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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished 
through the programming interface during PFU configuration. 

For more information, please refer to TN1179, LatticeECP3 Memory Usage Guide.

Routing 
There are many resources provided in the LatticeECP3 devices to route signals individually or as busses with 
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) 
segments. 

The LatticeECP3 family has an enhanced routing architecture that produces a compact design. The ispLEVER 
design tool suite takes the output of the synthesis tool and places and routes the design. 

sysCLOCK PLLs and DLLs
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. All the devices in the LatticeECP3 family 
support four to ten full-featured General Purpose PLLs.

General Purpose PLL
The architecture of the PLL is shown in Figure 2-4. A description of the PLL functionality follows. 

CLKI is the reference frequency (generated either from the pin or from routing) for the PLL. CLKI feeds into the 
Input Clock Divider block. The CLKFB is the feedback signal (generated from CLKOP, CLKOS or from a user clock 
pin/logic). This signal feeds into the Feedback Divider. The Feedback Divider is used to multiply the reference fre-
quency.

Both the input path and feedback signals enter the Voltage Controlled Oscillator (VCO) block. In this block the dif-
ference between the input path and feedback signals is used to control the frequency and phase of the oscillator. A 
LOCK signal is generated by the VCO to indicate that the VCO has locked onto the input clock signal. In dynamic 
mode, the PLL may lose lock after a dynamic delay adjustment and not relock until the tLOCK parameter has been 
satisfied.

The output of the VCO then enters the CLKOP divider. The CLKOP divider allows the VCO to operate at higher fre-
quencies than the clock output (CLKOP), thereby increasing the frequency range. The Phase/Duty Select block 
adjusts the phase and duty cycle of the CLKOS signal. The phase/duty cycle setting can be pre-programmed or 
dynamically adjusted. A secondary divider takes the CLKOP or CLKOS signal and uses it to derive lower frequency 
outputs (CLKOK).

The primary output from the CLKOP divider (CLKOP) along with the outputs from the secondary dividers (CLKOK 
and CLKOK2) and Phase/Duty select (CLKOS) are fed to the clock distribution network.

The PLL allows two methods for adjusting the phase of signal. The first is referred to as Fine Delay Adjustment. 
This inserts up to 16 nominal 125ps delays to be applied to the secondary PLL output. The number of steps may 
be set statically or from the FPGA logic. The second method is referred to as Coarse Phase Adjustment. This 
allows the phase of the rising and falling edge of the secondary PLL output to be adjusted in 22.5 degree steps. 
The number of steps may be set statically or from the FPGA logic.
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Table 2-5. DLL Signals

LatticeECP3 devices have two general DLLs and four Slave Delay lines, two per DLL. The DLLs are in the lowest 
EBR row and located adjacent to the EBR. Each DLL replaces one EBR block. One Slave Delay line is placed adja-
cent to the DLL and the duplicate Slave Delay line (in Figure 2-6) for the DLL is placed in the I/O ring between 
Banks 6 and 7 and Banks 2 and 3. 

The outputs from the DLL and Slave Delay lines are fed to the clock distribution network.

For more information, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide.

Figure 2-6. Top-Level Block Diagram, High-Speed DLL and Slave Delay Line

Signal I/O Description

CLKI I Clock input from external pin or routing 

CLKFB I DLL feed input from DLL output, clock net, routing or external pin 

RSTN I Active low synchronous reset

ALUHOLD I Active high freezes the ALU

UDDCNTL I Synchronous enable signal (hold high for two cycles) from routing

CLKOP O The primary clock output 

CLKOS O The secondary clock output with fine delay shift and/or division by 2 or by 4

LOCK O Active high phase lock indicator

INCI I Incremental indicator from another DLL via CIB.

GRAYI[5:0] I Gray-coded digital control bus from another DLL in time reference mode.

DIFF O Difference indicator when DCNTL is difference than the internal setting and update is needed.

INCO O Incremental indicator to other DLLs via CIB.

GRAYO[5:0] O Gray-coded digital control bus to other DLLs via CIB
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* This signal is not user accessible. It can only be used to feed the slave delay line.
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Figure 2-8. Clock Divider Connections

Clock Distribution Network 
LatticeECP3 devices have eight quadrant-based primary clocks and eight secondary clock/control sources. Two 
high performance edge clocks are available on the top, left, and right edges of the device to support high speed 
interfaces. These clock sources are selected from external I/Os, the sysCLOCK PLLs, DLLs or routing. These clock 
sources are fed throughout the chip via a clock distribution system. 

Primary Clock Sources 
LatticeECP3 devices derive clocks from six primary source types: PLL outputs, DLL outputs, CLKDIV outputs, ded-
icated clock inputs, routing and SERDES Quads. LatticeECP3 devices have two to ten sysCLOCK PLLs and two 
DLLs, located on the left and right sides of the device. There are six dedicated clock inputs: two on the top side, two 
on the left side and two on the right side of the device. Figures 2-9, 2-10 and 2-11 show the primary clock sources 
for LatticeECP3 devices.

Figure 2-9. Primary Clock Sources for LatticeECP3-17
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Primary Clock Routing 
The purpose of the primary clock routing is to distribute primary clock sources to the destination quadrants of the 
device. A global primary clock is a primary clock that is distributed to all quadrants. The clock routing structure in 
LatticeECP3 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The pri-
mary clocks of each quadrant are generated from muxes located in the center of the device. All the clock sources 
are connected to these muxes. Figure 2-12 shows the clock routing for one quadrant. Each quadrant mux is identi-
cal. If desired, any clock can be routed globally.

Figure 2-12. Per Quadrant Primary Clock Selection

Dynamic Clock Control (DCC)
The DCC (Quadrant Clock Enable/Disable) feature allows internal logic control of the quadrant primary clock net-
work. When a clock network is disabled, all the logic fed by that clock does not toggle, reducing the overall power 
consumption of the device.

Dynamic Clock Select (DCS) 
The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent 
input clock sources without any glitches or runt pulses. This is achieved regardless of when the select signal is tog-
gled. There are two DCS blocks per quadrant; in total, there are eight DCS blocks per device. The inputs to the 
DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 
(see Figure 2-12).

Figure 2-13 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed 
to other modes. For more information about the DCS, please see the list of technical documentation at the end of 
this data sheet.

Figure 2-13. DCS Waveforms
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Figure 2-16. Per Region Secondary Clock Selection

Slice Clock Selection
Figure 2-17 shows the clock selections and Figure 2-18 shows the control selections for Slice0 through Slice2. All 
the primary clocks and seven secondary clocks are routed to this clock selection mux. Other signals can be used 
as a clock input to the slices via routing. Slice controls are generated from the secondary clocks/controls or other 
signals connected via routing.

If none of the signals are selected for both clock and control then the default value of the mux output is 1. Slice 3 
does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-17. Slice0 through Slice2 Clock Selection

Figure 2-18. Slice0 through Slice2 Control Selection
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Figure 2-20. Sources of Edge Clock (Left and Right Edges)

Figure 2-21. Sources of Edge Clock (Top Edge)

The edge clocks have low injection delay and low skew. They are used to clock the I/O registers and thus are ideal 
for creating I/O interfaces with a single clock signal and a wide data bus. They are also used for DDR Memory or 
Generic DDR interfaces.
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Figure 2-33. ECP3-70/95 (E or EA) Input Register Block for Left, Right and Top Edges

Output Register Block 
The output register block registers signals from the core of the device before they are passed to the sysI/O buffers. 
The blocks on the left and right PIOs contain registers for SDR and full DDR operation. The topside PIO block is the 
same as the left and right sides except it does not support ODDRX2 gearing of output logic. ODDRX2 gearing is 
used in DDR3 memory interfaces.The PIO blocks on the bottom contain the SDR registers and generic DDR inter-
face without gearing. 

Figure 2-34 shows the Output Register Block for PIOs on the left and right edges. 

In SDR mode, OPOSA feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a 
Dtype or latch. In DDR mode, two of the inputs are fed into registers on the positive edge of the clock. At the next 
clock cycle, one of the registered outputs is also latched.

A multiplexer running off the same clock is used to switch the mux between the 11 and 01 inputs that will then feed 
the output.

A gearbox function can be implemented in the output register block that takes four data streams: OPOSA, ONEGA, 
OPOSB and ONEGB. All four data inputs are registered on the positive edge of the system clock and two of them 
are also latched. The data is then output at a high rate using a multiplexer that runs off the DQCLK0 and DQCLK1 
clocks. DQCLK0 and DQCLK1 are used in this case to transfer data from the system clock to the edge clock 
domain. These signals are generated in the DQS Write Control Logic block. See Figure 2-37 for an overview of the 
DQS write control logic.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

Further discussion on using the DQS strobe in this module is discussed in the DDR Memory section of this data 
sheet.
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(referred to as DQS) is not free-running so this approach cannot be used. The DQS Delay block provides the 
required clock alignment for DDR memory interfaces.

The delay required for the DQS signal is generated by two dedicated DLLs (DDR DLL) on opposite side of the 
device. Each DLL creates DQS delays in its half of the device as shown in Figure 2-36. The DDR DLL on the left 
side will generate delays for all the DQS Strobe pins on Banks 0, 7 and 6 and DDR DLL on the right will generate 
delays for all the DQS pins on Banks 1, 2 and 3. The DDR DLL loop compensates for temperature, voltage and pro-
cess variations by using the system clock and DLL feedback loop. DDR DLL communicates the required delay to 
the DQS delay block using a 7-bit calibration bus (DCNTL[6:0])

The DQS signal (selected PIOs only, as shown in Figure 2-35) feeds from the PAD through a DQS control logic 
block to a dedicated DQS routing resource. The DQS control logic block consists of DQS Read Control logic block 
that generates control signals for the read side and DQS Write Control logic that generates the control signals 
required for the write side. A more detailed DQS control diagram is shown in Figure 2-37, which shows how the 
DQS control blocks interact with the data paths.

The DQS Read control logic receives the delay generated by the DDR DLL on its side and delays the incoming 
DQS signal by 90 degrees. This delayed ECLKDQSR is routed to 10 or 11 DQ pads covered by that DQS signal. 
This block also contains a polarity control logic that generates a DDRCLKPOL signal, which controls the polarity of 
the clock to the sync registers in the input register blocks. The DQS Read control logic also generates a DDRLAT 
signal that is in the input register block to transfer data from the first set of DDR register to the second set of DDR 
registers when using the DDRX2 gearbox mode for DDR3 memory interface.

The DQS Write control logic block generates the DQCLK0 and DQCLK1 clocks used to control the output gearing 
in the Output register block which generates the DDR data output and the DQS output. They are also used to con-
trol the generation of the DQS output through the DQS output register block. In addition to the DCNTL [6:0] input 
from the DDR DLL, the DQS Write control block also uses a Dynamic Delay DYN DEL [7:0] attribute which is used 
to further delay the DQS to accomplish the write leveling found in DDR3 memory. Write leveling is controlled by the 
DDR memory controller implementation. The DYN DELAY can set 128 possible delay step settings. In addition, the 
most significant bit will invert the clock for a 180-degree shift of the incoming clock. This will generate the DQSW 
signal used to generate the DQS output in the DQS output register block.

Figure 2-36 and Figure 2-37 show how the DQS transition signals that are routed to the PIOs.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.
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Please see TN1177, LatticeECP3 sysIO Usage Guide for on-chip termination usage and value ranges.

Equalization Filter
Equalization filtering is available for single-ended inputs on both true and complementary I/Os, and for differential 
inputs on the true I/Os on the left, right, and top sides. Equalization is required to compensate for the difficulty of 
sampling alternating logic transitions with a relatively slow slew rate. It is considered the most useful for the Input 
DDRX2 modes, used in DDR3 memory, LVDS, or TRLVDS signaling. Equalization filter acts as a tunable filter with 
settings to determine the level of correction. In the LatticeECP3 devices, there are four settings available: 0 (none), 
1, 2 and 3. The default setting is 0. The equalization logic resides in the sysI/O buffers, the two bits of setting is set 
uniquely in each input IOLOGIC block. Therefore, each sysI/O can have a unique equalization setting within a 
DQS-12 group.

Hot Socketing
LatticeECP3 devices have been carefully designed to ensure predictable behavior during power-up and power-
down. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is 
high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. 
Please refer to the Hot Socketing Specifications in the DC and Switching Characteristics in this data sheet.

SERDES and PCS (Physical Coding Sublayer)
LatticeECP3 devices feature up to 16 channels of embedded SERDES/PCS arranged in quads at the bottom of the 
devices supporting up to 3.2Gbps data rate. Figure 2-40 shows the position of the quad blocks for the LatticeECP3-
150 devices. Table 2-14 shows the location of available SERDES Quads for all devices.

The LatticeECP3 SERDES/PCS supports a range of popular serial protocols, including:

• PCI Express 1.1

• Ethernet (XAUI, GbE - 1000 Base CS/SX/LX and SGMII)

• Serial RapidIO

• SMPTE SDI (3G, HD, SD)

• CPRI

• SONET/SDH (STS-3, STS-12, STS-48)

Each quad contains four dedicated SERDES for high speed, full duplex serial data transfer. Each quad also has a 
PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the stan-
dards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated pro-
tocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in quads, multiple baud rates can be supported within a quad 
with the use of dedicated, per channel 1, 2 and 11 rate dividers. Additionally, multiple quads can be arranged 
together to form larger data pipes.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine 
multiple protocols and baud rates within a device, please refer to TN1176, LatticeECP3 SERDES/PCS Usage 
Guide.
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The ispLEVER design tools from Lattice support all modes of the PCS. Most modes are dedicated to applications 
associated with a specific industry standard data protocol. Other more general purpose modes allow users to 
define their own operation. With ispLEVER, the user can define the mode for each quad in a design. 

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP 
(available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the 
core. 

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the 
LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock fre-
quencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary 
and secondary protocol combinations. 

Flexible Quad SERDES Architecture
The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and stan-
dards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better 
utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one stan-
dard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES stan-
dards whose nominal data rates are either the same or a defined subset of each other, can be supported within the 
same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock 
and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the 
same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as 
they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, 
SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

For further information on SERDES, please see TN1176, LatticeECP3 SERDES/PCS Usage Guide.

IEEE 1149.1-Compliant Boundary Scan Testability 
All LatticeECP3 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test 
Access Port (TAP). This allows functional testing of the circuit board on which the device is mounted through a 
serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to 
be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test 

Primary Protocol Secondary Protocol

PCI Express 1.1 SGMII

PCI Express 1.1 Gigabit Ethernet

PCI Express 1.1 Serial RapidIO Type I

PCI Express 1.1 Serial RapidIO Type II

Serial RapidIO Type I SGMII

Serial RapidIO Type I Gigabit Ethernet

Serial RapidIO Type II SGMII

Serial RapidIO Type II Gigabit Ethernet

Serial RapidIO Type II Serial RapidIO Type I

CPRI-3 CPRI-2 and CPRI-1

3G-SDI HD-SDI and SD-SDI
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can also be programmed to utilize a Soft Error Detect (SED) mode that checks for soft errors in configuration 
SRAM. The SED operation can be run in the background during user mode. If a soft error occurs, during user 
mode (normal operation) the device can be programmed to generate an error signal.

For further information on SED support, please see TN1184, LatticeECP3 Soft Error Detection (SED) Usage 
Guide.

External Resistor
LatticeECP3 devices require a single external, 10K ohm ±1% value between the XRES pin and ground. Device 
configuration will not be completed if this resistor is missing. There is no boundary scan register on the external 
resistor pad.

On-Chip Oscillator 
Every LatticeECP3 device has an internal CMOS oscillator which is used to derive a Master Clock (MCLK) for con-
figuration. The oscillator and the MCLK run continuously and are available to user logic after configuration is com-
pleted. The software default value of the MCLK is nominally 2.5MHz. Table 2-16 lists all the available MCLK 
frequencies. When a different Master Clock is selected during the design process, the following sequence takes 
place: 

1. Device powers up with a nominal Master Clock frequency of 3.1MHz.

2. During configuration, users select a different master clock frequency.

3. The Master Clock frequency changes to the selected frequency once the clock configuration bits are received.

4. If the user does not select a master clock frequency, then the configuration bitstream defaults to the MCLK fre-
quency of 2.5MHz.

This internal CMOS oscillator is available to the user by routing it as an input clock to the clock tree. For further 
information on the use of this oscillator for configuration or user mode, please see TN1169, LatticeECP3 sysCON-
FIG Usage Guide.

Table 2-16. Selectable Master Clock (MCLK) Frequencies During Configuration (Nominal)

Density Shifting 
The LatticeECP3 family is designed to ensure that different density devices in the same family and in the same 
package have the same pinout. Furthermore, the architecture ensures a high success rate when performing design 
migration from lower density devices to higher density devices. In many cases, it is also possible to shift a lower uti-
lization design targeted for a high-density device to a lower density device. However, the exact details of the final 
resource utilization will impact the likelihood of success in each case. An example is that some user I/Os may 
become No Connects in smaller devices in the same packge.

MCLK (MHz) MCLK (MHz) MCLK (MHz) 

2.51 10 41

3.1 13 45

4.3 15 51

5.4 20 55

6.9 26 60

8.1 30 130

9.2 34 —

1. Software default MCLK frequency. Hardware default is 
3.1MHz.
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LVDS25E
The top and bottom sides of LatticeECP3 devices support LVDS outputs via emulated complementary LVCMOS 
outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one 
possible solution for point-to-point signals.

Figure 3-1. LVDS25E Output Termination Example

Table 3-1. LVDS25E DC Conditions

LVCMOS33D
All I/O banks support emulated differential I/O using the LVCMOS33D I/O type. This option, along with the external 
resistor network, provides the system designer the flexibility to place differential outputs on an I/O bank with 3.3V 
VCCIO. The default drive current for LVCMOS33D output is 12mA with the option to change the device strength to 
4mA, 8mA, 16mA or 20mA. Follow the LVCMOS33 specifications for the DC characteristics of the LVCMOS33D.

Parameter  Description Typical Units

VCCIO Output Driver Supply (+/-5%) 2.50 V

ZOUT Driver Impedance 20 

RS Driver Series Resistor (+/-1%) 158 

RP Driver Parallel Resistor (+/-1%) 140 

RT Receiver Termination (+/-1%) 100 

VOH Output High Voltage 1.43 V

VOL Output Low Voltage 1.07 V

VOD Output Differential Voltage 0.35 V

VCM Output Common Mode Voltage 1.25 V

ZBACK Back Impedance 100.5 

IDC DC Output Current 6.03 mA

+ 
- 

RS=158 ohms
(±1%)

RS=158 ohms
(±1%)

RP = 140 ohms
(±1%)

RT = 100 ohms
(±1%)

OFF-chip 

Transmission line, Zo = 100 ohm differential  

VCCIO = 2.5V (±5%) 

8 mA

VCCIO = 2.5V (±5%) 

ON-chip OFF-chip ON-chip

8 mA
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RSDS25E
The LatticeECP3 devices support differential RSDS and RSDSE standards. This standard is emulated using com-
plementary LVCMOS outputs in conjunction with a parallel resistor across the driver outputs. The RSDS input stan-
dard is supported by the LVDS differential input buffer. The scheme shown in Figure 3-4 is one possible solution for 
RSDS standard implementation. Resistor values in Figure 3-4 are industry standard values for 1% resistors. 

Figure 3-4. RSDS25E (Reduced Swing Differential Signaling)

Table 3-4. RSDS25E DC Conditions1

Over Recommended Operating Conditions

Parameter  Description Typical Units

VCCIO Output Driver Supply (+/-5%) 2.50 V

ZOUT Driver Impedance 20 

RS Driver Series Resistor (+/-1%) 294 

RP Driver Parallel Resistor (+/-1%) 121 

RT Receiver Termination (+/-1%) 100 

VOH Output High Voltage 1.35 V

VOL Output Low Voltage 1.15 V

VOD Output Differential Voltage 0.20 V

VCM Output Common Mode Voltage 1.25 V

ZBACK Back Impedance 101.5 

IDC DC Output Current 3.66 mA

1. For input buffer, see LVDS table.

RS = 294 ohms
(+/-1%)

RS = 294 ohms
(+/-1%)

RP = 121 ohms
(+/-1%)

RT = 100 ohms
(+/-1%)

On-chip On-chip

8mA

8mA

VCCIO = 2.5V
(+/-5%)

VCCIO = 2.5V
(+/-5%)

Transmission line, 
Zo = 100 ohm differential

+

-

Off-chipOff-chip
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Figure 3-6. Generic DDR/DDR2 (With Clock and Data Edges Aligned)
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Figure 3-15. Test Loads
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IOL

CMOS
outputs

Test Loads
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Hi-Z test eqpt. ≥ 5Ωk
(atteunation 0dB)

CL including probe and jig capacitance, 3pF max.
S1 - open, S2 - closed for VOH measurement.
S1 - closed, S2 - open for VOL measurement.

10Hz

Passband Ripple
< ±1dB

Stopband
Rejection

<20dB

Slopes:
20dB/Decade

>1/10 fSCLK

VDDSD

CL

SDO
SDO

1.0µF

75Ω test eqpt.
(atteunation 0dB)

75Ω 
1%

VDDSD
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SDO
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5.5-30pF*

50 test eqpt.
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Pin Information Summary 
Pin Information Summary ECP3-17EA ECP3-35EA ECP3-70E/EA

Pin Type
256 

ftBGA
484 

fpBGA
256 

ftBGA
484 

fpBGA
672 

fpBGA
484 

fpBGA
672 

fpBGA
1156 

fpBGA

General Purpose 
Inputs/Outputs per Bank

Bank 0 26 36 26 42 48 42 60 86

Bank 1 14 24 14 36 36 36 48 78

Bank 2 6 12 6 24 24 24 34 36

Bank 3 18 44 16 54 59 54 59 86

Bank 6 20 44 18 63 61 63 67 86

Bank 7 19 32 19 36 42 36 48 54

Bank 8 24 24 24 24 24 24 24 24

General Purpose Inputs per 
Bank

Bank 0 0 0 0 0 0 0 0 0

Bank 1 0 0 0 0 0 0 0 0

Bank 2 2 2 2 4 4 4 8 8

Bank 3 0 0 2 4 4 4 12 12

Bank 6 0 0 2 4 4 4 12 12

Bank 7 4 4 4 4 4 4 8 8

Bank 8 0 0 0 0 0 0 0 0

General Purpose Outputs per 
Bank

Bank 0 0 0 0 0 0 0 0 0

Bank 1 0 0 0 0 0 0 0 0

Bank 2 0 0 0 0 0 0 0 0

Bank 3 0 0 0 0 0 0 0 0

Bank 6 0 0 0 0 0 0 0 0

Bank 7 0 0 0 0 0 0 0 0

Bank 8 0 0 0 0 0 0 0 0

Total Single-Ended User I/O 133 222 133 295 310 295 380 490

VCC 6 16 6 16 32 16 32 32

VCCAUX 4 8 4 8 12 8 12 16

VTT 4 4 4 4 4 4 4 8

VCCA 4 4 4 4 8 4 8 16

VCCPLL 2 4 2 4 4 4 4 4

VCCIO

Bank 0 2 2 2 2 4 2 4 4

Bank 1 2 2 2 2 4 2 4 4

Bank 2 2 2 2 2 4 2 4 4

Bank 3 2 2 2 2 4 2 4 4

Bank 6 2 2 2 2 4 2 4 4

Bank 7 2 2 2 2 4 2 4 4

Bank 8 2 2 2 2 2 2 2 2

VCCJ 1 1 1 1 1 1 1 1

TAP 4 4 4 4 4 4 4 4

GND, GNDIO 50 98 50 98 139 98 139 233

NC 0 73 0 0 96 0 0 238

Reserved1 0 2 0 2 2 2 2 2

SERDES 26 26 26 26 26 26 52 78

Miscellaneous Pins 8 8 8 8 8 8 8 8

Total Bonded Pins 256 484 256 484 672 484 672 1156
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Logic Signal Connections
Package pinout information can be found under “Data Sheets” on the LatticeECP3 product pages on the Lattice 
website at www.latticesemi.com/products/fpga/ecp3 and in the Lattice ispLEVER Design Planner software. To cre-
ate pinout information from within Design Planner, select View -> Package View. Then select Select File -> 
Export and choose a type of output file. See Design Planner help for more information.

Thermal Management 
Thermal management is recommended as part of any sound FPGA design methodology. To assess the thermal 
characteristics of a system, Lattice specifies a maximum allowable junction temperature in all device data sheets. 
Designers must complete a thermal analysis of their specific design to ensure that the device and package do not 
exceed the junction temperature limits. Refer to the Thermal Management document to find the device/package 
specific thermal values.

For Further Information
For further information regarding Thermal Management, refer to the following:

• Thermal Management document

• TN1181, Power Consumption and Management for LatticeECP3 Devices

• Power Calculator tool included with the Lattice ispLEVER design tool, or as a standalone download from 
www.latticesemi.com/software

www.latticesemi.com/dynamic/view_document.cfm?document_id=32321
www.latticesemi.com/dynamic/view_document.cfm?document_id=210
http://www.latticesemi.com/products/designsoftware/index.cfm
http://www.latticesemi.com/products/fpga/ecp3/

