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Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Architecture Overview
Each LatticeECP3 device contains an array of logic blocks surrounded by Programmable I/O Cells (PIC). Inter-
spersed between the rows of logic blocks are rows of sysMEM™ Embedded Block RAM (EBR) and rows of sys-
DSP™ Digital Signal Processing slices, as shown in Figure 2-1. In addition, the LatticeECP3 family contains 
SERDES Quads on the bottom of the device. 

There are two kinds of logic blocks, the Programmable Functional Unit (PFU) and Programmable Functional Unit 
without RAM (PFF). The PFU contains the building blocks for logic, arithmetic, RAM and ROM functions. The PFF 
block contains building blocks for logic, arithmetic and ROM functions. Both PFU and PFF blocks are optimized for 
flexibility, allowing complex designs to be implemented quickly and efficiently. Logic Blocks are arranged in a two-
dimensional array. Only one type of block is used per row. 

The LatticeECP3 devices contain one or more rows of sysMEM EBR blocks. sysMEM EBRs are large, dedicated 
18Kbit fast memory blocks. Each sysMEM block can be configured in a variety of depths and widths as RAM or 
ROM. In addition, LatticeECP3 devices contain up to two rows of DSP slices. Each DSP slice has multipliers and 
adder/accumulators, which are the building blocks for complex signal processing capabilities.

The LatticeECP3 devices feature up to 16 embedded 3.2Gbps SERDES (Serializer / Deserializer) channels. Each 
SERDES channel contains independent 8b/10b encoding / decoding, polarity adjust and elastic buffer logic. Each 
group of four SERDES channels, along with its Physical Coding Sub-layer (PCS) block, creates a quad. The func-
tionality of the SERDES/PCS quads can be controlled by memory cells set during device configuration or by regis-
ters that are addressable during device operation. The registers in every quad can be programmed via the 
SERDES Client Interface (SCI). These quads (up to four) are located at the bottom of the devices. 

Each PIC block encompasses two PIOs (PIO pairs) with their respective sysI/O buffers. The sysI/O buffers of the 
LatticeECP3 devices are arranged in seven banks, allowing the implementation of a wide variety of I/O standards. 
In addition, a separate I/O bank is provided for the programming interfaces. 50% of the PIO pairs on the left and 
right edges of the device can be configured as LVDS transmit/receive pairs. The PIC logic also includes pre-engi-
neered support to aid in the implementation of high speed source synchronous standards such as XGMII, 7:1 
LVDS, along with memory interfaces including DDR3.

Other blocks provided include PLLs, DLLs and configuration functions. The LatticeECP3 architecture provides two 
Delay Locked Loops (DLLs) and up to ten Phase Locked Loops (PLLs). In addition, each LatticeECP3 family mem-
ber provides two DLLs per device. The PLL and DLL blocks are located at the end of the EBR/DSP rows. 

The configuration block that supports features such as configuration bit-stream decryption, transparent updates 
and dual-boot support is located toward the center of this EBR row. Every device in the LatticeECP3 family sup-
ports a sysCONFIG™ port located in the corner between banks one and two, which allows for serial or parallel 
device configuration.

In addition, every device in the family has a JTAG port. This family also provides an on-chip oscillator and soft error 
detect capability. The LatticeECP3 devices use 1.2V as their core voltage.
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Modes of Operation
Each slice has up to four potential modes of operation: Logic, Ripple, RAM and ROM. 

Logic Mode
In this mode, the LUTs in each slice are configured as 4-input combinatorial lookup tables. A LUT4 can have 16 
possible input combinations. Any four input logic functions can be generated by programming this lookup table. 
Since there are two LUT4s per slice, a LUT5 can be constructed within one slice. Larger look-up tables such as 
LUT6, LUT7 and LUT8 can be constructed by concatenating other slices. Note LUT8 requires more than four 
slices.

Ripple Mode
Ripple mode supports the efficient implementation of small arithmetic functions. In ripple mode, the following func-
tions can be implemented by each slice: 

• Addition 2-bit 

• Subtraction 2-bit 

• Add/Subtract 2-bit using dynamic control 

• Up counter 2-bit 

• Down counter 2-bit

• Up/Down counter with asynchronous clear

• Up/Down counter with preload (sync) 

• Ripple mode multiplier building block

• Multiplier support 

• Comparator functions of A and B inputs
– A greater-than-or-equal-to B
– A not-equal-to B
– A less-than-or-equal-to B

Ripple Mode includes an optional configuration that performs arithmetic using fast carry chain methods. In this con-
figuration (also referred to as CCU2 mode) two additional signals, Carry Generate and Carry Propagate, are gener-
ated on a per slice basis to allow fast arithmetic functions to be constructed by concatenating Slices.

RAM Mode
In this mode, a 16x4-bit distributed single port RAM (SPR) can be constructed using each LUT block in Slice 0 and 
Slice 1 as a 16x1-bit memory. Slice 2 is used to provide memory address and control signals. A 16x2-bit pseudo 
dual port RAM (PDPR) memory is created by using one Slice as the read-write port and the other companion slice 
as the read-only port.

LatticeECP3 devices support distributed memory initialization.

The Lattice design tools support the creation of a variety of different size memories. Where appropriate, the soft-
ware will construct these using distributed memory primitives that represent the capabilities of the PFU. Table 2-3 
shows the number of slices required to implement different distributed RAM primitives. For more information about 
using RAM in LatticeECP3 devices, please see TN1179, LatticeECP3 Memory Usage Guide.

Table 2-3. Number of Slices Required to Implement Distributed RAM 

SPR 16X4 PDPR 16X4

Number of slices 3 3

Note: SPR = Single Port RAM, PDPR = Pseudo Dual Port RAM

SEE Latt
ice

ECP3-E
A 

DATA SHEET FOR  

CURRENT IN
FORMATIO

N

www.latticesemi.com/dynamic/view_document.cfm?document_id=32319


2-8

Architecture
Lattice Semiconductor LatticeECP3 Family Data Sheet

chain in order to better match the reference and feedback signals. This digital code from the ALU is also transmit-
ted via the Digital Control bus (DCNTL) bus to its associated Slave Delay lines (two per DLL). The ALUHOLD input 
allows the user to suspend the ALU output at its current value. The UDDCNTL signal allows the user to latch the 
current value on the DCNTL bus. 

The DLL has two clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from 
the tapped delay line. The CLKOS has optional fine delay shift and divider blocks to allow this output to be further 
modified, if required. The fine delay shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 
degrees relative to its normal position. Both the CLKOS and CLKOP outputs are available with optional duty cycle 
correction. Divide by two and divide by four frequencies are available at CLKOS. The LOCK output signal is 
asserted when the DLL is locked. Figure 2-5 shows the DLL block diagram and Table 2-5 provides a description of 
the DLL inputs and outputs. 

The user can configure the DLL for many common functions such as time reference delay mode and clock injection 
removal mode. Lattice provides primitives in its design tools for these functions.

Figure 2-5. Delay Locked Loop Diagram (DLL)
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Table 2-5. DLL Signals

LatticeECP3 devices have two general DLLs and four Slave Delay lines, two per DLL. The DLLs are in the lowest 
EBR row and located adjacent to the EBR. Each DLL replaces one EBR block. One Slave Delay line is placed adja-
cent to the DLL and the duplicate Slave Delay line (in Figure 2-6) for the DLL is placed in the I/O ring between 
Banks 6 and 7 and Banks 2 and 3. 

The outputs from the DLL and Slave Delay lines are fed to the clock distribution network.

For more information, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide.

Figure 2-6. Top-Level Block Diagram, High-Speed DLL and Slave Delay Line

Signal I/O Description

CLKI I Clock input from external pin or routing 

CLKFB I DLL feed input from DLL output, clock net, routing or external pin 

RSTN I Active low synchronous reset

ALUHOLD I Active high freezes the ALU

UDDCNTL I Synchronous enable signal (hold high for two cycles) from routing

CLKOP O The primary clock output 

CLKOS O The secondary clock output with fine delay shift and/or division by 2 or by 4

LOCK O Active high phase lock indicator

INCI I Incremental indicator from another DLL via CIB.

GRAYI[5:0] I Gray-coded digital control bus from another DLL in time reference mode.

DIFF O Difference indicator when DCNTL is difference than the internal setting and update is needed.

INCO O Incremental indicator to other DLLs via CIB.
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* This signal is not user accessible. It can only be used to feed the slave delay line.

SEE Latt
ice

ECP3-E
A 

DATA SHEET FOR  

CURRENT IN
FORMATIO

N

www.latticesemi.com/dynamic/view_document.cfm?document_id=32318


2-25

Architecture
Lattice Semiconductor LatticeECP3 Family Data Sheet

MAC DSP Element
In this case, the two operands, AA and AB, are multiplied and the result is added with the previous accumulated 
value. This accumulated value is available at the output. The user can enable the input and pipeline registers, but 
the output register is always enabled. The output register is used to store the accumulated value. The ALU is con-
figured as the accumulator in the sysDSP slice in the LatticeECP3 family can be initialized dynamically. A regis-
tered overflow signal is also available. The overflow conditions are provided later in this document. Figure 2-27 
shows the MAC sysDSP element.

Figure 2-27. MAC DSP Element
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MULTADDSUBSUM DSP Element
In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multi-
plier operation of operands BA and BB of Slice 0. Additionally, the operands AA and AB are multiplied and the 
result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 1. The results 
of both addition/subtractions are added by the second ALU following the slice cascade path. The user can enable 
the input, output and pipeline registers. Figure 2-30 and Figure 2-31 show the MULTADDSUBSUM sysDSP ele-
ment.

Figure 2-30. MULTADDSUBSUM Slice 0
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Figure 2-31. MULTADDSUBSUM Slice 1

Advanced sysDSP Slice Features
Cascading
The LatticeECP3 sysDSP slice has been enhanced to allow cascading. Adder trees are implemented fully in sys-
DSP slices, improving the performance. Cascading of slices uses the signals CIN, COUT and C Mux of the slice.

Addition
The LatticeECP3 sysDSP slice allows for the bypassing of multipliers and cascading of adder logic. High perfor-
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Figure 2-36. Edge Clock, DLL Calibration and DQS Local Bus Distribution
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Figure 2-38. LatticeECP3 Banks

LatticeECP3 devices contain two types of sysI/O buffer pairs. 

1. Top (Bank 0 and Bank 1) and Bottom sysI/O Buffer Pairs (Single-Ended Outputs Only)
The sysI/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of 
single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be con-
figured as a differential input. Only the top edge buffers have a programmable PCI clamp.

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

On the top and bottom sides, there is no support for programmable on-chip input termination, which is required 
for DQ and DQS pins for DDR3 interface. This side is ideal for ADDR/CMD signals of DDR3, general purpose 
I/O, PCI, TR-LVDS (transition reduced LVDS) or LVDS inputs. Only the top I/O banks support hot socketing 
with IDK specified under the Hot Socketing Specifications. The configuration bank is not hot-socketable.
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2. Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Out-
puts)
The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two 
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the 
referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair 
are described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O, 
and the comp (complementary) pad is associated with the negative side of the differential I/O. 

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on 
these sides, which is required for DDR3 interface. However, there is no support for hot-socketing on these 
sides as the clamp is always present.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the 
left and right banks. 

3. Configuration Bank sysI/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by 
Configuration)
The sysI/O buffers in the Configuration Bank consist of single-ended output drivers and single-ended input buf-
fers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input. 

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

Programmable PCI clamps are only available on top banks (PCI clamps are used primarily on inputs and bidirec-
tional pads to reduce ringing on the receiving end) can also be used on inputs.

Typical sysI/O I/O Behavior During Power-up 
The internal power-on-reset (POR) signal is deactivated when VCC, VCCIO8 and VCCAUX have reached satisfactory 
levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to 
ensure that all other VCCIO banks are active with valid input logic levels to properly control the output logic states of 
all the I/O banks that are critical to the application. For more information about controlling the output logic state with 
valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end 
of this data sheet. 

The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buf-
fers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended 
that the I/O buffers be powered-up prior to the FPGA core fabric. VCCIO supplies should be powered-up before or 
together with the VCC and VCCAUX supplies. 

Supported sysI/O Standards 
The LatticeECP3 sysI/O buffer supports both single-ended and differential standards. Single-ended standards can 
be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2V, 
1.5V, 1.8V, 2.5V and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration 
options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and 
open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported 
include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition 
Reduced LVDS), differential SSTL and differential HSTL. Tables 2-13 and 2-14 show the I/O standards (together 
with their supply and reference voltages) supported by LatticeECP3 devices. For further information on utilizing the 
sysI/O buffer to support a variety of standards please see TN1177, LatticeECP3 sysIO Usage Guide. 
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Table 2-14. Available SERDES Quads per LatticeECP3 Devices

SERDES Block
A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and 
Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The 
SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit 
stream through the differential drivers. Figure 2-41 shows a single-channel SERDES/PCS block. Each SERDES 
channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output 
and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-41. Simplified Channel Block Diagram for SERDES/PCS Block

PCS
As shown in Figure 2-41, the PCS receives the parallel digital data from the deserializer and selects the polarity, 
performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock 
domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, 
selects the polarity and passes the 8/10 bit data to the transmit SERDES channel. 

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA 
logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to 
the FPGA logic. 

SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

Package ECP3-17 ECP3-35 ECP3-70 ECP3-95 ECP3-150

256 ftBGA 1 1 — — —

484 ftBGA 1 1 1 1

672 ftBGA — 1 2 2 2

1156 ftBGA — — 3 3 4

HDOUTP

HDOUTN

* 1/8 or 1/10 line rate

Deserializer
1:8/1:10

Word Alignment
8b10b Decoder

Serializer
8:1/10:1

8b10b
Encoder

SERDES PCS

Bypass

BypassBypassBypass

Transmitter

Receiver

Recovered Clock*

SERDES Transmit Clock*

Receive Clock

Transmit Clock

SERDES Transmit Clock

Receive Data

Transmit Data

Clock/Data
Recovery Clock

Data

RX_REFCLK

HDINP

HDINN
Equalizer

Bypass

Downsample
FIFO

Upsample
FIFO

Recovered Clock

TX PLLTX REFCLK

Polarity
Adjust

Polarity
Adjust

CTC

FPGA Core
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The ispLEVER design tools from Lattice support all modes of the PCS. Most modes are dedicated to applications 
associated with a specific industry standard data protocol. Other more general purpose modes allow users to 
define their own operation. With ispLEVER, the user can define the mode for each quad in a design. 

Popular standards such as 10Gb Ethernet, x4 PCI Express and 4x Serial RapidIO can be implemented using IP 
(available through Lattice), a single quad (Four SERDES channels and PCS) and some additional logic from the 
core. 

The LatticeECP3 family also supports a wide range of primary and secondary protocols. Within the same quad, the 
LatticeECP3 family can support mixed protocols with semi-independent clocking as long as the required clock fre-
quencies are integer x1, x2, or x11 multiples of each other. Table 2-15 lists the allowable combination of primary 
and secondary protocol combinations. 

Flexible Quad SERDES Architecture
The LatticeECP3 family SERDES architecture is a quad-based architecture. For most SERDES settings and stan-
dards, the whole quad (consisting of four SERDES) is treated as a unit. This helps in silicon area savings, better 
utilization and overall lower cost.

However, for some specific standards, the LatticeECP3 quad architecture provides flexibility; more than one stan-
dard can be supported within the same quad.

Table 2-15 shows the standards can be mixed and matched within the same quad. In general, the SERDES stan-
dards whose nominal data rates are either the same or a defined subset of each other, can be supported within the 
same quad. In Table 2-15, the Primary Protocol column refers to the standard that determines the reference clock 
and PLL settings. The Secondary Protocol column shows the other standard that can be supported within the 
same quad.

Furthermore, Table 2-15 also implies that more than two standards in the same quad can be supported, as long as 
they conform to the data rate and reference clock requirements. For example, a quad may contain PCI Express 1.1, 
SGMII, Serial RapidIO Type I and Serial RapidIO Type II, all in the same quad.

Table 2-15. LatticeECP3 Primary and Secondary Protocol Support

For further information on SERDES, please see TN1176, LatticeECP3 SERDES/PCS Usage Guide.

IEEE 1149.1-Compliant Boundary Scan Testability 
All LatticeECP3 devices have boundary scan cells that are accessed through an IEEE 1149.1 compliant Test 
Access Port (TAP). This allows functional testing of the circuit board on which the device is mounted through a 
serial scan path that can access all critical logic nodes. Internal registers are linked internally, allowing test data to 
be shifted in and loaded directly onto test nodes, or test data to be captured and shifted out for verification. The test 

Primary Protocol Secondary Protocol

PCI Express 1.1 SGMII

PCI Express 1.1 Gigabit Ethernet

PCI Express 1.1 Serial RapidIO Type I

PCI Express 1.1 Serial RapidIO Type II

Serial RapidIO Type I SGMII

Serial RapidIO Type I Gigabit Ethernet

Serial RapidIO Type II SGMII

Serial RapidIO Type II Gigabit Ethernet

Serial RapidIO Type II Serial RapidIO Type I

CPRI-3 CPRI-2 and CPRI-1

3G-SDI HD-SDI and SD-SDI
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LatticeECP3 External Switching Characteristics 1, 2

Over Recommended Commercial Operating Conditions

Parameter Description Device

-8 -7 -6

UnitsMin. Max. Min. Max. Min. Max.

Clocks

Primary Clock6 

fMAX_PRI Frequency for Primary Clock Tree ECP3-150EA — 500 — 420 — 375 MHz

tW_PRI Clock Pulse Width for Primary Clock ECP3-150EA 0.8 — 0.9 — 1.0 — ns

tSKEW_PRI Primary Clock Skew Within a Device ECP3-150EA — 300 — 330 — 360 ps

tSKEW_PRIB Primary Clock Skew Within a Bank ECP3-150EA — 250 — 280 — 300 ps

tW_PRI Frequency for Primary Clock Tree ECP3-70E/95E — 500 — 420 — 375 MHz

fMAX_PRI Frequency for Primary Clock Tree ECP3-70E/95E 0.8 — 0.9 — 1.0 — ns

tSKEW_PRI Primary Clock Skew Within a Device ECP3-70E/95E — 300 — 330 — 360 ps

tSKEW_PRIB Primary Clock Skew Within a Bank ECP3-70E/95E — 250 — 280 — 300 ps

Edge Clock6

fMAX_EDGE Frequency for Edge Clock ECP3-150EA — 500 — 420 — 375 MHz

tW_EDGE Clock Pulse Width for Edge Clock ECP3-150EA 0.9 — 1.0 — 1.2 — ns

tSKEW_EDGE_DQS
Edge Clock Skew Within an Edge of 
the Device ECP3-150EA — 200 — 210 — 220 ps

fMAX_EDGE Frequency for Edge Clock ECP3-70E/95E — 500 — 420 — 375 MHz

tW_EDGE Clock Pulse Width for Edge Clock ECP3-70E/95E 0.9 — 1.0 — 1.2 — ns

tSKEW_EDGE_DQS
Edge Clock Skew Within an Edge of 
the Device ECP3-70E/95E — 200 — 225 — 250 ps

Parameter Description Device

-8 -7 -6

UnitsMin. Max. Min. Max. Min. Max.

Generic SDR

General I/O Pin Parameters Using Dedicated Clock Input Primary Clock Without PLL2

tCO Clock to Output - PIO Output Register ECP3-150EA — 4.0 — 4.4 — 4.8 ns

tSU
Clock to Data Setup - PIO Input Regis-
ter ECP3-150EA 0.0 — 0.0 — 0.0 — ns

tH
Clock to Data Hold - PIO Input Regis-
ter ECP3-150EA 1.6 — 1.8 — 2.1 — ns

tSU_DEL
Clock to Data Setup - PIO Input Regis-
ter with Data Input Delay ECP3-150EA 1.2 — 1.3 — 1.5 — ns

tH_DEL
Clock to Data Hold - PIO Input Regis-
ter with Input Data Delay ECP3-150EA 0.1 — 0.1 — 0.1 — ns

fMAX_IO
Clock Frequency of I/O and PFU Reg-
ister ECP3-150EA — 500 — 420 — 375 MHz

tCO Clock to Output - PIO Output Register ECP3-70E/95E — 3.9 — 4.3 -— 4.7 ns

tSU
Clock to Data Setup - PIO Input Regis-
ter ECP3-70E/95E 0.0 — 0.0 — 0.0 — ns

tH
Clock to Data Hold - PIO Input Regis-
ter ECP3-70E/95E 1.5 — 1.8 — 2.0 — ns

tSU_DEL
Clock to Data Setup - PIO Input Regis-
ter with Data Input Delay ECP3-70E/95E 1.3 — 1.5 — 1.8 — ns

tH_DEL
Clock to Data Hold - PIO Input Regis-
ter with Input Data Delay ECP3-70E/95E 0.0 — 0.0 — 0.0 — ns
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tDVECLKGDDR Data Hold After CLK ECP3-70E/95E 0.765 — 0.765 — 0.765 — UI

fMAX_GDDR DDR/DDRX2 Clock Frequency8 ECP3-70E/95E — 500 — 420 — 375 MHz

Generic DDRX2 Inputs with Clock and Data (<10 Bits Wide) Centered at Pin (GDDRX2_RX.DQS.Centered) using DQS 
Pin for Clock Input

Left and Right Sides 

tSUGDDR Data Setup Before CLK ECP3-150EA — — — ns

tHGDDR Data Hold After CLK ECP3-150EA — — — ns

fMAX_GDDR DDRX2 Clock Frequency ECP3-150EA — — — ns

Generic DDRX2 Inputs with Clock and Data (<10 Bits Side) Aligned at Pin (GDDRX2_RX.DQS.Aligned) Using DQS Pin 
for Clock Input

Left and Right Sides 

tDVACLKGDDR
Data Setup Before CLK (Left and 
Right Side) ECP3-150EA — — —

tDVECLKGDDR
Data Hold After CLK (Left and Right 
Side) ECP3-150EA — — —

fMAX_GDDR
DDRX2 Clock Frequency (Left and 
Right Side) ECP3-150EA — — —

Generic DDRX1 Output with Clock and Data (>10 Bits Wide) Centered at Pin (GDDRX1_TX.SCLK.Centered)

Left, Right and Top Sides 

tDVBGDDR Data Valid Before CLK ECP3-150EA — — —

tDVAGDDR Data Valid After CLK ECP3-150EA — — —

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — — —

Generic DDRX1 Outputs with clock in the center of data window, with PLL 90-degree shifted clock ouput 
(GDDRX1_TX.ECLK.Centered)

tDIBGDDR Data Invalid Before CLK ECP3-70E/95E 670 — 670 — 670 — ps

tDIAGDDR Data Invalid After CLK ECP3-70E/95E 670 — 670 — 670 — ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-70E/95E — 250 — 250 — 250 MHz

Generic DDRX1 Output with Clock and Data (> 10 Bits Wide) Aligned at Pin (GDDRX1_TX.SCLK.Aligned)

Left, Right and Top Sides 

tDIBGDDR Data Hold After CLK ECP3-150EA — — —

tDIAGDDR Data Setup Before CLK ECP3-150EA — — —

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — — —

Generic DDRX1 Outputs with clock and data edge aligned, without PLL

tDIBGDDR Data Invalid Before CLK ECP3-70E/95E — 330 — 330 — 330 ps

tDIAGDDR Data Invalid After CLK ECP3-70E/95E — 330 — 330 — 330 ps

fMAX_GDDR DDRX1 Clock Frequency ECP3-70E/95E — 250 — 250 — 250 MHz

Generic DDRX1 Output with Clock and Data (<10 Bits Wide) Centered at Pin (GDDRX1_TX.DQS.Centered)

Left, Right and Top Sides 

tDVBGDDR Data Valid Before CLK ECP3-150EA — — —

tDVAGDDR Data Valid After CLK ECP3-150EA — — —

fMAX_GDDR DDRX1 Clock Frequency ECP3-150EA — — —

LatticeECP3 External Switching Characteristics (Continued)1, 2

Over Recommended Commercial Operating Conditions

Parameter Description Device

-8 -7 -6

UnitsMin. Max. Min. Max. Min. Max.
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LatticeECP3 Internal Switching Characteristics1, 2 
Over Recommended Commercial Operating Conditions

Parameter Description

-8 -7 -6

Units.Min. Max. Min. Max. Min. Max.

PFU/PFF Logic Mode Timing

tLUT4_PFU LUT4 delay (A to D inputs to F output) — 0.147 — 0.163 — 0.179 ns

tLUT6_PFU LUT6 delay (A to D inputs to OFX output) — 0.273 — 0.307 — 0.342 ns

tLSR_PFU Set/Reset to output of PFU (Asynchronus) — 0.593 — 0.674 — 0.756 ns

tLSRREC_PFU
Asynchronous Set/Reset recovery time for 
PFU Logic — 0.298 — 0.345 — 0.391 ns

tSUM_PFU Clock to Mux (M0,M1) Input Setup Time 0.134 — 0.144 — 0.153 — ns

tHM_PFU Clock to Mux (M0,M1) Input Hold Time -0.097 — -0.103 — -0.109 — ns

tSUD_PFU Clock to D input setup time 0.061 — 0.068 — 0.075 — ns

tHD_PFU Clock to D input hold time 0.019 — 0.013 — 0.015 — ns

tCK2Q_PFU 
Clock to Q delay, (D-type Register 
Configuration) — 0.243 — 0.273 — 0.303 ns

PFU Dual Port Memory Mode Timing

tCORAM_PFU Clock to Output (F Port) — 0.710 — 0.803 — 0.897 ns

tSUDATA_PFU Data Setup Time -0.137 — -0.155 — -0.174 — ns

tHDATA_PFU Data Hold Time 0.188 — 0.217 — 0.246 — ns

tSUADDR_PFU Address Setup Time -0.227 — -0.257 — -0.286 — ns

tHADDR_PFU Address Hold Time 0.240 — 0.275 — 0.310 — ns

tSUWREN_PFU Write/Read Enable Setup Time -0.055 — -0.055 — -0.063 — ns

tHWREN_PFU Write/Read Enable Hold Time 0.059 — 0.059 — 0.071 — ns

PIC Timing

PIO Input/Output Buffer Timing

tIN_PIO Input Buffer Delay (LVCMOS25) — 0.423 — 0.466 — 0.508 ns

tOUT_PIO Output Buffer Delay (LVCMOS25) — 1.115 — 1.155 — 1.196 ns

IOLOGIC Input/Output Timing

tSUI_PIO
Input Register Setup Time (Data Before 
Clock) 0.956 — 1.124 — 1.293 — ns

tHI_PIO Input Register Hold Time (Data after Clock) 0.313 — 0.395 — 0.378 — ns

tCOO_PIO Output Register Clock to Output Delay4 — 1.455 — 1.564 — 1.674 ns

tSUCE_PIO Input Register Clock Enable Setup Time 0.220 — 0.185 — 0.150 — ns

tHCE_PIO Input Register Clock Enable Hold Time -0.085 — -0.072 — -0.058 — ns

tSULSR_PIO Set/Reset Setup Time 0.117 — 0.103 — 0.088 — ns

tHLSR_PIO Set/Reset Hold Time -0.107 — -0.094 — -0.081 — ns

EBR Timing

tCO_EBR Clock (Read) to output from Address or Data — 2.78 — 2.89 — 2.99 ns

tCOO_EBR
Clock (Write) to output from EBR output Reg-
ister — 0.31 — 0.32 — 0.33 ns

tSUDATA_EBR Setup Data to EBR Memory -0.218 — -0.227 — -0.237 — ns

tHDATA_EBR Hold Data to EBR Memory 0.249 — 0.257 — 0.265 — ns

tSUADDR_EBR Setup Address to EBR Memroy -0.071 — -0.070 — -0.068 — ns

tHADDR_EBR Hold Address to EBR Memory 0.118 — 0.098 — 0.077 — ns

tSUWREN_EBR Setup Write/Read Enable to PFU Memory -0.107 — -0.106 — -0.106 — ns
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Figure 3-11. Write Through (SP Read/Write on Port A, Input Registers Only)

Note: Input data and address are registered at the positive edge of the clock and output data appears after the positive edge of the clock.

A0 A1 A0

D0 D1

D4

tSU

tACCESS tACCESS tACCESS

tH

D2 D3 D4

D0 D1 D2Data from Prev Read
or Write

Three consecutive writes to A0

D3DOA

DIA

ADA

WEA

CSA

CLKA

tACCESS
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DLL Timing
Over Recommended Operating Conditions

Parameter Description Condition Min. Typ. Max. Units 

fREF 
Input reference clock frequency (on-chip or 
off-chip)  133 — 500 MHz 

fFB Feedback clock frequency (on-chip or off-chip)  133 — 500 MHz 

fCLKOP
1 Output clock frequency, CLKOP  133 — 500 MHz 

fCLKOS
2 Output clock frequency, CLKOS  33.3 — 500 MHz 

tPJIT Output clock period jitter (clean input)   — 200 ps p-p 

tDUTY 

Output clock duty cycle (at 50% levels, 50% duty 
cycle input clock, 50% duty cycle circuit turned 
off, time reference delay mode) 

Edge Clock 40  60 % 

Primary Clock 30  70 % 

tDUTYTRD 

Output clock duty cycle (at 50% levels, arbitrary 
duty cycle input clock, 50% duty cycle circuit 
enabled, time reference delay mode) 

Primary Clock < 250MHz 45  55 % 

Primary Clock 250MHz 30  70 % 

Edge Clock 45  55 % 

tDUTYCIR 

Output clock duty cycle (at 50% levels, arbitrary 
duty cycle input clock, 50% duty cycle circuit 
enabled, clock injection removal mode) with DLL 
cascading

Primary Clock < 250MHz 40  60 % 

Primary Clock  250MHz 30  70 % 

Edge Clock 45  55 % 

tSKEW
3 Output clock to clock skew between two outputs 

with the same phase setting  — — 100 ps 

tPHASE 
Phase error measured at device pads between 
off-chip reference clock and feedback clocks  — — +/-400 ps 

tPWH 
Input clock minimum pulse width high (at 80% 
level)  550 — — ps 

tPWL Input clock minimum pulse width low (at 20% 
level)  550 — — ps 

tINSTB Input clock period jitter  — — 500 p-p

tLOCK DLL lock time  8 — 8200 cycles 

tRSWD Digital reset minimum pulse width (at 80% level)  3 — — ns 

tDEL Delay step size  27 45 70 ps 

tRANGE1 
Max. delay setting for single delay block 
(64 taps)  1.9 3.1 4.4 ns 

tRANGE4 Max. delay setting for four chained delay blocks  7.6 12.4 17.6 ns 

1. CLKOP runs at the same frequency as the input clock.
2. CLKOS minimum frequency is obtained with divide by 4.
3. This is intended to be a “path-matching” design guideline and is not a measurable specification.
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SERDES/PCS Block Latency
Table 3-8 describes the latency of each functional block in the transmitter and receiver. Latency is given in parallel 
clock cycles. Figure 3-12 shows the location of each block.

Table 3-8. SERDES/PCS Latency Breakdown

Figure 3-12. Transmitter and Receiver Latency Block Diagram

Item Description Min. Avg. Max. Fixed Bypass Units

Transmit Data Latency1

T1

FPGA Bridge - Gearing disabled with different clocks 1 3 5 — 1 word clk

FPGA Bridge - Gearing disabled with same clocks — — — 3 1 word clk

FPGA Bridge - Gearing enabled 1 3 5 — — word clk

T2 8b10b Encoder — — — 2 1 word clk

T3 SERDES Bridge transmit — — — 2 1 word clk

T4
Serializer: 8-bit mode — — — 15 + 1 — UI + ps

Serializer: 10-bit mode — — — 18 + 1 — UI + ps

T5
Pre-emphasis ON — — — 1 + 2 — UI + ps

Pre-emphasis OFF — — — 0 + 3 — UI + ps

Receive Data Latency2

R1
Equalization ON — — — 1 — UI + ps

Equalization OFF — — — 2 — UI + ps

R2
Deserializer: 8-bit mode — — — 10 + 3 — UI + ps

Deserializer: 10-bit mode — — — 12 + 3 — UI + ps

R3 SERDES Bridge receive — — — 2 — word clk

R4 Word alignment 3.1 — 4 — — word clk

R5 8b10b decoder — — — 1 — word clk

R6 Clock Tolerance Compensation 7 15 23 1 1 word clk

R7

FPGA Bridge - Gearing disabled with different clocks 1 3 5 — 1 word clk

FPGA Bridge - Gearing disabled with same clocks — — — 3 1 word clk

FPGA Bridge - Gearing enabled 1 3 5 — — word clk

1. 1 = -245ps, 2 = +88ps, 3 = +112ps. 
2. 1 = +118ps, 2 = +132ps, 3 = +700ps. 

HDOUTPi

HDOUTNi

Deserializer
1:8/1:10

Polarity
Adjust

Elastic
Buffer
FIFO

Encoder

SERDES PCS

BYPASS

Transmitter

Receiver

Recovered Clock

FPGA
Receive Clock

FPGA

Receive Data

Transmit Data

CDR

REFCLK

HDINPi

HDINNi
EQ

Polarity
Adjust

Up
Sample

FIFO

SERDES Bridge FPGA Bridge

Serializer
8:1/10:1

WA DEC

FPGA
EBRD Clock

Transmit Clock
TX PLL

REFCLK

FPGA Core

Down
Sample

FIFO
BYPASS

BYPASS

BYPASS

BYPASS
BYPASS

BYPASS

R1 R2
R3 R4 R5

R6

T1T2

T3
T4

Transmit Clock
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Pin Information Summary (Cont.)
Pin Information Summary ECP3-95E/EA ECP3-150EA

Pin Type
484 

fpBGA
672 

fpBGA
1156 

fpBGA
672 

fpBGA
1156

fpBGA

General Purpose 
Inputs/Outputs per bank

Bank 0 42 60 86 60 94

Bank 1 36 48 78 48 86

Bank 2 24 34 36 34 58

Bank 3 54 59 86 59 104

Bank 6 63 67 86 67 104

Bank 7 36 48 54 48 76

Bank 8 24 24 24 24 24

General Purpose Inputs per 
Bank

Bank 0 0 0 0 0 0

Bank 1 0 0 0 0 0

Bank 2 4 8 8 8 8

Bank 3 4 12 12 12 12

Bank 6 4 12 12 12 12

Bank 7 4 8 8 8 8

Bank 8 0 0 0 0 0

General Purpose Outputs per 
Bank

Bank 0 0 0 0 0 0

Bank 1 0 0 0 0 0

Bank 2 0 0 0 0 0

Bank 3 0 0 0 0 0

Bank 6 0 0 0 0 0

Bank 7 0 0 0 0 0

Bank 8 0 0 0 0 0

Total Single-Ended User I/O 295 380 490 380 586

VCC 16 32 32 32 32

VCCAUX 8 12 16 12 16

VTT 4 4 8 4 8

VCCA 4 8 16 8 16

VCCPLL 4 4 4 4 4

VCCIO

Bank 0 2 4 4 4 4

Bank 1 2 4 4 4 4

Bank 2 2 4 4 4 4

Bank 3 2 4 4 4 4

Bank 6 2 4 4 4 4

Bank 7 2 4 4 4 4

Bank 8 2 2 2 2 2

VCCJ 1 1 1 1 1

TAP 4 4 4 4 4

GND, GNDIO 98 139 233 139 233

NC 0 0 238 0 116

Reserved1 2 2 2 2 2

SERDES 26 52 78 52 104

Miscellaneous Pins 8 8 8 8 8

Total Bonded Pins 484 672 1156 672 1156
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For Further Information
A variety of technical notes for the LatticeECP3 family are available on the Lattice website at www.latticesemi.com.

• TN1169, LatticeECP3 sysCONFIG Usage Guide

• TN1176, LatticeECP3 SERDES/PCS Usage Guide

• TN1177, LatticeECP3 sysIO Usage Guide

• TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide

• TN1179, LatticeECP3 Memory Usage Guide

• TN1180, LatticeECP3 High-Speed I/O Interface

• TN1181, Power Consumption and Management for LatticeECP3 Devices

• TN1182, LatticeECP3 sysDSP Usage Guide

• TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide

• TN1189, LatticeECP3 Hardware Checklist 

For further information on interface standards refer to the following websites:

• JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
• PCI: www.pcisig.com

LatticeECP3 Family Data Sheet
Supplemental Information
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