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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Architecture Overview
Each LatticeECP3 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Inter-
spersed between the rows of logic blocks are rows of sysMEM™ Embedded Block RAM (EBR) and rows of sys-
DSP™ Digital Signal Processing slices, as shown in Figure 2-1. In addition, the LatticeECP3 family contains 
SERDES Quads on the bottom of the device. 

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional Unit 
without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF 
block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for 
flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-
dimensional array. Only one type of block is used per row. 

The LatticeECP3 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 
18Kbit fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or 
ROM. In addition, LatticeECP3 devices contain up to two rows of DSP slices. Each DSP slice has multipliers and 
adder/accumulators, which are the building blocks for complex signal processing capabilities.

The LatticeECP3 devices feature up to 16 embedded 3.2Gbps SERDES (Serializer / Deserializer) channels. Each 
SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each 
group of four SERDES channels, along with its Physical Coding Sub-layer (PCS) block, creates a quad. The func-
tionality of the SERDES/PCS quads can be controlled by memory cells set during device configuration or by regis-
ters that are addressable during device operation. The registers in every quad can be programmed via the 
SERDES Client Interface (SCI). These quads (up to four) are located at the bottom of the devices. 

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O buffers. The sysI/O buffers of the 
LatticeECP3 devices are arranged in seven banks, allowing the implementation of a wide variety of I/O standards. 
In addition, a separate I/O bank is provided for the programming interfaces. 50% of the PIO pairs on the left and 
right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engi-
neered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 
LVDS, along with memory interfaces including DDR3.

Other blocks provided include PLLs, DLLs and configuration functions. The LatticeECP3 architecture provides two 
Delay Locked Loops (DLLs) and up to ten Phase Locked Loops (PLLs). In addition, each LatticeECP3 family mem-
ber provides two DLLs per device. The PLL and DLL blocks are located at the end of the EBR/DSP rows. 

The configuration block that supports features such as configuration bit-stream decryption, transparent updates 
and dual-boot support is located toward the center of this EBR row. Every device in the LatticeECP3 family sup-
ports a sysCONFIG™ port located in the corner between banks one and two, which allows for serial or parallel 
device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error 
detect capability. The LatticeECP3 devices use 1.2V as their core voltage.
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Figure 2-10. Primary Clock Sources for LatticeECP3-35

Figure 2-11. Primary Clock Sources for LatticeECP3-70, -95, -150
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Secondary Clock/Control Sources 
LatticeECP3 devices derive eight secondary clock sources (SC0 through SC7) from six dedicated clock input pads 
and the rest from routing. Figure 2-14 shows the secondary clock sources. All eight secondary clock sources are 
defined as inputs to a per-region mux SC0-SC7. SC0-SC3 are primary for control signals (CE and/or LSR), and 
SC4-SC7 are for clock and high fanout data.

In an actual implementation, there is some overlap to maximize routability. In addition to SC0-SC3, SC7 is also an 
input to the control signals (LSR or CE). SC0-SC2 are also inputs to clocks along with SC4-SC7. High fanout logic 
signals (LUT inputs) will utilize the X2 and X0 switches where SC0-SC7 are inputs to X2 switches, and SC4-SC7 
are inputs to X0 switches. Note that through X0 switches, SC4-SC7 can also access control signals CE/LSR.

Figure 2-14. Secondary Clock Sources

Secondary Clock/Control Routing
Global secondary clock is a secondary clock that is distributed to all regions. The purpose of the secondary clock 
routing is to distribute the secondary clock sources to the secondary clock regions. Secondary clocks in the 
LatticeECP3 devices are region-based resources. Certain EBR rows and special vertical routing channels bind the 
secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP 
slice in the DSP row or the center of the DSP row. Figure 2-15 shows this special vertical routing channel and the 
20 secondary clock regions for the LatticeECP3 family of devices. All devices in the LatticeECP3 family have eight 
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as, overflow, underflow and convergent rounding, etc.
– Flexible cascading across slices to get larger functions

• RTL Synthesis friendly synchronous reset on all registers, while still supporting asynchronous reset for legacy 
users

• Dynamic MUX selection to allow Time Division Multiplexing (TDM) of resources for applications that require 
processor-like flexibility that enables different functions for each clock cycle

For most cases, as shown in Figure 2-24, the LatticeECP3 DSP slice is backwards-compatible with the 
LatticeECP2™ sysDSP block, such that, legacy applications can be targeted to the LatticeECP3 sysDSP slice. The 
functionality of one LatticeECP2 sysDSP Block can be mapped into two adjacent LatticeECP3 sysDSP slices, as 
shown in Figure 2-25.

Figure 2-24. Simplified sysDSP Slice Block Diagram
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Figure 2-25. Detailed sysDSP Slice Diagram

The LatticeECP2 sysDSP block supports the following basic elements.

• MULT (Multiply)

• MAC (Multiply, Accumulate)

• MULTADDSUB (Multiply, Addition/Subtraction)

• MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2-8 shows the capabilities of each of the LatticeECP3 slices versus the above functions.

Table 2-8. Maximum Number of Elements in a Slice

Some options are available in the four elements. The input register in all the elements can be directly loaded or can 
be loaded as a shift register from previous operand registers. By selecting “dynamic operation” the following opera-
tions are possible:

• In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.

• The loading of operands can switch between parallel and serial operations.

Width of Multiply x9 x18 x36

MULT 4 2 1/2

MAC 1 1 —

MULTADDSUB 2 1 —

MULTADDSUBSUM 11 1/2 —

1. One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.

R= A ± B ± C
R = Logic (B, C)

AA AB BA BB

MULTA MULTB

BMUXAMUX

C
M

U
X

ALU

A_ALU B_ALU

IR

PRPR

OR

Rounding
A_ALU

OPCODEC

CIN COUT

SROB

SROA

SRIB

SRIA

C_ALU

0

0 0

From FPGA Core

To FPGA Core

IR = Input Register
PR = Pipeline Register
OR = Output Register
FR = Flag Register

Note: A_ALU, B_ALU and C_ALU are internal signals generated by combining bits from AA, AB, BA BB and C
inputs. See TN1182, LatticeECP3 sysDSP Usage Guide, for further information.

Next
DSP Slice

Previous
DSP Slice

IR 

IR IR IR IR 

OROR FR

  ==

PR

IR

SEE Latt
ice

ECP3-E
A 

DATA SHEET FOR  

CURRENT IN
FORMATIO

N



2-25

Architecture
Lattice Semiconductor LatticeECP3 Family Data Sheet

MAC DSP Element
In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated 
value. This accumulated value is available at the output. The user can enable the input and pipeline registers, but 
the output register is always enabled. The output register is used to store the accumulated value. The ALU is con-
figured as the accumulator in the sysDSP slice in the LatticeECP3 family can be initialized dynamically. A regis-
tered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-27 
shows the MAC sysDSP element.

Figure 2-27. MAC DSP Element
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MMAC DSP Element
The LatticeECP3 supports a MAC with two multipliers. This is called Multiply Multiply Accumulate or MMAC. In this 
case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated value and 
with the result of the multiplier operation of operands BA and BB. This accumulated value is available at the output. 
The user can enable the input and pipeline registers, but the output register is always enabled. The output register 
is used to store the accumulated value. The ALU is configured as the accumulator in the sysDSP slice. A registered 
overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-28 shows the 
MMAC sysDSP element. 

Figure 2-28. MMAC sysDSP Element
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Figure 2-31. MULTADDSUBSUM Slice 1

Advanced sysDSP Slice Features
Cascading
The LatticeECP3 sysDSP slice has been enhanced to allow cascading. Adder trees are implemented fully in sys-
DSP slices, improving the performance. Cascading of slices uses the signals CIN, COUT and C Mux of the slice.

Addition
The LatticeECP3 sysDSP slice allows for the bypassing of multipliers and cascading of adder logic. High perfor-
mance adder functions are implemented without the use of LUTs. The maximum width adders that can be imple-
mented are 54-bit.

Rounding
The rounding operation is implemented in the ALU and is done by adding a constant followed by a truncation oper-
ation. The rounding methods supported are:

• Rounding to zero (RTZ)

• Rounding to infinity (RTI)

• Dynamic rounding

• Random rounding

• Convergent rounding 
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Figure 2-34. ECP3-70/95 (E or EA) Output and Tristate Block for Left and Right Edges

Tristate Register Block 
The tristate register block registers tri-state control signals from the core of the device before they are passed to the 
sysI/O buffers. The block contains a register for SDR operation and an additional register for DDR operation.

In SDR and non-gearing DDR modes, TS input feeds one of the flip-flops that then feeds the output. In DDRX2 
mode, the register TS input is fed into another register that is clocked using the DQCLK0 and DQCLK1 signals. The 
output of this register is used as a tristate control.

ISI Calibration
The setting for Inter-Symbol Interference (ISI) cancellation occurs in the output register block. ISI correction is only 
available in the DDRX2 modes. ISI calibration settings exist once per output register block, so each I/O in a DQS-
12 group may have a different ISI calibration setting.

The ISI block extends output signals at certain times, as a function of recent signal history. So, if the output pattern 
consists of a long strings of 0's to long strings of 1's, there are no delays on output signals. However, if there are 
quick, successive transitions from 010, the block will stretch out the binary 1. This is because the long trail of 0's will 
cause these symbols to interfere with the logic 1. Likewise, if there are quick, successive transitions from 101, the 
block will stretch out the binary 0. This block is controlled by a 3-bit delay control that can be set in the DQS control 
logic block. 

For more information about this topic, please see the list of technical documentation at the end of this data sheet.
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Typical Building Block Function Performance
Pin-to-Pin Performance (LVCMOS25 12mA Drive)1, 2

 Function -8 Timing Units

Basic Functions

16-bit Decoder 4.7 ns

32-bit Decoder 4.7 ns

64-bit Decoder 5.7 ns

4:1 MUX 4.1 ns

8:1 MUX 4.3 ns

16:1 MUX 4.7 ns

32:1 MUX 4.8 ns

1. These functions were generated using the ispLEVER design tool. Exact performance may vary with device and tool version. The tool uses 
internal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the ispLEVER software.

Register-to-Register Performance1, 2

 Function -8 Timing Units

Basic Functions

16-bit Decoder 500 MHz

32-bit Decoder 500 MHz

64-bit Decoder 475 MHz

4:1 MUX 500 MHz

8:1 MUX 500 MHz

16:1 MUX 500 MHz

32:1 MUX 445 MHz

8-bit adder 500 MHz

16-bit adder 500 MHz

64-bit adder 305 MHz

16-bit counter 500 MHz

32-bit counter 460 MHz

64-bit counter 320 MHz

64-bit accumulator 315 MHz

Embedded Memory Functions

512x36 Single Port RAM, EBR Output Registers 340 MHz

1024x18 True-Dual Port RAM (Write Through or Normal, EBR Output Registers) 340 MHz

1024x18 True-Dual Port RAM (Read-Before-Write, EBR Output Registers; EA devices 
only) 130 MHz

1024x18 True-Dual Port RAM (Write Through or Normal, PLC Output Registers) 245 MHz

Distributed Memory Functions

16x4 Pseudo-Dual Port RAM (One PFU) 500 MHz

32x4 Pseudo-Dual Port RAM 500 MHz

64x8 Pseudo-Dual Port RAM 380 MHz

DSP Function

18x18 Multiplier (All Registers) 400 MHz

9x9 Multiplier (All Registers) 400 MHz

36x36 Multiply (All Registers) 245 MHz
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tDVECLKGDDR Data Hold After CLK ECP3-70E/95E 0.765 — 0.765 — 0.765 — UI

fMAX_GDDR DDR/DDRX2 Clock Frequency8 ECP3-70E/95E — 500 — 420 — 375 MHz

Generic DDRX2 Inputs with Clock and Data (<10 Bits Wide) Centered at Pin (GDDRX2_RX.DQS.Centered) using DQS 
Pin for Clock Input

Left and Right Sides 

tSUGDDR Data Setup Before CLK ECP3-150EA — — — ns

tHGDDR Data Hold After CLK ECP3-150EA — — — ns

fMAX_GDDR DDRX2 Clock Frequency ECP3-150EA — — — ns

Generic DDRX2 Inputs with Clock and Data (<10 Bits Side) Aligned at Pin (GDDRX2_RX.DQS.Aligned) Using DQS Pin 
for Clock Input

Left and Right Sides 

tDVACLKGDDR
Data Setup Before CLK (Left and 
Right Side) ECP3-150EA — — —

tDVECLKGDDR
Data Hold After CLK (Left and Right 
Side) ECP3-150EA — — —

fMAX_GDDR
DDRX2 Clock Frequency (Left and 
Right Side) ECP3-150EA — — —

Generic DDRX1 Output with Clock and Data (>10 Bits Wide) Centered at Pin (GDDRX1_TX.SCLK.Centered)

Left, Right and Top Sides 

tDVBGDDR Data Valid Before CLK ECP3-150EA — — —

tDVAGDDR Data Valid After CLK ECP3-150EA — — —

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — — —

Generic DDRX1 Outputs with clock in the center of data window, with PLL 90-degree shifted clock ouput 
(GDDRX1_TX.ECLK.Centered)

tDIBGDDR Data Invalid Before CLK ECP3-70E/95E 670 — 670 — 670 — ps

tDIAGDDR Data Invalid After CLK ECP3-70E/95E 670 — 670 — 670 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-70E/95E — 250 — 250 — 250 MHz

Generic DDRX1 Output with Clock and Data (> 10 Bits Wide) Aligned at Pin (GDDRX1_TX.SCLK.Aligned)

Left, Right and Top Sides 

tDIBGDDR Data Hold After CLK ECP3-150EA — — —

tDIAGDDR Data Setup Before CLK ECP3-150EA — — —

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — — —

Generic DDRX1 Outputs with clock and data edge aligned, without PLL

tDIBGDDR Data Invalid Before CLK ECP3-70E/95E — 330 — 330 — 330 ps

tDIAGDDR Data Invalid After CLK ECP3-70E/95E — 330 — 330 — 330 ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-70E/95E — 250 — 250 — 250 MHz

Generic DDRX1 Output with Clock and Data (<10 Bits Wide) Centered at Pin (GDDRX1_TX.DQS.Centered)

Left, Right and Top Sides 

tDVBGDDR Data Valid Before CLK ECP3-150EA — — —

tDVAGDDR Data Valid After CLK ECP3-150EA — — —

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — — —

LatticeECP3 External Switching Characteristics (Continued)1, 2

Over Recommended Commercial Operating Conditions

Parameter Description Device

-8 -7 -6

UnitsMin. Max. Min. Max. Min. Max.
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Generic DDRX2 Output with Clock and Data (> 10 Bits Wide) Aligned at Pin (GDDRX2_TX.ECLK.Aligned)

Left and Right Sides 

tDIBGDDR Data Setup Before CLK ECP3-150EA — — — ps

tDIAGDDR Data Hold After CLK ECP3-150EA — — — ps

fMAX_GDDR DDRX2 Clock Frequency ECP3-150EA — — — MHz

Generic DDRX2 Outputs with Clock and Data Edges Aligned, Without PLL 90-degree shifted clock output5 
(GDDRX2_TX.Aligned)

tDIBGDDR Data Invalid Before Clock ECP3-70E/95E — 200 — 225 — 250 ps

tDIAGDDR Data Invalid After Clock ECP3-70E/95E — 200 — 225 — 250 ps

fMAX_GDDR DDR/DDRX2 Clock Frequency8 ECP3-70E/95E — 500 — 420 — 375 MHz

Generic DDRX2 Output with Clock and Data (> 10 Bits Wide) Centered at Pin Using DQSDLL (GDDRX2_TX.DQS-
DLL.Centered)

Left and Right Sides 

tDVBGDDR Data Valid Before CLK ECP3-150EA — — — ns

tDVAGDDR Data Valid After CLK ECP3-150EA — — — ns

fMAX_GDDR DDRX2 Clock Frequency ECP3-150EA — — — ns

Generic DDRX2 Output with Clock and Data (> 10 Bits Wide) Centered at Pin Using PLL (GDDRX2_TX.PLL.Centered)

Left and Right Sides 

tDVBGDDR Data Valid Before CLK ECP3-150EA — — — ns

tDVAGDDR Data Valid After CLK ECP3-150EA — — — ns

fMAX_GDDR DDRX2 Clock Frequency ECP3-150EA — — — ns

Generic DDRX2 Outputs with Clock Edge in the Center of Data Window, with PLL 90-degree Shifted Clock Output6  
(GDDRX2_TX.PLL.Centered)

tDVBGDDR Data Valid Before CLK ECP3-70E/95E 300 — 370 — 417 — ps

tDVAGDDR Data Valid After CLK ECP3-70E/95E 300 — 370 — 417 — ps

fMAX_GDDR DDR/DDRX2 Clock Frequency8 ECP3-70E/95E — 500 — 420 — 375 MHz

Parameter Description Device

-8 -7 -6

UnitsMin. Max. Min. Max. Min. Max.

Memory Interface

DDR/DDR2 SDRAM I/O Pin Parameters (Input Data are Strobe Edge Aligned, Output Strobe Edge is Data Centered)4 

tDVADQ Data Valid After DQS (DDR Read) ECP3-150EA — 0.225 — 0.225 — 0.225 UI

tDVEDQ Data Hold After DQS (DDR Read) ECP3-150EA 0.64 — 0.64 — 0.64 — UI

tDQVBS Data Valid Before DQS ECP3-150EA 0.25 — 0.25 — 0.25 — UI

tDQVAS Data Valid After DQS  ECP3-150EA 0.25 — 0.25 — 0.25 — UI

fMAX_DDR DDR Clock Frequency ECP3-150EA 95 200 95 200 95 166 MHz

fMAX_DDR2 DDR2 clock frequency ECP3-150EA 133 266 133 200 133 166 MHz

tDVADQ Data Valid After DQS (DDR Read) ECP3-70E/95E — 0.225 — 0.225 — 0.225 UI

tDVEDQ Data Hold After DQS (DDR Read) ECP3-70E/95E 0.64 — 0.64 — 0.64 — UI

tDQVBS Data Valid Before DQS ECP3-70E/95E 0.25 — 0.25 — 0.25 — UI

tDQVAS Data Valid After DQS  ECP3-70E/95E 0.25 — 0.25 — 0.25 — UI

fMAX_DDR DDR Clock Frequency ECP3-70E/95E 95 200 95 200 95 133 MHz

LatticeECP3 External Switching Characteristics (Continued)1, 2

Over Recommended Commercial Operating Conditions

Parameter Description Device

-8 -7 -6

UnitsMin. Max. Min. Max. Min. Max.
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Figure 3-11. Write Through (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.
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DLL Timing
Over Recommended Operating Conditions

Parameter Description Condition Min. Typ. Max. Units 

fREF 
Input reference clock frequency (on-chip or 
off-chip)  133 — 500 MHz 

fFB Feedback clock frequency (on-chip or off-chip)  133 — 500 MHz 

fCLKOP
1 Output clock frequency, CLKOP  133 — 500 MHz 

fCLKOS
2 Output clock frequency, CLKOS  33.3 — 500 MHz 

tPJIT Output clock period jitter (clean input)   — 200 ps p-p 

tDUTY 

Output clock duty cycle (at 50% levels, 50% duty 
cycle input clock, 50% duty cycle circuit turned 
off, time reference delay mode) 

Edge Clock 40  60 % 

Primary Clock 30  70 % 

tDUTYTRD 

Output clock duty cycle (at 50% levels, arbitrary 
duty cycle input clock, 50% duty cycle circuit 
enabled, time reference delay mode) 

Primary Clock < 250MHz 45  55 % 

Primary Clock 250MHz 30  70 % 

Edge Clock 45  55 % 

tDUTYCIR 

Output clock duty cycle (at 50% levels, arbitrary 
duty cycle input clock, 50% duty cycle circuit 
enabled, clock injection removal mode) with DLL 
cascading

Primary Clock < 250MHz 40  60 % 

Primary Clock  250MHz 30  70 % 

Edge Clock 45  55 % 

tSKEW
3 Output clock to clock skew between two outputs 

with the same phase setting  — — 100 ps 

tPHASE 
Phase error measured at device pads between 
off-chip reference clock and feedback clocks  — — +/-400 ps 

tPWH 
Input clock minimum pulse width high (at 80% 
level)  550 — — ps 

tPWL Input clock minimum pulse width low (at 20% 
level)  550 — — ps 

tINSTB Input clock period jitter  — — 500 p-p

tLOCK DLL lock time  8 — 8200 cycles 

tRSWD Digital reset minimum pulse width (at 80% level)  3 — — ns 

tDEL Delay step size  27 45 70 ps 

tRANGE1 
Max. delay setting for single delay block 
(64 taps)  1.9 3.1 4.4 ns 

tRANGE4 Max. delay setting for four chained delay blocks  7.6 12.4 17.6 ns 

1. CLKOP runs at the same frequency as the input clock.
2. CLKOS minimum frequency is obtained with divide by 4.
3. This is intended to be a “path-matching” design guideline and is not a measurable specification.
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Gigabit Ethernet/Serial Rapid I/O Type 1/SGMII Electrical and Timing 
Characteristics
AC and DC Characteristics
Table 3-17. Transmit

Table 3-18. Receive and Jitter Tolerance

Symbol Description Test Conditions Min. Typ. Max. Units

TRF Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
3, 4, 5 Output data deterministic jitter — — 0.10 UI

JTX_TJ
2, 3, 4, 5 Total output data jitter — — 0.24 UI

1. Rise and fall times measured with board trace, connector and approximately 2.5pf load.
2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.
3. Jitter values are measured with each CML output AC coupled into a 50-ohm impedance (100-ohm differential impedance).
4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
5. Values are measured at 1.25 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz to 1.25 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz to 1.25 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
1, 2, 3, 4, 5 Deterministic jitter tolerance (peak-to-peak) — — 0.34 UI

JRX_RJ
1, 2, 3, 4, 5 Random jitter tolerance (peak-to-peak) — — 0.26 UI

JRX_SJ
1, 2, 3, 4, 5 Sinusoidal jitter tolerance (peak-to-peak) — — 0.11 UI

JRX_TJ
1, 2, 3, 4, 5 Total jitter tolerance (peak-to-peak) — — 0.71 UI

TRX_EYE Receiver eye opening 0.29 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-14.
2. Jitter values are measured with each high-speed input AC coupled into a 50-ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 1.25 Gbps.
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Figure 3-24. Master SPI Configuration Waveforms
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Point-to-Point LVDS (PPLVDS)
Over Recommended Operating Conditions

RSDS
Over Recommended Operating Conditions

 Description Min. Typ. Max. Units

Output driver supply (+/- 5%)
3.14 3.3 3.47 V

2.25 2.5 2.75 V

Input differential voltage 100 400 mV

Input common mode voltage 0.2 2.3 V

Output differential voltage 130 400 mV

Output common mode voltage 0.5 0.8 1.4 V

Parameter Symbol Description Min. Typ. Max. Units

VOD Output voltage, differential, RT = 100 ohms 100 200 600 mV

VOS Output voltage, common mode 0.5 1.2 1.5 V

IRSDS Differential driver output current 1 2 6 mA

VTHD Input voltage differential 100 — — mV

VCM Input common mode voltage 0.3 — 1.5 V

TR, TF Output rise and fall times, 20% to 80% — 500 — ps

TODUTY Output clock duty cycle 35 50 65 %

Note: Data is for 2mA drive. Other differential driver current options are available.
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LatticeECP3 Part Number Description
LFE3 – XXX XX – X  XXXXXX  X

Grade
    C = Commercial
    I = Industrial    Logic Capacity

     17 = 17K LUTs
     35 = 33K LUTs
     70 = 67K LUTs
     95 = 92K LUTs
     150 = 149K LUTs
     Supply Voltage
   E or EA = 1.2V

Speed
   6 = Slowest
   7
   8 = Fastest

Package
    FTN256 = 256-ball Lead-Free ftBGA
    FN484 = 484-ball Lead-Free fpBGA
    FN672 = 672-ball Lead-Free fpBGA
    FN1156 = 1156-ball Lead-Free fpBGA

Device Family
    ECP3 (LatticeECP3 FPGA + SERDES)
 

Ordering Information
LatticeECP3 devices have top-side markings, for commercial and industrial grades, as shown below:

LFE3-95E
7FN672C

Datecode

ECP3

LFE3-95E
7FN672I

Datecode

Commercial Industrial

ECP3

LatticeECP3 Family Data Sheet
Ordering Information
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Industrial

The following devices may have associated errata. Specific devices with associated errata will be notated with a 
footnote.

Part Number Voltage Grade Package Pins Temp. LUTs (K) 

LFE3-17EA-6FTN256I 1.2V -6 Lead-Free ftBGA 256 IND 17

LFE3-17EA-7FTN256I 1.2V -7 Lead-Free ftBGA 256 IND 17

LFE3-17EA-8FTN256I 1.2V -8 Lead-Free ftBGA 256 IND 17

LFE3-17EA-6FN484I 1.2V -6 Lead-Free fpBGA 484 IND 17

LFE3-17EA-7FN484I 1.2V -7 Lead-Free fpBGA 484 IND 17

LFE3-17EA-8FN484I 1.2V -8 Lead-Free fpBGA 484 IND 17

Part Number Voltage Grade Package Pins Temp. LUTs (K) 

LFE3-35EA-6FTN256I 1.2V -6 Lead-Free ftBGA 256 IND 33

LFE3-35EA-7FTN256I 1.2V -7 Lead-Free ftBGA 256 IND 33

LFE3-35EA-8FTN256I 1.2V -8 Lead-Free ftBGA 256 IND 33

LFE3-35EA-6FN484I 1.2V -6 Lead-Free fpBGA 484 IND 33

LFE3-35EA-7FN484I 1.2V -7 Lead-Free fpBGA 484 IND 33

LFE3-35EA-8FN484I 1.2V -8 Lead-Free fpBGA 484 IND 33

LFE3-35EA-6FN672I 1.2V -6 Lead-Free fpBGA 672 IND 33

LFE3-35EA-7FN672I 1.2V -7 Lead-Free fpBGA 672 IND 33

LFE3-35EA-8FN672I 1.2V -7 Lead-Free fpBGA 672 IND 33

Part Number Voltage Grade Package Pins Temp. LUTs (K) 

LFE3-70EA-6FN484I 1.2V -6 Lead-Free fpBGA 484 IND 67

LFE3-70EA-7FN484I 1.2V -7 Lead-Free fpBGA 484 IND 67

LFE3-70EA-8FN484I 1.2V -8 Lead-Free fpBGA 484 IND 67

LFE3-70EA-6FN672I 1.2V -6 Lead-Free fpBGA 672 IND 67

LFE3-70EA-7FN672I 1.2V -7 Lead-Free fpBGA 672 IND 67

LFE3-70EA-8FN672I 1.2V -8 Lead-Free fpBGA 672 IND 67

LFE3-70EA-6FN1156I 1.2V -6 Lead-Free fpBGA 1156 IND 67

LFE3-70EA-7FN1156I 1.2V -7 Lead-Free fpBGA 1156 IND 67

LFE3-70EA-8FN1156I 1.2V -8 Lead-Free fpBGA 1156 IND 67
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For Further Information
A variety of technical notes for the LatticeECP3 family are available on the Lattice website at www.latticesemi.com.

• TN1169, LatticeECP3 sysCONFIG Usage Guide

• TN1176, LatticeECP3 SERDES/PCS Usage Guide

• TN1177, LatticeECP3 sysIO Usage Guide

• TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide

• TN1179, LatticeECP3 Memory Usage Guide

• TN1180, LatticeECP3 High-Speed I/O Interface

• TN1181, Power Consumption and Management for LatticeECP3 Devices

• TN1182, LatticeECP3 sysDSP Usage Guide

• TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide

• TN1189, LatticeECP3 Hardware Checklist 

For further information on interface standards refer to the following websites:

• JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
• PCI: www.pcisig.com

LatticeECP3 Family Data Sheet
Supplemental Information
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