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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Figure 2-1. Simplified Block Diagram, LatticeECP3-35 Device (Top Level)

PFU Blocks 
The core of the LatticeECP3 device consists of PFU blocks, which are provided in two forms, the PFU and PFF. 
The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF 
blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remain-
der of this data sheet will use the term PFU to refer to both PFU and PFF blocks. 

Each PFU block consists of four interconnected slices numbered 0-3 as shown in Figure 2-2. Each slice contains 
two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs 
associated with each PFU block. 
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Figure 2-3. Slice Diagram

Table 2-2. Slice Signal Descriptions

Function Type Signal Names Description 

Input Data signal A0, B0, C0, D0 Inputs to LUT4 

Input Data signal A1, B1, C1, D1 Inputs to LUT4 

Input Multi-purpose M0 Multipurpose Input 

Input Multi-purpose M1 Multipurpose Input 

Input Control signal CE Clock Enable 

Input Control signal LSR Local Set/Reset 

Input Control signal CLK System Clock 

Input Inter-PFU signal FC Fast Carry-in1 

Input Inter-slice signal FXA Intermediate signal to generate LUT6 and LUT7

Input Inter-slice signal FXB Intermediate signal to generate LUT6 and LUT7

Output Data signals F0, F1 LUT4 output register bypass signals 

Output Data signals Q0, Q1 Register outputs 

Output Data signals OFX0 Output of a LUT5 MUX 

Output Data signals OFX1 Output of a LUT6, LUT7, LUT82 MUX depending on the slice 

Output Inter-PFU signal FCO Slice 2 of each PFU is the fast carry chain output1

1. See Figure 2-3 for connection details. 
2. Requires two PFUs. 
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PLL/DLL Cascading 
LatticeECP3 devices have been designed to allow certain combinations of PLL and DLL cascading. The allowable 
combinations are: 

• PLL to PLL supported 

• PLL to DLL supported 

The DLLs in the LatticeECP3 are used to shift the clock in relation to the data for source synchronous inputs. PLLs 
are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL and DLL 
blocks allows applications to utilize the unique benefits of both DLLs and PLLs. 

For further information about the DLL, please see the list of technical documentation at the end of this data sheet. 

PLL/DLL PIO Input Pin Connections 
All LatticeECP3 devices contains two DLLs and up to ten PLLs, arranged in quadrants. If a PLL and a DLL are next 
to each other, they share input pins as shown in the Figure 2-7.

Figure 2-7. Sharing of PIO Pins by PLLs and DLLs in LatticeECP3 Devices

Clock Dividers
LatticeECP3 devices have two clock dividers, one on the left side and one on the right side of the device. These are 
intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or 
÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock 
based on the release of its reset signal. The clock dividers can be fed from selected PLL/DLL outputs, the Slave 
Delay lines, routing or from an external clock input. The clock divider outputs serve as primary clock sources and 
feed into the clock distribution network. The Reset (RST) control signal resets input and asynchronously forces all 
outputs to low. The RELEASE signal releases outputs synchronously to the input clock. For further information on 
clock dividers, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide. Figure 2-8 shows 
the clock divider connections.
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Figure 2-10. Primary Clock Sources for LatticeECP3-35

Figure 2-11. Primary Clock Sources for LatticeECP3-70, -95, -150
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secondary clock resources per region (SC0 to SC7). The same secondary clock routing can be used for control 
signals. 

Table 2-6. Secondary Clock Regions

Figure 2-15. LatticeECP3-70 and LatticeECP3-95 Secondary Clock Regions
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This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP perfor-
mance vs. area by choosing appropriate levels of parallelism. Figure 2-23 compares the fully serial implementation 
to the mixed parallel and serial implementation. 

Figure 2-23. Comparison of General DSP and LatticeECP3 Approaches

LatticeECP3 sysDSP Slice Architecture Features
The LatticeECP3 sysDSP Slice has been significantly enhanced to provide functions needed for advanced pro-
cessing applications. These enhancements provide improved flexibility and resource utilization.

The LatticeECP3 sysDSP Slice supports many functions that include the following:

• Multiply (one 18x36, two 18x18 or four 9x9 Multiplies per Slice)

• Multiply (36x36 by cascading across two sysDSP slices)

• Multiply Accumulate (up to 18x36 Multipliers feeding an Accumulator that can have up to 54-bit resolution)

• Two Multiplies feeding one Accumulate per cycle for increased processing with lower latency (two 18x18 Mul-
tiplies feed into an accumulator that can accumulate up to 52 bits)

• Flexible saturation and rounding options to satisfy a diverse set of applications situations

• Flexible cascading across DSP slices
– Minimizes fabric use for common DSP and ALU functions
– Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
– Provides matching pipeline registers
– Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade 

chains

• Flexible and Powerful Arithmetic Logic Unit (ALU) Supports:
– Dynamically selectable ALU OPCODE
– Ternary arithmetic (addition/subtraction of three inputs)
– Bit-wise two-input logic operations (AND, OR, NAND, NOR, XOR and XNOR)
– Eight flexible and programmable ALU flags that can be used for multiple pattern detection scenarios, such 
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Figure 2-25. Detailed sysDSP Slice Diagram

The LatticeECP2 sysDSP block supports the following basic elements.

• MULT (Multiply)

• MAC (Multiply, Accumulate)

• MULTADDSUB (Multiply, Addition/Subtraction)

• MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2-8 shows the capabilities of each of the LatticeECP3 slices versus the above functions.

Table 2-8. Maximum Number of Elements in a Slice

Some options are available in the four elements. The input register in all the elements can be directly loaded or can 
be loaded as a shift register from previous operand registers. By selecting “dynamic operation” the following opera-
tions are possible:

• In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.

• The loading of operands can switch between parallel and serial operations.

Width of Multiply x9 x18 x36

MULT 4 2 1/2

MAC 1 1 —

MULTADDSUB 2 1 —

MULTADDSUBSUM 11 1/2 —

1. One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.
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MAC DSP Element
In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated 
value. This accumulated value is available at the output. The user can enable the input and pipeline registers, but 
the output register is always enabled. The output register is used to store the accumulated value. The ALU is con-
figured as the accumulator in the sysDSP slice in the LatticeECP3 family can be initialized dynamically. A regis-
tered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-27 
shows the MAC sysDSP element.

Figure 2-27. MAC DSP Element
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MULTADDSUBSUM DSP Element
In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multi-
plier operation of operands BA and BB of Slice 0. Additionally, the operands AA and AB are multiplied and the 
result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 1. The results 
of both addition/subtractions are added by the second ALU following the slice cascade path. The user can enable 
the input, output and pipeline registers. Figure 2-30 and Figure 2-31 show the MULTADDSUBSUM sysDSP ele-
ment.

Figure 2-30. MULTADDSUBSUM Slice 0
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Please see TN1177, LatticeECP3 sysIO Usage Guide for on-chip termination usage and value ranges.

Equalization Filter
Equalization filtering is available for single-ended inputs on both true and complementary I/Os, and for differential 
inputs on the true I/Os on the left, right, and top sides. Equalization is required to compensate for the difficulty of 
sampling alternating logic transitions with a relatively slow slew rate. It is considered the most useful for the Input 
DDRX2 modes, used in DDR3 memory, LVDS, or TRLVDS signaling. Equalization filter acts as a tunable filter with 
settings to determine the level of correction. In the LatticeECP3 devices, there are four settings available: 0 (none), 
1, 2 and 3. The default setting is 0. The equalization logic resides in the sysI/O buffers, the two bits of setting is set 
uniquely in each input IOLOGIC block. Therefore, each sysI/O can have a unique equalization setting within a 
DQS-12 group.

Hot Socketing
LatticeECP3 devices have been carefully designed to ensure predictable behavior during power-up and power-
down. During power-up and power-down sequences, the I/Os remain in tri-state until the power supply voltage is 
high enough to ensure reliable operation. In addition, leakage into I/O pins is controlled within specified limits. 
Please refer to the Hot Socketing Specifications in the DC and Switching Characteristics in this data sheet.

SERDES and PCS (Physical Coding Sublayer)
LatticeECP3 devices feature up to 16 channels of embedded SERDES/PCS arranged in quads at the bottom of the 
devices supporting up to 3.2Gbps data rate. Figure 2-40 shows the position of the quad blocks for the LatticeECP3-
150 devices. Table 2-14 shows the location of available SERDES Quads for all devices.

The LatticeECP3 SERDES/PCS supports a range of popular serial protocols, including:

• PCI Express 1.1

• Ethernet (XAUI, GbE - 1000 Base CS/SX/LX and SGMII)

• Serial RapidIO

• SMPTE SDI (3G, HD, SD)

• CPRI

• SONET/SDH (STS-3, STS-12, STS-48)

Each quad contains four dedicated SERDES for high speed, full duplex serial data transfer. Each quad also has a 
PCS block that interfaces to the SERDES channels and contains protocol specific digital logic to support the stan-
dards listed above. The PCS block also contains interface logic to the FPGA fabric. All PCS logic for dedicated pro-
tocol support can also be bypassed to allow raw 8-bit or 10-bit interfaces to the FPGA fabric.

Even though the SERDES/PCS blocks are arranged in quads, multiple baud rates can be supported within a quad 
with the use of dedicated, per channel 1, 2 and 11 rate dividers. Additionally, multiple quads can be arranged 
together to form larger data pipes.

For information on how to use the SERDES/PCS blocks to support specific protocols, as well on how to combine 
multiple protocols and baud rates within a device, please refer to TN1176, LatticeECP3 SERDES/PCS Usage 
Guide.
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Table 2-14. Available SERDES Quads per LatticeECP3 Devices

SERDES Block
A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and 
Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The 
SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit 
stream through the differential drivers. Figure 2-41 shows a single-channel SERDES/PCS block. Each SERDES 
channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output 
and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-41. Simplified Channel Block Diagram for SERDES/PCS Block

PCS
As shown in Figure 2-41, the PCS receives the parallel digital data from the deserializer and selects the polarity, 
performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock 
domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, 
selects the polarity and passes the 8/10 bit data to the transmit SERDES channel. 

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA 
logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to 
the FPGA logic. 

SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

Package ECP3-17 ECP3-35 ECP3-70 ECP3-95 ECP3-150

256 ftBGA 1 1 — — —

484 ftBGA 1 1 1 1

672 ftBGA — 1 2 2 2

1156 ftBGA — — 3 3 4
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Figure 3-11. Write Through (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.
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SERDES/PCS Block Latency
Table 3-8 describes the latency of each functional block in the transmitter and receiver. Latency is given in parallel 
clock cycles. Figure 3-12 shows the location of each block.

Table 3-8. SERDES/PCS Latency Breakdown

Figure 3-12. Transmitter and Receiver Latency Block Diagram

Item Description Min. Avg. Max. Fixed Bypass Units

Transmit Data Latency1

T1

FPGA Bridge - Gearing disabled with different clocks 1 3 5 — 1 word clk

FPGA Bridge - Gearing disabled with same clocks — — — 3 1 word clk

FPGA Bridge - Gearing enabled 1 3 5 — — word clk

T2 8b10b Encoder — — — 2 1 word clk

T3 SERDES Bridge transmit — — — 2 1 word clk

T4
Serializer: 8-bit mode — — — 15 + 1 — UI + ps

Serializer: 10-bit mode — — — 18 + 1 — UI + ps

T5
Pre-emphasis ON — — — 1 + 2 — UI + ps

Pre-emphasis OFF — — — 0 + 3 — UI + ps

Receive Data Latency2

R1
Equalization ON — — — 1 — UI + ps

Equalization OFF — — — 2 — UI + ps

R2
Deserializer: 8-bit mode — — — 10 + 3 — UI + ps

Deserializer: 10-bit mode — — — 12 + 3 — UI + ps

R3 SERDES Bridge receive — — — 2 — word clk

R4 Word alignment 3.1 — 4 — — word clk

R5 8b10b decoder — — — 1 — word clk

R6 Clock Tolerance Compensation 7 15 23 1 1 word clk

R7

FPGA Bridge - Gearing disabled with different clocks 1 3 5 — 1 word clk

FPGA Bridge - Gearing disabled with same clocks — — — 3 1 word clk

FPGA Bridge - Gearing enabled 1 3 5 — — word clk

1. 1 = -245ps, 2 = +88ps, 3 = +112ps. 
2. 1 = +118ps, 2 = +132ps, 3 = +700ps. 

HDOUTPi

HDOUTNi

Deserializer
1:8/1:10

Polarity
Adjust

Elastic
Buffer
FIFO

Encoder

SERDES PCS

BYPASS

Transmitter

Receiver

Recovered Clock

FPGA
Receive Clock

FPGA

Receive Data

Transmit Data

CDR

REFCLK

HDINPi

HDINNi
EQ

Polarity
Adjust

Up
Sample

FIFO

SERDES Bridge FPGA Bridge

Serializer
8:1/10:1

WA DEC

FPGA
EBRD Clock

Transmit Clock
TX PLL

REFCLK

FPGA Core

Down
Sample

FIFO
BYPASS

BYPASS

BYPASS

BYPASS
BYPASS

BYPASS

R1 R2
R3 R4 R5

R6

T1T2

T3
T4

Transmit Clock
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Table 3-11. Periodic Receiver Jitter Tolerance Specification

Description Frequency Condition Min. Typ. Max. Units

Periodic 2.97 Gbps 600 mV differential eye — — 0.24 UI, p-p 

Periodic 2.5 Gbps 600 mV differential eye — — 0.22 UI, p-p 

Periodic 1.485 Gbps 600 mV differential eye — — 0.24 UI, p-p 

Periodic 622 Mbps 600 mV differential eye — — 0.15 UI, p-p 

Periodic 155 Mbps 600 mV differential eye — — 0.5 UI, p-p

Note: Values are measured with PRBS 27-1, all channels operating, FPGA Logic active, I/Os around SERDES pins 
quiet, voltages are nominal, room temperature.
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Serial Rapid I/O Type 2 Electrical and Timing Characteristics
AC and DC Characteristics
Table 3-15. Transmit

Table 3-16. Receive and Jitter Tolerance

Symbol Description Test Conditions Min. Typ. Max. Units

TRF
1 Differential rise/fall time 20%-80% — 80 — ps

ZTX_DIFF_DC Differential impedance 80 100 120 Ohms

JTX_DDJ
3, 4, 5 Output data deterministic jitter — — 0.17 UI

JTX_TJ
2, 3, 4, 5 Total output data jitter — — 0.35 UI

1. Rise and Fall times measured with board trace, connector and approximately 2.5pf load.
2. Total jitter includes both deterministic jitter and random jitter. The random jitter is the total jitter minus the actual deterministic jitter.
3. Jitter values are measured with each CML output AC coupled into a 50-ohm impedance (100-ohm differential impedance).
4. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
5. Values are measured at 2.5 Gbps.

Symbol Description Test Conditions Min. Typ. Max. Units

RLRX_DIFF Differential return loss From 100 MHz to 2.5 GHz 10 — — dB

RLRX_CM Common mode return loss From 100 MHz to 2.5 GHz 6 — — dB

ZRX_DIFF Differential termination resistance 80 100 120 Ohms

JRX_DJ
2, 3, 4, 5 Deterministic jitter tolerance (peak-to-peak) — — 0.37 UI

JRX_RJ
2, 3, 4, 5 Random jitter tolerance (peak-to-peak) — — 0.18 UI

JRX_SJ
2, 3, 4, 5 Sinusoidal jitter tolerance (peak-to-peak) — — 0.10 UI

JRX_TJ
1, 2, 3, 4, 5 Total jitter tolerance (peak-to-peak) — — 0.65 UI

TRX_EYE Receiver eye opening 0.35 — — UI

1. Total jitter includes deterministic jitter, random jitter and sinusoidal jitter. The sinusoidal jitter tolerance mask is shown in Figure 3-14.
2. Jitter values are measured with each high-speed input AC coupled into a 50-ohm impedance.
3. Jitter and skew are specified between differential crossings of the 50% threshold of the reference signal.
4. Jitter tolerance, Differential Input Sensitivity and Receiver Eye Opening parameters are characterized when Full Rx Equalization is enabled.
5. Values are measured at 2.5 Gbps.
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LatticeECP3 sysCONFIG Port Timing Specifications 
Over Recommended Operating Conditions

Parameter Description Min. Max. Units

POR, Configuration Initialization, and Wakeup

tICFG

Time from the Application of VCC, VCCAUX or VCCIO8* (Whichever 
is the Last to Cross the POR Trip Point) to the Rising Edge of 
INITN

Master mode — 23 ms

Slave mode — 6 ms

tVMC Time from tICFG to the Valid Master MCLK — 5 µs

tPRGM PROGRAMN Low Time to Start Configuration 25 — ns

tPRGMRJ PROGRAMN Pin Pulse Rejection — 10 ns

tDPPINIT Delay Time from PROGRAMN Low to INITN Low — 37 ns

tDPPDONE Delay Time from PROGRAMN Low to DONE Low — 37 ns

tDINIT PROGRAMN High to INITN High Delay — 1 ms

tMWC Additional Wake Master Clock Signals After DONE Pin is High 100 500 cycles

tCZ MCLK From Active To Low To High-Z — 300 ns

All Configuration Modes

tSUCDI Data Setup Time to CCLK/MCLK 5 — ns

tHCDI Data Hold Time to CCLK/MCLK 1 — ns

tCODO CCLK/MCLK to DOUT in Flowthrough Mode — 12 ns

Slave Serial

tSSCH CCLK Minimum High Pulse 5 — ns

tSSCL CCLK Minimum Low Pulse 5 — ns

fCCLK CCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

Master and Slave Parallel

tSUCS CSN[1:0] Setup Time to CCLK/MCLK 7 — ns

tHCS CSN[1:0] Hold Time to CCLK/MCLK 1 — ns

tSUWD WRITEN Setup Time to CCLK/MCLK 7 — ns

tHWD WRITEN Hold Time to CCLK/MCLK 1 — ns

tDCB CCLK/MCLK to BUSY Delay Time — 12 ns

tCORD CCLK to Out for Read Data — 12 ns

tBSCH CCLK Minimum High Pulse 6 — ns

tBSCL CCLK Minimum Low Pulse 6 — ns

tBSCYC Byte Slave Cycle Time 30 — ns

fCCLK CCLK/MCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

Master and Slave SPI

tCFGX INITN High to MCLK Low — 80 ns

tCSSPI INITN High to CSSPIN Low 0.2 2 µs

tSOCDO MCLK Low to Output Valid — 15 ns

tCSPID CSSPIN[0:1] Low to First MCLK Edge Setup Time 0.3 µs

fCCLK CCLK Frequency
Without encryption — 33 MHz

With encryption — 20 MHz

tSSCH CCLK Minimum High Pulse 5 — ns

tSSCL CCLK Minimum Low Pulse 5 — ns

tHLCH HOLDN Low Setup Time (Relative to CCLK) 5 — ns
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Figure 3-16. sysCONFIG Parallel Port Read Cycle

tCHHH HOLDN Low Hold Time (Relative to CCLK) 5 — ns

Master and Slave SPI (Continued)

tCHHL HOLDN High Hold Time (Relative to CCLK) 5 — ns

tHHCH HOLDN High Setup Time (Relative to CCLK) 5 — ns

tHLQZ HOLDN to Output High-Z — 9 ns

tHHQX HOLDN to Output Low-Z — 9 ns

Parameter Min. Max. Units

Master Clock Frequency Selected value - 15% Selected value + 15% MHz

Duty Cycle 40 60 %

LatticeECP3 sysCONFIG Port Timing Specifications (Continued)
Over Recommended Operating Conditions

Parameter Description Min. Max. Units

CCLK

CS1N

CSN

WRITEN

BUSY

D[0:7]

tSUCS tHCS

tSUWD

tCORD

tDCB

tHWD

tBSCYC

tBSCH

tBSCL

Byte 0 Byte 1 Byte 2 Byte n*

*n = last byte of read cycle.SEE Latt
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Pin Information Summary (Cont.)
Pin Information Summary ECP3-17EA ECP3-35EA

Pin Type 256 ftBGA 484 fpBGA 256 ftBGA 484 fpBGA 672 fpBGA

Emulated Differential I/O per 
Bank

Bank 0 13 18 13 21 24

Bank 1 7 12 7 18 18

Bank 2 2 4 1 8 8

Bank 3 4 13 5 20 19

Bank 6 5 13 6 22 20

Bank 7 6 10 6 11 13

Bank 8 12 12 12 12 12

Highspeed Differential I/O per 
Bank

Bank 0 0 0 0 0 0

Bank 1 0 0 0 0 0

Bank 2 2 3 3 6 6

Bank 3 5 9 4 9 12

Bank 6 5 9 4 11 12

Bank 7 5 8 5 9 10

Bank 8 0 0 0 0 0

Total Single Ended/ Total 
Differential I/O per Bank

Bank 0 26/13 36/18 26/13 42/21 48/24

Bank 1 14/7 24/12 14/7 36/18 36/18

Bank 2 8/4 14/7 8/4 28/14 28/14

Bank 3 18/9 44/22 18/9 58/29 63/31

Bank 6 20/10 44/22 20/10 67/33 65/32

Bank 7 23/11 36/18 23/11 40/20 46/23

Bank 8 24/12 24/12 24/12 24/12 24/12

DDR Groups Bonded per 
Bank

Bank 0 2 3 2 3 4

Bank 1 1 2 1 3 3

Bank 2 0 1 0 2 2

Bank 3 1 3 1 3 4

Bank 6 1 3 1 4 4

Bank 7 1 2 1 3 3

Configuration Bank 8 0 0 0 0 0

SERDES Quads 1 1 1 1 1

1. These pins must remain floating on the board.SEE Latt
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Part Number Voltage Grade Package Pins Temp. LUTs (K) 

LFE3-70E-6FN484I1 1.2V -6 Lead-Free fpBGA 484 IND 67

LFE3-70E-7FN484I1 1.2V -7 Lead-Free fpBGA 484 IND 67

LFE3-70E-8FN484I1 1.2V -8 Lead-Free fpBGA 484 IND 67

LFE3-70E-6FN672I1 1.2V -6 Lead-Free fpBGA 672 IND 67

LFE3-70E-7FN672I1 1.2V -7 Lead-Free fpBGA 672 IND 67

LFE3-70E-8FN672I1 1.2V -8 Lead-Free fpBGA 672 IND 67

LFE3-70E-6FN1156I1 1.2V -6 Lead-Free fpBGA 1156 IND 67

LFE3-70E-7FN1156I1 1.2V -7 Lead-Free fpBGA 1156 IND 67

LFE3-70E-8FN1156I1 1.2V -8 Lead-Free fpBGA 1156 IND 67

1.This device has associated errata. View www.latticesemi.com/documents/ds1021.zip for a description of the errata.

Part Number Voltage Grade Package Pins Temp. LUTs (K) 

LFE3-95EA-6FN484I 1.2V -6 Lead-Free fpBGA 484 IND 92

LFE3-95EA-7FN484I 1.2V -7 Lead-Free fpBGA 484 IND 92

LFE3-95EA-8FN484I 1.2V -8 Lead-Free fpBGA 484 IND 92

LFE3-95EA-6FN672I 1.2V -6 Lead-Free fpBGA 672 IND 92

LFE3-95EA-7FN672I 1.2V -7 Lead-Free fpBGA 672 IND 92

LFE3-95EA-8FN672I 1.2V -8 Lead-Free fpBGA 672 IND 92

LFE3-95EA-6FN1156I 1.2V -6 Lead-Free fpBGA 1156 IND 92

LFE3-95EA-7FN1156I 1.2V -7 Lead-Free fpBGA 1156 IND 92

LFE3-95EA-8FN1156I 1.2V -8 Lead-Free fpBGA 1156 IND 92

Part Number Voltage Grade Package Pins Temp. LUTs (K) 

LFE3-95E-6FN484I1 1.2V -6 Lead-Free fpBGA 484 IND 92

LFE3-95E-7FN484I1 1.2V -7 Lead-Free fpBGA 484 IND 92

LFE3-95E-8FN484I1 1.2V -8 Lead-Free fpBGA 484 IND 92

LFE3-95E-6FN672I1 1.2V -6 Lead-Free fpBGA 672 IND 92

LFE3-95E-7FN672I1 1.2V -7 Lead-Free fpBGA 672 IND 92

LFE3-95E-8FN672I1 1.2V -8 Lead-Free fpBGA 672 IND 92

LFE3-95E-6FN1156I1 1.2V -6 Lead-Free fpBGA 1156 IND 92

LFE3-95E-7FN1156I1 1.2V -7 Lead-Free fpBGA 1156 IND 92

LFE3-95E-8FN1156I1 1.2V -8 Lead-Free fpBGA 1156 IND 92

1.This device has associated errata. View www.latticesemi.com/documents/ds1021.zip for a description of the errata.
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For Further Information
A variety of technical notes for the LatticeECP3 family are available on the Lattice website at www.latticesemi.com.

• TN1169, LatticeECP3 sysCONFIG Usage Guide

• TN1176, LatticeECP3 SERDES/PCS Usage Guide

• TN1177, LatticeECP3 sysIO Usage Guide

• TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide

• TN1179, LatticeECP3 Memory Usage Guide

• TN1180, LatticeECP3 High-Speed I/O Interface

• TN1181, Power Consumption and Management for LatticeECP3 Devices

• TN1182, LatticeECP3 sysDSP Usage Guide

• TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide

• TN1189, LatticeECP3 Hardware Checklist 

For further information on interface standards refer to the following websites:

• JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
• PCI: www.pcisig.com

LatticeECP3 Family Data Sheet
Supplemental Information
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