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Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.
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Figure 2-1. Simplified Block Diagram, LatticeECP3-35 Device (Top Level)

PFU Blocks 
The core of the LatticeECP3 device consists of PFU blocks, which are provided in two forms, the PFU and PFF. 
The PFUs can be programmed to perform Logic, Arithmetic, Distributed RAM and Distributed ROM functions. PFF 
blocks can be programmed to perform Logic, Arithmetic and ROM functions. Except where necessary, the remain-
der of this data sheet will use the term PFU to refer to both PFU and PFF blocks. 

Each PFU block consists of four interconnected slices numbered 0-3 as shown in Figure 2-2. Each slice contains 
two LUTs. All the interconnections to and from PFU blocks are from routing. There are 50 inputs and 23 outputs 
associated with each PFU block. 
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ROM Mode
ROM mode uses the LUT logic; hence, Slices 0 through 3 can be used in ROM mode. Preloading is accomplished 
through the programming interface during PFU configuration. 

For more information, please refer to TN1179, LatticeECP3 Memory Usage Guide.

Routing 
There are many resources provided in the LatticeECP3 devices to route signals individually or as busses with 
related control signals. The routing resources consist of switching circuitry, buffers and metal interconnect (routing) 
segments. 

The LatticeECP3 family has an enhanced routing architecture that produces a compact design. The ispLEVER 
design tool suite takes the output of the synthesis tool and places and routes the design. 

sysCLOCK PLLs and DLLs
The sysCLOCK PLLs provide the ability to synthesize clock frequencies. All the devices in the LatticeECP3 family 
support four to ten full-featured General Purpose PLLs.

General Purpose PLL
The architecture of the PLL is shown in Figure 2-4. A description of the PLL functionality follows. 

CLKI is the reference frequency (generated either from the pin or from routing) for the PLL. CLKI feeds into the 
Input Clock Divider block. The CLKFB is the feedback signal (generated from CLKOP, CLKOS or from a user clock 
pin/logic). This signal feeds into the Feedback Divider. The Feedback Divider is used to multiply the reference fre-
quency.

Both the input path and feedback signals enter the Voltage Controlled Oscillator (VCO) block. In this block the dif-
ference between the input path and feedback signals is used to control the frequency and phase of the oscillator. A 
LOCK signal is generated by the VCO to indicate that the VCO has locked onto the input clock signal. In dynamic 
mode, the PLL may lose lock after a dynamic delay adjustment and not relock until the tLOCK parameter has been 
satisfied.

The output of the VCO then enters the CLKOP divider. The CLKOP divider allows the VCO to operate at higher fre-
quencies than the clock output (CLKOP), thereby increasing the frequency range. The Phase/Duty Select block 
adjusts the phase and duty cycle of the CLKOS signal. The phase/duty cycle setting can be pre-programmed or 
dynamically adjusted. A secondary divider takes the CLKOP or CLKOS signal and uses it to derive lower frequency 
outputs (CLKOK).

The primary output from the CLKOP divider (CLKOP) along with the outputs from the secondary dividers (CLKOK 
and CLKOK2) and Phase/Duty select (CLKOS) are fed to the clock distribution network.

The PLL allows two methods for adjusting the phase of signal. The first is referred to as Fine Delay Adjustment. 
This inserts up to 16 nominal 125ps delays to be applied to the secondary PLL output. The number of steps may 
be set statically or from the FPGA logic. The second method is referred to as Coarse Phase Adjustment. This 
allows the phase of the rising and falling edge of the secondary PLL output to be adjusted in 22.5 degree steps. 
The number of steps may be set statically or from the FPGA logic.
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Figure 2-4. General Purpose PLL Diagram

Table 2-4 provides a description of the signals in the PLL blocks. 

Table 2-4. PLL Blocks Signal Descriptions

Delay Locked Loops (DLL)
In addition to PLLs, the LatticeECP3 family of devices has two DLLs per device. 

CLKI is the input frequency (generated either from the pin or routing) for the DLL. CLKI feeds into the output muxes 
block to bypass the DLL, directly to the DELAY CHAIN block and (directly or through divider circuit) to the reference 
input of the Phase Detector (PD) input mux. The reference signal for the PD can also be generated from the Delay 
Chain signals. The feedback input to the PD is generated from the CLKFB pin or from a tapped signal from the 
Delay chain. 

The PD produces a binary number proportional to the phase and frequency difference between the reference and 
feedback signals. Based on these inputs, the ALU determines the correct digital control codes to send to the delay 

Signal I/O Description 

CLKI I Clock input from external pin or routing 

CLKFB I PLL feedback input from CLKOP, CLKOS, or from a user clock (pin or logic) 

RST I “1” to reset PLL counters, VCO, charge pumps and M-dividers

RSTK I “1” to reset K-divider

WRDEL I DPA Fine Delay Adjust input

CLKOS O PLL output to clock tree (phase shifted/duty cycle changed) 

CLKOP O PLL output to clock tree (no phase shift) 

CLKOK O PLL output to clock tree through secondary clock divider 

CLKOK2 O PLL output to clock tree (CLKOP divided by 3)

LOCK O “1” indicates PLL LOCK to CLKI 

FDA [3:0] I Dynamic fine delay adjustment on CLKOS output

DRPAI[3:0] I Dynamic coarse phase shift, rising edge setting

DFPAI[3:0] I Dynamic coarse phase shift, falling edge setting 
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PLL/DLL Cascading 
LatticeECP3 devices have been designed to allow certain combinations of PLL and DLL cascading. The allowable 
combinations are: 

• PLL to PLL supported 

• PLL to DLL supported 

The DLLs in the LatticeECP3 are used to shift the clock in relation to the data for source synchronous inputs. PLLs 
are used for frequency synthesis and clock generation for source synchronous interfaces. Cascading PLL and DLL 
blocks allows applications to utilize the unique benefits of both DLLs and PLLs. 

For further information about the DLL, please see the list of technical documentation at the end of this data sheet. 

PLL/DLL PIO Input Pin Connections 
All LatticeECP3 devices contains two DLLs and up to ten PLLs, arranged in quadrants. If a PLL and a DLL are next 
to each other, they share input pins as shown in the Figure 2-7.

Figure 2-7. Sharing of PIO Pins by PLLs and DLLs in LatticeECP3 Devices

Clock Dividers
LatticeECP3 devices have two clock dividers, one on the left side and one on the right side of the device. These are 
intended to generate a slower-speed system clock from a high-speed edge clock. The block operates in a ÷2, ÷4 or 
÷8 mode and maintains a known phase relationship between the divided down clock and the high-speed clock 
based on the release of its reset signal. The clock dividers can be fed from selected PLL/DLL outputs, the Slave 
Delay lines, routing or from an external clock input. The clock divider outputs serve as primary clock sources and 
feed into the clock distribution network. The Reset (RST) control signal resets input and asynchronously forces all 
outputs to low. The RELEASE signal releases outputs synchronously to the input clock. For further information on 
clock dividers, please see TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide. Figure 2-8 shows 
the clock divider connections.

PLL

DLLDLL_PIO

PLL_PIO

Note: Not every PLL has an associated DLL.
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Secondary Clock/Control Sources 
LatticeECP3 devices derive eight secondary clock sources (SC0 through SC7) from six dedicated clock input pads 
and the rest from routing. Figure 2-14 shows the secondary clock sources. All eight secondary clock sources are 
defined as inputs to a per-region mux SC0-SC7. SC0-SC3 are primary for control signals (CE and/or LSR), and 
SC4-SC7 are for clock and high fanout data.

In an actual implementation, there is some overlap to maximize routability. In addition to SC0-SC3, SC7 is also an 
input to the control signals (LSR or CE). SC0-SC2 are also inputs to clocks along with SC4-SC7. High fanout logic 
signals (LUT inputs) will utilize the X2 and X0 switches where SC0-SC7 are inputs to X2 switches, and SC4-SC7 
are inputs to X0 switches. Note that through X0 switches, SC4-SC7 can also access control signals CE/LSR.

Figure 2-14. Secondary Clock Sources

Secondary Clock/Control Routing
Global secondary clock is a secondary clock that is distributed to all regions. The purpose of the secondary clock 
routing is to distribute the secondary clock sources to the secondary clock regions. Secondary clocks in the 
LatticeECP3 devices are region-based resources. Certain EBR rows and special vertical routing channels bind the 
secondary clock regions. This special vertical routing channel aligns with either the left edge of the center DSP 
slice in the DSP row or the center of the DSP row. Figure 2-15 shows this special vertical routing channel and the 
20 secondary clock regions for the LatticeECP3 family of devices. All devices in the LatticeECP3 family have eight 
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Figure 2-16. Per Region Secondary Clock Selection

Slice Clock Selection
Figure 2-17 shows the clock selections and Figure 2-18 shows the control selections for Slice0 through Slice2. All 
the primary clocks and seven secondary clocks are routed to this clock selection mux. Other signals can be used 
as a clock input to the slices via routing. Slice controls are generated from the secondary clocks/controls or other 
signals connected via routing.

If none of the signals are selected for both clock and control then the default value of the mux output is 1. Slice 3 
does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-17. Slice0 through Slice2 Clock Selection

Figure 2-18. Slice0 through Slice2 Control Selection
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Figure 2-20. Sources of Edge Clock (Left and Right Edges)

Figure 2-21. Sources of Edge Clock (Top Edge)

The edge clocks have low injection delay and low skew. They are used to clock the I/O registers and thus are ideal 
for creating I/O interfaces with a single clock signal and a wide data bus. They are also used for DDR Memory or 
Generic DDR interfaces.
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MULTADDSUBSUM DSP Element
In this case, the operands AA and AB are multiplied and the result is added/subtracted with the result of the multi-
plier operation of operands BA and BB of Slice 0. Additionally, the operands AA and AB are multiplied and the 
result is added/subtracted with the result of the multiplier operation of operands BA and BB of Slice 1. The results 
of both addition/subtractions are added by the second ALU following the slice cascade path. The user can enable 
the input, output and pipeline registers. Figure 2-30 and Figure 2-31 show the MULTADDSUBSUM sysDSP ele-
ment.

Figure 2-30. MULTADDSUBSUM Slice 0
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Figure 2-33. ECP3-70/95 (E or EA) Input Register Block for Left, Right and Top Edges

Output Register Block 
The output register block registers signals from the core of the device before they are passed to the sysI/O buffers. 
The blocks on the left and right PIOs contain registers for SDR and full DDR operation. The topside PIO block is the 
same as the left and right sides except it does not support ODDRX2 gearing of output logic. ODDRX2 gearing is 
used in DDR3 memory interfaces.The PIO blocks on the bottom contain the SDR registers and generic DDR inter-
face without gearing. 

Figure 2-34 shows the Output Register Block for PIOs on the left and right edges. 

In SDR mode, OPOSA feeds one of the flip-flops that then feeds the output. The flip-flop can be configured as a 
Dtype or latch. In DDR mode, two of the inputs are fed into registers on the positive edge of the clock. At the next 
clock cycle, one of the registered outputs is also latched.

A multiplexer running off the same clock is used to switch the mux between the 11 and 01 inputs that will then feed 
the output.

A gearbox function can be implemented in the output register block that takes four data streams: OPOSA, ONEGA, 
OPOSB and ONEGB. All four data inputs are registered on the positive edge of the system clock and two of them 
are also latched. The data is then output at a high rate using a multiplexer that runs off the DQCLK0 and DQCLK1 
clocks. DQCLK0 and DQCLK1 are used in this case to transfer data from the system clock to the edge clock 
domain. These signals are generated in the DQS Write Control Logic block. See Figure 2-37 for an overview of the 
DQS write control logic.

Please see TN1180, LatticeECP3 High-Speed I/O Interface for more information on this topic.

Further discussion on using the DQS strobe in this module is discussed in the DDR Memory section of this data 
sheet.
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Figure 2-36. Edge Clock, DLL Calibration and DQS Local Bus Distribution
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2. Left and Right (Banks 2, 3, 6 and 7) sysI/O Buffer Pairs (50% Differential and 100% Single-Ended Out-
puts)
The sysI/O buffer pairs in the left and right banks of the device consist of two single-ended output drivers, two 
sets of single-ended input buffers (both ratioed and referenced) and one differential output driver. One of the 
referenced input buffers can also be configured as a differential input. In these banks the two pads in the pair 
are described as “true” and “comp”, where the true pad is associated with the positive side of the differential I/O, 
and the comp (complementary) pad is associated with the negative side of the differential I/O. 

In addition, programmable on-chip input termination (parallel or differential, static or dynamic) is supported on 
these sides, which is required for DDR3 interface. However, there is no support for hot-socketing on these 
sides as the clamp is always present.

LVDS, RSDS, PPLVDS and Mini-LVDS differential output drivers are available on 50% of the buffer pairs on the 
left and right banks. 

3. Configuration Bank sysI/O Buffer Pairs (Single-Ended Outputs, Only on Shared Pins When Not Used by 
Configuration)
The sysI/O buffers in the Configuration Bank consist of single-ended output drivers and single-ended input buf-
fers (both ratioed and referenced). The referenced input buffer can also be configured as a differential input. 

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

Programmable PCI clamps are only available on top banks (PCI clamps are used primarily on inputs and bidirec-
tional pads to reduce ringing on the receiving end) can also be used on inputs.

Typical sysI/O I/O Behavior During Power-up 
The internal power-on-reset (POR) signal is deactivated when VCC, VCCIO8 and VCCAUX have reached satisfactory 
levels. After the POR signal is deactivated, the FPGA core logic becomes active. It is the user’s responsibility to 
ensure that all other VCCIO banks are active with valid input logic levels to properly control the output logic states of 
all the I/O banks that are critical to the application. For more information about controlling the output logic state with 
valid input logic levels during power-up in LatticeECP3 devices, see the list of technical documentation at the end 
of this data sheet. 

The VCC and VCCAUX supply the power to the FPGA core fabric, whereas the VCCIO supplies power to the I/O buf-
fers. In order to simplify system design while providing consistent and predictable I/O behavior, it is recommended 
that the I/O buffers be powered-up prior to the FPGA core fabric. VCCIO supplies should be powered-up before or 
together with the VCC and VCCAUX supplies. 

Supported sysI/O Standards 
The LatticeECP3 sysI/O buffer supports both single-ended and differential standards. Single-ended standards can 
be further subdivided into LVCMOS, LVTTL and other standards. The buffers support the LVTTL, LVCMOS 1.2V, 
1.5V, 1.8V, 2.5V and 3.3V standards. In the LVCMOS and LVTTL modes, the buffer has individual configuration 
options for drive strength, slew rates, bus maintenance (weak pull-up, weak pull-down, or a bus-keeper latch) and 
open drain. Other single-ended standards supported include SSTL and HSTL. Differential standards supported 
include LVDS, BLVDS, LVPECL, MLVDS, RSDS, Mini-LVDS, PPLVDS (point-to-point LVDS), TRLVDS (Transition 
Reduced LVDS), differential SSTL and differential HSTL. Tables 2-13 and 2-14 show the I/O standards (together 
with their supply and reference voltages) supported by LatticeECP3 devices. For further information on utilizing the 
sysI/O buffer to support a variety of standards please see TN1177, LatticeECP3 sysIO Usage Guide. 
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Table 2-14. Available SERDES Quads per LatticeECP3 Devices

SERDES Block
A SERDES receiver channel may receive the serial differential data stream, equalize the signal, perform Clock and 
Data Recovery (CDR) and de-serialize the data stream before passing the 8- or 10-bit data to the PCS logic. The 
SERDES transmitter channel may receive the parallel 8- or 10-bit data, serialize the data and transmit the serial bit 
stream through the differential drivers. Figure 2-41 shows a single-channel SERDES/PCS block. Each SERDES 
channel provides a recovered clock and a SERDES transmit clock to the PCS block and to the FPGA core logic.

Each transmit channel, receiver channel, and SERDES PLL shares the same power supply (VCCA). The output 
and input buffers of each channel have their own independent power supplies (VCCOB and VCCIB).

Figure 2-41. Simplified Channel Block Diagram for SERDES/PCS Block

PCS
As shown in Figure 2-41, the PCS receives the parallel digital data from the deserializer and selects the polarity, 
performs word alignment, decodes (8b/10b), provides Clock Tolerance Compensation and transfers the clock 
domain from the recovered clock to the FPGA clock via the Down Sample FIFO.

For the transmit channel, the PCS block receives the parallel data from the FPGA core, encodes it with 8b/10b, 
selects the polarity and passes the 8/10 bit data to the transmit SERDES channel. 

The PCS also provides bypass modes that allow a direct 8-bit or 10-bit interface from the SERDES to the FPGA 
logic. The PCS interface to the FPGA can also be programmed to run at 1/2 speed for a 16-bit or 20-bit interface to 
the FPGA logic. 

SCI (SERDES Client Interface) Bus
The SERDES Client Interface (SCI) is an IP interface that allows the SERDES/PCS Quad block to be controlled by 
registers rather than the configuration memory cells. It is a simple register configuration interface that allows 
SERDES/PCS configuration without power cycling the device.

Package ECP3-17 ECP3-35 ECP3-70 ECP3-95 ECP3-150

256 ftBGA 1 1 — — —

484 ftBGA 1 1 1 1

672 ftBGA — 1 2 2 2

1156 ftBGA — — 3 3 4

HDOUTP

HDOUTN

* 1/8 or 1/10 line rate

Deserializer
1:8/1:10

Word Alignment
8b10b Decoder

Serializer
8:1/10:1

8b10b
Encoder

SERDES PCS

Bypass

BypassBypassBypass

Transmitter

Receiver

Recovered Clock*

SERDES Transmit Clock*

Receive Clock

Transmit Clock

SERDES Transmit Clock

Receive Data

Transmit Data

Clock/Data
Recovery Clock

Data

RX_REFCLK

HDINP

HDINN
Equalizer

Bypass

Downsample
FIFO

Upsample
FIFO

Recovered Clock

TX PLLTX REFCLK

Polarity
Adjust

Polarity
Adjust

CTC

FPGA Core
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SERDES Power Supply Requirements1, 2, 3

Over Recommended Operating Conditions

Symbol Description Typ. Max. Units

Standby (Power Down)

ICCA-SB VCCA current (per channel) 3 5 mA

ICCIB-SB Input buffer current (per channel) — — mA

ICCOB-SB Output buffer current (per channel) — — mA

Operating (Data Rate = 3.2 Gbps)

ICCA-OP VCCA current (per channel) 68 77 mA

ICCIB-OP Input buffer current (per channel) 5 7 mA

ICCOB-OP Output buffer current (per channel) 19 25 mA

Operating (Data Rate = 2.5 Gbps)

ICCA-OP VCCA current (per channel) 66 76 mA

ICCIB-OP Input buffer current (per channel) 4 5 mA

ICCOB-OP Output buffer current (per channel) 15 18 mA

Operating (Data Rate = 1.25 Gbps)

ICCA-OP VCCA current (per channel) 62 72 mA

ICCIB-OP Input buffer current (per channel) 4 5 mA

ICCOB-OP Output buffer current (per channel) 15 18 mA

Operating (Data Rate = 250 Mbps)

ICCA-OP VCCA current (per channel) 55 65 mA

ICCIB-OP Input buffer current (per channel) 4 5 mA

ICCOB-OP Output buffer current (per channel) 14 17 mA

1. Equalization enabled, pre-emphasis disabled.
2. One quarter of the total quad power (includes contribution from common circuits, all channels in the quad operating, 

pre-emphasis disabled, equalization enabled).
3. Pre-emphasis adds 20mA to ICCA-OP data.
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, 2Derating Timing Tables
Logic timing provided in the following sections of this data sheet and the ispLEVER design tools are worst case 
numbers in the operating range. Actual delays at nominal temperature and voltage for best case process, can be 
much better than the values given in the tables. The ispLEVER design tool can provide logic timing numbers at a 
particular temperature and voltage.

18x18 Multiply/Accumulate (Input & Output Registers) 200 MHz

18x18 Multiply-Add/Sub (All Registers) 400 MHz

DSP IP Functions

16-Tap Fully-Parallel FIR Filter MHz

1024-pt, Radix 4, Decimation in Frequency FFT MHz

8X8 Matrix Multiplication MHz

1. These timing numbers were generated using ispLEVER tool. Exact performance may vary with device and tool version. The tool uses inter-
nal parameters that have been characterized but are not tested on every device.

2. Commercial timing numbers are shown. Industrial numbers are typically slower and can be extracted from the ispLEVER software.

Register-to-Register Performance1, 2

 Function -8 Timing Units
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PCI Express Electrical and Timing Characteristics 
AC and DC Characteristics

Over Recommended Operating Conditions

Symbol Description Test Conditions Min Typ Max Units

Transmit1

UI Unit interval 399.88 400 400.12 ps

VTX-DIFF_P-P Differential peak-to-peak output voltage 0.8 1.0 1.2 V

VTX-DE-RATIO
De-emphasis differential output voltage 
ratio -3 -3.5 -4 dB

VTX-CM-AC_P
RMS AC peak common-mode output 
voltage — — 20 mV

VTX-RCV-DETECT
Amount of voltage change allowed dur-
ing receiver detection — — 600 mV

VTX-DC-CM Tx DC common mode voltage 0 — VCCOB + 5% V

ITX-SHORT Output short circuit current VTX-D+=0.0V
VTX-D-=0.0V — — 90 mA

ZTX-DIFF-DC Differential output impedance 80 100 120 Ohms

RLTX-DIFF Differential return loss 10 — — dB

RLTX-CM Common mode return loss 6.0 — — dB

TTX-RISE Tx output rise time 20 to 80% 0.125 — — UI

TTX-FALL Tx output fall time 20 to 80% 0.125 — — UI

LTX-SKEW
Lane-to-lane static output skew for all 
lanes in port/link — — 1.3 ns

TTX-EYE Transmitter eye width 0.75 — — UI

TTX-EYE-MEDIAN-TO-MAX-JITTER
Maximum time between jitter median 
and maximum deviation from median — — 0.125 UI

Receive1, 2

UI Unit Interval 399.88 400 400.12 ps

VRX-DIFF_P-P Differential peak-to-peak input voltage 0.343 — 1.2 V

VRX-IDLE-DET-DIFF_P-P Idle detect threshold voltage 65 — 3403 mV

VRX-CM-AC_P
Receiver common mode voltage for AC 
coupling — — 150 mV

ZRX-DIFF-DC DC differential input impedance 80 100 120 Ohms

ZRX-DC DC input impedance 40 50 60 Ohms

ZRX-HIGH-IMP-DC Power-down DC input impedance 200K — — Ohms

RLRX-DIFF Differential return loss 10 — — dB

RLRX-CM Common mode return loss 6.0 — — dB

TRX-IDLE-DET-DIFF-ENTERTIME

Maximum time required for receiver to 
recognize and signal an unexpected idle 
on link

— — — ms

1. Values are measured at 2.5 Gbps.
2. Measured with external AC-coupling on the receiver.
3.Not in compliance with PCI Express 1.1 standard.
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Switching Test Conditions
Figure 3-26 shows the output test load that is used for AC testing. The specific values for resistance, capacitance, 
voltage, and other test conditions are shown in Table 3-23. 

Figure 3-26. Output Test Load, LVTTL and LVCMOS Standards

Table 3-23. Test Fixture Required Components, Non-Terminated Interfaces

Test Condition R1 R2 CL Timing Ref. VT

LVTTL and other LVCMOS settings (L -> H, H -> L)   0pF

LVCMOS 3.3 = 1.5V —

LVCMOS 2.5 = VCCIO/2 —

LVCMOS 1.8 = VCCIO/2 —

LVCMOS 1.5 = VCCIO/2 —

LVCMOS 1.2 = VCCIO/2 —

LVCMOS 2.5 I/O (Z -> H)  1M 0pF VCCIO/2 —

LVCMOS 2.5 I/O (Z -> L) 1M  0pF VCCIO/2 VCCIO

LVCMOS 2.5 I/O (H -> Z)  100 0pF VOH - 0.10 —

LVCMOS 2.5 I/O (L -> Z) 100  0pF VOL + 0.10 VCCIO

Note: Output test conditions for all other interfaces are determined by the respective standards.

DUT 

VT

R1

R2

 

CL* 

Test Point

*CL Includes Test Fixture and Probe Capacitance
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Point-to-Point LVDS (PPLVDS)
Over Recommended Operating Conditions

RSDS
Over Recommended Operating Conditions

 Description Min. Typ. Max. Units

Output driver supply (+/- 5%)
3.14 3.3 3.47 V

2.25 2.5 2.75 V

Input differential voltage 100 400 mV

Input common mode voltage 0.2 2.3 V

Output differential voltage 130 400 mV

Output common mode voltage 0.5 0.8 1.4 V

Parameter Symbol Description Min. Typ. Max. Units

VOD Output voltage, differential, RT = 100 ohms 100 200 600 mV

VOS Output voltage, common mode 0.5 1.2 1.5 V

IRSDS Differential driver output current 1 2 6 mA

VTHD Input voltage differential 100 — — mV

VCM Input common mode voltage 0.3 — 1.5 V

TR, TF Output rise and fall times, 20% to 80% — 500 — ps

TODUTY Output clock duty cycle 35 50 65 %

Note: Data is for 2mA drive. Other differential driver current options are available.
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Pin Information Summary (Cont.)
Pin Information Summary ECP3-17EA ECP3-35EA

Pin Type 256 ftBGA 484 fpBGA 256 ftBGA 484 fpBGA 672 fpBGA

Emulated Differential I/O per 
Bank

Bank 0 13 18 13 21 24

Bank 1 7 12 7 18 18

Bank 2 2 4 1 8 8

Bank 3 4 13 5 20 19

Bank 6 5 13 6 22 20

Bank 7 6 10 6 11 13

Bank 8 12 12 12 12 12

Highspeed Differential I/O per 
Bank

Bank 0 0 0 0 0 0

Bank 1 0 0 0 0 0

Bank 2 2 3 3 6 6

Bank 3 5 9 4 9 12

Bank 6 5 9 4 11 12

Bank 7 5 8 5 9 10

Bank 8 0 0 0 0 0

Total Single Ended/ Total 
Differential I/O per Bank

Bank 0 26/13 36/18 26/13 42/21 48/24

Bank 1 14/7 24/12 14/7 36/18 36/18

Bank 2 8/4 14/7 8/4 28/14 28/14

Bank 3 18/9 44/22 18/9 58/29 63/31

Bank 6 20/10 44/22 20/10 67/33 65/32

Bank 7 23/11 36/18 23/11 40/20 46/23

Bank 8 24/12 24/12 24/12 24/12 24/12

DDR Groups Bonded per 
Bank

Bank 0 2 3 2 3 4

Bank 1 1 2 1 3 3

Bank 2 0 1 0 2 2

Bank 3 1 3 1 3 4

Bank 6 1 3 1 4 4

Bank 7 1 2 1 3 3

Configuration Bank 8 0 0 0 0 0

SERDES Quads 1 1 1 1 1

1. These pins must remain floating on the board.SEE Latt
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Pin Information Summary (Cont.)
Pin Information Summary ECP3-70E ECP3-70EA

Pin Type 484 fpBGA 672 fpBGA
1156 

fpBGA 484 fpBGA 672 fpBGA
1156 

fpBGA

Emulated Differential 
I/O per Bank

Bank 0 21 30 43 21 30 43

Bank 1 18 24 39 18 24 39

Bank 2 10 15 16 8 12 13

Bank 3 23 27 39 20 23 33

Bank 6 26 30 39 22 25 33

Bank 7 14 20 22 11 16 18

Bank 8 12 12 12 12 12 12

High-Speed Differential 
I/O per Bank

Bank 0 0 0 0 0 0 0

Bank 1 0 0 0 0 0 0

Bank 2 4 6 6 6 9 9

Bank 3 6 8 10 9 12 16

Bank 6 7 9 10 11 14 16

Bank 7 6 8 9 9 12 13

Bank 8 0 0 0 0 0 0

Total Single-Ended/
Total Differential I/O
per Bank

Bank 0 42/21 60/30 86/43 42/21 60/30 86/43

Bank 1 36/18 48/24 78/39 36/18 48/24 78/39

Bank 2 28/14 42/21 44/22 28/14 42/21 44/22

Bank 3 58/29 71/35 98/49 58/29 71/35 98/49

Bank 6 67/33 79/38 98/49 67/33 78/39 98/49

Bank 7 40/20 56/28 62/31 40/20 56/28 62/31

Bank 8 24/12 24/12 24/12 24/12 24/12 24/12

DDR Groups Bonded
per Bank

Bank 0 3 5 7 3 5 7

Bank 1 3 4 7 3 4 7

Bank 2 2 3 3 2 3 3

Bank 3 3 4 5 3 4 5

Bank 6 4 4 5 4 4 5

Bank 7 3 4 4 3 4 4

Configuration Bank 8 0 0 0 0 0 0

SERDES Quads 1 2 3 1 2 3SEE Latt
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Part Number Voltage Grade Package Pins Temp. LUTs (K) 

LFE3-70E-6FN484I1 1.2V -6 Lead-Free fpBGA 484 IND 67

LFE3-70E-7FN484I1 1.2V -7 Lead-Free fpBGA 484 IND 67

LFE3-70E-8FN484I1 1.2V -8 Lead-Free fpBGA 484 IND 67

LFE3-70E-6FN672I1 1.2V -6 Lead-Free fpBGA 672 IND 67

LFE3-70E-7FN672I1 1.2V -7 Lead-Free fpBGA 672 IND 67

LFE3-70E-8FN672I1 1.2V -8 Lead-Free fpBGA 672 IND 67

LFE3-70E-6FN1156I1 1.2V -6 Lead-Free fpBGA 1156 IND 67

LFE3-70E-7FN1156I1 1.2V -7 Lead-Free fpBGA 1156 IND 67

LFE3-70E-8FN1156I1 1.2V -8 Lead-Free fpBGA 1156 IND 67

1.This device has associated errata. View www.latticesemi.com/documents/ds1021.zip for a description of the errata.

Part Number Voltage Grade Package Pins Temp. LUTs (K) 

LFE3-95EA-6FN484I 1.2V -6 Lead-Free fpBGA 484 IND 92

LFE3-95EA-7FN484I 1.2V -7 Lead-Free fpBGA 484 IND 92

LFE3-95EA-8FN484I 1.2V -8 Lead-Free fpBGA 484 IND 92

LFE3-95EA-6FN672I 1.2V -6 Lead-Free fpBGA 672 IND 92

LFE3-95EA-7FN672I 1.2V -7 Lead-Free fpBGA 672 IND 92

LFE3-95EA-8FN672I 1.2V -8 Lead-Free fpBGA 672 IND 92

LFE3-95EA-6FN1156I 1.2V -6 Lead-Free fpBGA 1156 IND 92

LFE3-95EA-7FN1156I 1.2V -7 Lead-Free fpBGA 1156 IND 92

LFE3-95EA-8FN1156I 1.2V -8 Lead-Free fpBGA 1156 IND 92

Part Number Voltage Grade Package Pins Temp. LUTs (K) 

LFE3-95E-6FN484I1 1.2V -6 Lead-Free fpBGA 484 IND 92

LFE3-95E-7FN484I1 1.2V -7 Lead-Free fpBGA 484 IND 92

LFE3-95E-8FN484I1 1.2V -8 Lead-Free fpBGA 484 IND 92

LFE3-95E-6FN672I1 1.2V -6 Lead-Free fpBGA 672 IND 92

LFE3-95E-7FN672I1 1.2V -7 Lead-Free fpBGA 672 IND 92

LFE3-95E-8FN672I1 1.2V -8 Lead-Free fpBGA 672 IND 92

LFE3-95E-6FN1156I1 1.2V -6 Lead-Free fpBGA 1156 IND 92

LFE3-95E-7FN1156I1 1.2V -7 Lead-Free fpBGA 1156 IND 92

LFE3-95E-8FN1156I1 1.2V -8 Lead-Free fpBGA 1156 IND 92

1.This device has associated errata. View www.latticesemi.com/documents/ds1021.zip for a description of the errata.
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