Typical

UnitsZo=50 Zo=70

VCCIO Output Driver Supply (+/-5%) 2.50 2.50 V

ZOUT Driver Impedance 10.00 10.00 

RS Driver Series Resistor (+/-1%) 35.00 35.00 

RTL Driver Parallel Resistor (+/-1%) 50.00 70.00 

RTR Receiver Termination (+/-1%) 50.00 70.00 

VOH Output High Voltage 1.52 1.60 V

VOL Output Low Voltage 0.98 0.90 V

VOD Output Differential Voltage 0.54 0.70 V

VCM Output Common Mode Voltage 1.25 1.25 V

IDC DC Output Current 21.74 20.00 mA

1. For input buffer, see LVDS table.

16mA

2.5V

+
-

2.5V

2.5V

+
-

2.5V

2.5V

+ -

Am61

Heavily loaded backplace, effective Zo~50 to 70 ohms differential

50 to 70 ohms +/-1%

 
RS =

35ohms

 
RS =

35ohms

  

RS =
35ohms

 

RS =
35ohms

 
RS =

35ohms

 
RS =

35ohms

 

RS =
35ohms

RTRRTL

16mA

2.5V

Am61

2.5V + -

Am61

2.5V 2.5V

RS =

50 to 70 ohms +/-1%

35ohms

Am61

16mA

+
-

16mA

OE

OE

OE OE OE OE

OE

OE
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tDVECLKGDDR Data Hold After CLK ECP3-70E/95E 0.765 — 0.765 — 0.765 — UI

fMAX_GDDR DDR/DDRX2 Clock Frequency8 ECP3-70E/95E — 500 — 420 — 375 MHz

Generic DDRX2 Inputs with Clock and Data (<10 Bits Wide) Centered at Pin (GDDRX2_RX.DQS.Centered) using DQS 
Pin for Clock Input

Left and Right Sides 

tSUGDDR Data Setup Before CLK ECP3-150EA — — — ns

tHGDDR Data Hold After CLK ECP3-150EA — — — ns

fMAX_GDDR DDRX2 Clock Frequency ECP3-150EA — — — ns

Generic DDRX2 Inputs with Clock and Data (<10 Bits Side) Aligned at Pin (GDDRX2_RX.DQS.Aligned) Using DQS Pin 
for Clock Input

Left and Right Sides 

tDVACLKGDDR
Data Setup Before CLK (Left and 
Right Side) ECP3-150EA — — —

tDVECLKGDDR
Data Hold After CLK (Left and Right 
Side) ECP3-150EA — — —

fMAX_GDDR
DDRX2 Clock Frequency (Left and 
Right Side) ECP3-150EA — — —

Generic DDRX1 Output with Clock and Data (>10 Bits Wide) Centered at Pin (GDDRX1_TX.SCLK.Centered)

Left, Right and Top Sides 

tDVBGDDR Data Valid Before CLK ECP3-150EA — — —

tDVAGDDR Data Valid After CLK ECP3-150EA — — —

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — — —

Generic DDRX1 Outputs with clock in the center of data window, with PLL 90-degree shifted clock ouput 
(GDDRX1_TX.ECLK.Centered)

tDIBGDDR Data Invalid Before CLK ECP3-70E/95E 670 — 670 — 670 — ps

tDIAGDDR Data Invalid After CLK ECP3-70E/95E 670 — 670 — 670 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-70E/95E — 250 — 250 — 250 MHz

Generic DDRX1 Output with Clock and Data (> 10 Bits Wide) Aligned at Pin (GDDRX1_TX.SCLK.Aligned)

Left, Right and Top Sides 

tDIBGDDR Data Hold After CLK ECP3-150EA — — —

tDIAGDDR Data Setup Before CLK ECP3-150EA — — —

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — — —

Generic DDRX1 Outputs with clock and data edge aligned, without PLL

tDIBGDDR Data Invalid Before CLK ECP3-70E/95E — 330 — 330 — 330 ps

tDIAGDDR Data Invalid After CLK ECP3-70E/95E — 330 — 330 — 330 ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-70E/95E — 250 — 250 — 250 MHz

Generic DDRX1 Output with Clock and Data (<10 Bits Wide) Centered at Pin (GDDRX1_TX.DQS.Centered)

Left, Right and Top Sides 

tDVBGDDR Data Valid Before CLK ECP3-150EA — — —

tDVAGDDR Data Valid After CLK ECP3-150EA — — —

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — — —

LatticeECP3 External Switching Characteristics (Continued)1, 2

Over Recommended Commercial Operating Conditions

Parameter Description Device

-8 -7 -6

UnitsMin. Max. Min. Max. Min. Max.
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Figure 3-11. Write Through (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

A0 A1 A0

D0 D1

D4

tSU

tACCESS tACCESS tACCESS

tH

D2 D3 D4

D0 D1 D2Data from Prev Read
or Write

Three consecutive writes to A0

D3DOA

DIA

ADA

WEA

CSA

CLKA

tACCESS
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SERDES/PCS Block Latency
Table 3-8 describes the latency of each functional block in the transmitter and receiver. Latency is given in parallel 
clock cycles. Figure 3-12 shows the location of each block.

Table 3-8. SERDES/PCS Latency Breakdown

Figure 3-12. Transmitter and Receiver Latency Block Diagram

Item Description Min. Avg. Max. Fixed Bypass Units

Transmit Data Latency1

T1

FPGA Bridge - Gearing disabled with different clocks 1 3 5 — 1 word clk

FPGA Bridge - Gearing disabled with same clocks — — — 3 1 word clk

FPGA Bridge - Gearing enabled 1 3 5 — — word clk

T2 8b10b Encoder — — — 2 1 word clk

T3 SERDES Bridge transmit — — — 2 1 word clk

T4
Serializer: 8-bit mode — — — 15 + 1 — UI + ps

Serializer: 10-bit mode — — — 18 + 1 — UI + ps

T5
Pre-emphasis ON — — — 1 + 2 — UI + ps

Pre-emphasis OFF — — — 0 + 3 — UI + ps

Receive Data Latency2

R1
Equalization ON — — — 1 — UI + ps

Equalization OFF — — — 2 — UI + ps

R2
Deserializer: 8-bit mode — — — 10 + 3 — UI + ps

Deserializer: 10-bit mode — — — 12 + 3 — UI + ps

R3 SERDES Bridge receive — — — 2 — word clk

R4 Word alignment 3.1 — 4 — — word clk

R5 8b10b decoder — — — 1 — word clk

R6 Clock Tolerance Compensation 7 15 23 1 1 word clk

R7

FPGA Bridge - Gearing disabled with different clocks 1 3 5 — 1 word clk

FPGA Bridge - Gearing disabled with same clocks — — — 3 1 word clk

FPGA Bridge - Gearing enabled 1 3 5 — — word clk

1. 1 = -245ps, 2 = +88ps, 3 = +112ps. 
2. 1 = +118ps, 2 = +132ps, 3 = +700ps. 

HDOUTPi

HDOUTNi

Deserializer
1:8/1:10

Polarity
Adjust

Elastic
Buffer
FIFO

Encoder

SERDES PCS

BYPASS

Transmitter

Receiver

Recovered Clock

FPGA
Receive Clock

FPGA

Receive Data

Transmit Data

CDR

REFCLK

HDINPi

HDINNi
EQ

Polarity
Adjust

Up
Sample

FIFO

SERDES Bridge FPGA Bridge

Serializer
8:1/10:1

WA DEC

FPGA
EBRD Clock

Transmit Clock
TX PLL

REFCLK

FPGA Core

Down
Sample

FIFO
BYPASS

BYPASS

BYPASS

BYPASS
BYPASS

BYPASS

R1 R2
R3 R4 R5

R6

T1T2

T3
T4

Transmit Clock
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XAUI/Serial Rapid I/O Type 3 Electrical and Timing Characteristics
AC and DC Characteristics
Table 3-13. Transmit

Over Recommended Operating Conditions

Table 3-14. Receive and Jitter Tolerance

Over Recommended Operating Conditions

Symbol Description Test Conditions Min. Typ. Max. Units

TRF Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
2, 3, 4 Output data deterministic jitter — — 0.17 UI

JTX_TJ
1, 2, 3, 4 Total output data jitter — — 0.35 UI

1. Total jitter includes both deterministic jitter and random jitter.
2. Jitter values are measured with each CML output AC coupled into a 50-ohm impedance (100-ohm differential impedance).
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Values are measured at 2.5 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz 
to 3.125 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz 
to 3.125 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
1, 2, 3 Deterministic jitter tolerance (peak-to-peak) — — 0.37 UI

JRX_RJ
1, 2, 3 Random jitter tolerance (peak-to-peak) — — 0.18 UI

JRX_SJ
1, 2, 3 Sinusoidal jitter tolerance (peak-to-peak) — — 0.10 UI

JRX_TJ
1, 2, 3 Total jitter tolerance (peak-to-peak) — — 0.65 UI

TRX_EYE Receiver eye opening 0.35 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-14.
2. Jitter values are measured with each high-speed input AC coupled into a 50-ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 2.5 Gbps.SEE Latt
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Gigabit Ethernet/Serial Rapid I/O Type 1/SGMII Electrical and Timing 
Characteristics
AC and DC Characteristics
Table 3-17. Transmit

Table 3-18. Receive and Jitter Tolerance

Symbol Description Test Conditions Min. Typ. Max. Units

TRF Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
3, 4, 5 Output data deterministic jitter — — 0.10 UI

JTX_TJ
2, 3, 4, 5 Total output data jitter — — 0.24 UI

1. Rise and fall times measured with board trace, connector and approximately 2.5pf load.
2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.
3. Jitter values are measured with each CML output AC coupled into a 50-ohm impedance (100-ohm differential impedance).
4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
5. Values are measured at 1.25 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz to 1.25 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz to 1.25 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
1, 2, 3, 4, 5 Deterministic jitter tolerance (peak-to-peak) — — 0.34 UI

JRX_RJ
1, 2, 3, 4, 5 Random jitter tolerance (peak-to-peak) — — 0.26 UI

JRX_SJ
1, 2, 3, 4, 5 Sinusoidal jitter tolerance (peak-to-peak) — — 0.11 UI

JRX_TJ
1, 2, 3, 4, 5 Total jitter tolerance (peak-to-peak) — — 0.71 UI

TRX_EYE Receiver eye opening 0.29 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-14.
2. Jitter values are measured with each high-speed input AC coupled into a 50-ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 1.25 Gbps.
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LatticeECP3 sysCONFIG Port Timing Specifications 
Over Recommended Operating Conditions

Parameter Description Min. Max. Units

POR, Configuration Initialization, and Wakeup

tICFG

Time from the Application of VCC, VCCAUX or VCCIO8* (Whichever 
is the Last to Cross the POR Trip Point) to the Rising Edge of 
INITN

Master mode — 23 ms

Slave mode — 6 ms

tVMC Time from tICFG to the Valid Master MCLK — 5 µs

tPRGM PROGRAMN Low Time to Start Configuration 25 — ns

tPRGMRJ PROGRAMN Pin Pulse Rejection — 10 ns

tDPPINIT Delay Time from PROGRAMN Low to INITN Low — 37 ns

tDPPDONE Delay Time from PROGRAMN Low to DONE Low — 37 ns

tDINIT PROGRAMN High to INITN High Delay — 1 ms

tMWC Additional Wake Master Clock Signals After DONE Pin is High 100 500 cycles

tCZ MCLK From Active To Low To High-Z — 300 ns

All Configuration Modes

tSUCDI Data Setup Time to CCLK/MCLK 5 — ns

tHCDI Data Hold Time to CCLK/MCLK 1 — ns

tCODO CCLK/MCLK to DOUT in Flowthrough Mode — 12 ns

Slave Serial

tSSCH CCLK Minimum High Pulse 5 — ns

tSSCL CCLK Minimum Low Pulse 5 — ns

fCCLK CCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

Master and Slave Parallel

tSUCS CSN[1:0] Setup Time to CCLK/MCLK 7 — ns

tHCS CSN[1:0] Hold Time to CCLK/MCLK 1 — ns

tSUWD WRITEN Setup Time to CCLK/MCLK 7 — ns

tHWD WRITEN Hold Time to CCLK/MCLK 1 — ns

tDCB CCLK/MCLK to BUSY Delay Time — 12 ns

tCORD CCLK to Out for Read Data — 12 ns

tBSCH CCLK Minimum High Pulse 6 — ns

tBSCL CCLK Minimum Low Pulse 6 — ns

tBSCYC Byte Slave Cycle Time 30 — ns

fCCLK CCLK/MCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

Master and Slave SPI

tCFGX INITN High to MCLK Low — 80 ns

tCSSPI INITN High to CSSPIN Low 0.2 2 µs

tSOCDO MCLK Low to Output Valid — 15 ns

tCSPID CSSPIN[0:1] Low to First MCLK Edge Setup Time 0.3 µs

fCCLK CCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

tSSCH CCLK Minimum High Pulse 5 — ns

tSSCL CCLK Minimum Low Pulse 5 — ns

tHLCH HOLDN Low Setup Time (Relative to CCLK) 5 — ns
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[LOC]DQS[num] I/O DQ input/output pads: T (top), R (right), B (bottom), L (left), DQS, num = ball 
function number.

[LOC]DQ[num] I/O DQ input/output pads: T (top), R (right), B (bottom), L (left), DQ, associated 
DQS number.

Test and Programming (Dedicated Pins)

TMS I Test Mode Select input, used to control the 1149.1 state machine. Pull-up is 
enabled during configuration. 

TCK I Test Clock input pin, used to clock the 1149.1 state machine. No pull-up 
enabled. 

TDI I 

Test Data in pin. Used to load data into device using 1149.1 state machine. 
After power-up, this TAP port can be activated for configuration by sending 
appropriate command. (Note: once a configuration port is selected it is 
locked. Another configuration port cannot be selected until the power-up 
sequence). Pull-up is enabled during configuration. 

TDO O Output pin. Test Data Out pin used to shift data out of a device using 1149.1. 

VCCJ — Power supply pin for JTAG Test Access Port. 

Configuration Pads (Used During sysCONFIG)

CFG[2:0] I 
Mode pins used to specify configuration mode values latched on rising edge 
of INITN. During configuration, a pull-up is enabled. These are dedicated 
pins. 

INITN I/O Open Drain pin. Indicates the FPGA is ready to be configured. During config-
uration, a pull-up is enabled. It is a dedicated pin. 

PROGRAMN I Initiates configuration sequence when asserted low. This pin always has an 
active pull-up. It is a dedicated pin. 

DONE I/O Open Drain pin. Indicates that the configuration sequence is complete, and 
the startup sequence is in progress. It is a dedicated pin. 

CCLK I Input Configuration Clock for configuring an FPGA in Slave SPI, Serial, and 
CPU modes. It is a dedicated pin.

MCLK I/O Output Configuration Clock for configuring an FPGA in SPI, SPIm, and Mas-
ter configuration modes.

BUSY/SISPI O Parallel configuration mode busy indicator. SPI/SPIm mode data output. 

CSN/SN/OEN I/O Parallel configuration mode active-low chip select. Slave SPI chip select. 
Parallel burst Flash output enable.

CS1N/HOLDN/RDY I Parallel configuration mode active-low chip select. Slave SPI hold input. 

WRITEN I Write enable for parallel configuration modes.

DOUT/CSON/CSSPI1N O Serial data output. Chip select output. SPI/SPIm mode chip select.

D[0]/SPIFASTN I/O

sysCONFIG Port Data I/O for Parallel mode. Open drain during configuration.

sysCONFIG Port Data I/O for SPI or SPIm. When using the SPI or SPIm 
mode, this pin should either be tied high or low, must not be left floating. Open 
drain during configuration.

D1 I/O Parallel configuration I/O. Open drain during configuration.

D2 I/O Parallel configuration I/O. Open drain during configuration.

D3/SI I/O Parallel configuration I/O. Slave SPI data input. Open drain during configura-
tion.

D4/SO I/O Parallel configuration I/O. Slave SPI data output. Open drain during configura-
tion.

D5 I/O Parallel configuration I/O. Open drain during configuration.

D6/SPID1 I/O Parallel configuration I/O. SPI/SPIm data input. Open drain during configura-
tion.

Signal Descriptions (Cont.)
Signal Name I/O Description 
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D7/SPID0 I/O Parallel configuration I/O. SPI/SPIm data input. Open drain during configura-
tion.

DI/CSSPI0N/CEN I/O Serial data input for slave serial mode. SPI/SPIm mode chip select. 

Dedicated SERDES Signals2

PCS[Index]_HDINNm I High-speed input, negative channel m 

PCS[Index]_HDOUTNm O High-speed output, negative channel m 

PCS[Index]_REFCLKN I Negative Reference Clock Input 

PCS[Index]_HDINPm I High-speed input, positive channel m 

PCS[Index]_HDOUTPm O High-speed output, positive channel m 

PCS[Index]_REFCLKP I Positive Reference Clock Input 

PCS[Index]_VCCOBm — Output buffer power supply, channel m (1.2V/1.5)

PCS[Index]_VCCIBm — Input buffer power supply, channel m (1.2V/1.5V) 

1. When placing switching I/Os around these critical pins that are designed to supply the device with the proper reference or supply voltage, 
care must be given. 

2. m defines the associated channel in the quad. 

Signal Descriptions (Cont.)
Signal Name I/O Description 
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