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chain in order to better match the reference and feedback signals. This digital code from the ALU is also transmit-
ted via the Digital Control bus (DCNTL) bus to its associated Slave Delay lines (two per DLL). The ALUHOLD input 
allows the user to suspend the ALU output at its current value. The UDDCNTL signal allows the user to latch the 
current value on the DCNTL bus. 

The DLL has two clock outputs, CLKOP and CLKOS. These outputs can individually select one of the outputs from 
the tapped delay line. The CLKOS has optional fine delay shift and divider blocks to allow this output to be further 
modified, if required. The fine delay shift block allows the CLKOS output to phase shifted a further 45, 22.5 or 11.25 
degrees relative to its normal position. Both the CLKOS and CLKOP outputs are available with optional duty cycle 
correction. Divide by two and divide by four frequencies are available at CLKOS. The LOCK output signal is 
asserted when the DLL is locked. Figure 2-5 shows the DLL block diagram and Table 2-5 provides a description of 
the DLL inputs and outputs. 

The user can configure the DLL for many common functions such as time reference delay mode and clock injection 
removal mode. Lattice provides primitives in its design tools for these functions.

Figure 2-5. Delay Locked Loop Diagram (DLL)
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Primary Clock Routing 
The purpose of the primary clock routing is to distribute primary clock sources to the destination quadrants of the 
device. A global primary clock is a primary clock that is distributed to all quadrants. The clock routing structure in 
LatticeECP3 devices consists of a network of eight primary clock lines (CLK0 through CLK7) per quadrant. The pri-
mary clocks of each quadrant are generated from muxes located in the center of the device. All the clock sources 
are connected to these muxes. Figure 2-12 shows the clock routing for one quadrant. Each quadrant mux is identi-
cal. If desired, any clock can be routed globally.

Figure 2-12. Per Quadrant Primary Clock Selection

Dynamic Clock Control (DCC)
The DCC (Quadrant Clock Enable/Disable) feature allows internal logic control of the quadrant primary clock net-
work. When a clock network is disabled, all the logic fed by that clock does not toggle, reducing the overall power 
consumption of the device.

Dynamic Clock Select (DCS) 
The DCS is a smart multiplexer function available in the primary clock routing. It switches between two independent 
input clock sources without any glitches or runt pulses. This is achieved regardless of when the select signal is tog-
gled. There are two DCS blocks per quadrant; in total, there are eight DCS blocks per device. The inputs to the 
DCS block come from the center muxes. The output of the DCS is connected to primary clocks CLK6 and CLK7 
(see Figure 2-12).

Figure 2-13 shows the timing waveforms of the default DCS operating mode. The DCS block can be programmed 
to other modes. For more information about the DCS, please see the list of technical documentation at the end of 
this data sheet.

Figure 2-13. DCS Waveforms
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secondary clock resources per region (SC0 to SC7). The same secondary clock routing can be used for control 
signals. 

Table 2-6. Secondary Clock Regions

Figure 2-15. LatticeECP3-70 and LatticeECP3-95 Secondary Clock Regions

Device
Number of Secondary Clock 

Regions

ECP3-17 16

ECP3-35 16

ECP3-70 20

ECP3-95 20

ECP3-150 36

sysIO Bank 0 sysIO Bank 1

SERDES

sy
sI

O
 B

an
k 

7

sy
sI

O
 B

an
k 

2

sy
sI

O
 B

an
k 

6

sy
sI

O
 B

an
k 

3
C

o
n

fi
g

u
ra

ti
o

n
 B

an
k

Secondary Clock
Region R1C1

Secondary Clock
Region R2C1

Secondary Clock
Region R3C1

Secondary Clock
Region R4C1

Secondary Clock
Region R5C1

Secondary Clock
Region R1C2

Secondary Clock
Region R2C2

Secondary Clock
Region R3C2

Secondary Clock
Region R4C2

Secondary Clock
Region R5C2

Secondary Clock
Region R1C3

Vertical Routing Channel
Regional Boundary

Secondary Clock
Region R2C3

Secondary Clock
Region R3C3

Secondary Clock
Region R4C3

Secondary Clock
Region R5C3

Secondary Clock
Region R1C4

Secondary Clock
Region R2C4

Secondary Clock
Region R3C4

Secondary Clock
Region R4C4

Secondary Clock
Region R5C4

EBR Row
Regional Boundary

EBR Row
Regional Boundary

Spine Repeaters

SEE Latt
ice

ECP3-E
A 

DATA SHEET FOR  

CURRENT IN
FORMATIO

N



2-16

Architecture
Lattice Semiconductor LatticeECP3 Family Data Sheet

Figure 2-16. Per Region Secondary Clock Selection

Slice Clock Selection
Figure 2-17 shows the clock selections and Figure 2-18 shows the control selections for Slice0 through Slice2. All 
the primary clocks and seven secondary clocks are routed to this clock selection mux. Other signals can be used 
as a clock input to the slices via routing. Slice controls are generated from the secondary clocks/controls or other 
signals connected via routing.

If none of the signals are selected for both clock and control then the default value of the mux output is 1. Slice 3 
does not have any registers; therefore it does not have the clock or control muxes.

Figure 2-17. Slice0 through Slice2 Clock Selection

Figure 2-18. Slice0 through Slice2 Control Selection
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This allows designers to use highly parallel implementations of DSP functions. Designers can optimize DSP perfor-
mance vs. area by choosing appropriate levels of parallelism. Figure 2-23 compares the fully serial implementation 
to the mixed parallel and serial implementation. 

Figure 2-23. Comparison of General DSP and LatticeECP3 Approaches

LatticeECP3 sysDSP Slice Architecture Features
The LatticeECP3 sysDSP Slice has been significantly enhanced to provide functions needed for advanced pro-
cessing applications. These enhancements provide improved flexibility and resource utilization.

The LatticeECP3 sysDSP Slice supports many functions that include the following:

• Multiply (one 18x36, two 18x18 or four 9x9 Multiplies per Slice)

• Multiply (36x36 by cascading across two sysDSP slices)

• Multiply Accumulate (up to 18x36 Multipliers feeding an Accumulator that can have up to 54-bit resolution)

• Two Multiplies feeding one Accumulate per cycle for increased processing with lower latency (two 18x18 Mul-
tiplies feed into an accumulator that can accumulate up to 52 bits)

• Flexible saturation and rounding options to satisfy a diverse set of applications situations

• Flexible cascading across DSP slices
– Minimizes fabric use for common DSP and ALU functions
– Enables implementation of FIR Filter or similar structures using dedicated sysDSP slice resources only
– Provides matching pipeline registers
– Can be configured to continue cascading from one row of sysDSP slices to another for longer cascade 

chains

• Flexible and Powerful Arithmetic Logic Unit (ALU) Supports:
– Dynamically selectable ALU OPCODE
– Ternary arithmetic (addition/subtraction of three inputs)
– Bit-wise two-input logic operations (AND, OR, NAND, NOR, XOR and XNOR)
– Eight flexible and programmable ALU flags that can be used for multiple pattern detection scenarios, such 
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as, overflow, underflow and convergent rounding, etc.
– Flexible cascading across slices to get larger functions

• RTL Synthesis friendly synchronous reset on all registers, while still supporting asynchronous reset for legacy 
users

• Dynamic MUX selection to allow Time Division Multiplexing (TDM) of resources for applications that require 
processor-like flexibility that enables different functions for each clock cycle

For most cases, as shown in Figure 2-24, the LatticeECP3 DSP slice is backwards-compatible with the 
LatticeECP2™ sysDSP block, such that, legacy applications can be targeted to the LatticeECP3 sysDSP slice. The 
functionality of one LatticeECP2 sysDSP Block can be mapped into two adjacent LatticeECP3 sysDSP slices, as 
shown in Figure 2-25.

Figure 2-24. Simplified sysDSP Slice Block Diagram
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Figure 2-25. Detailed sysDSP Slice Diagram

The LatticeECP2 sysDSP block supports the following basic elements.

• MULT (Multiply)

• MAC (Multiply, Accumulate)

• MULTADDSUB (Multiply, Addition/Subtraction)

• MULTADDSUBSUM (Multiply, Addition/Subtraction, Summation)

Table 2-8 shows the capabilities of each of the LatticeECP3 slices versus the above functions.

Table 2-8. Maximum Number of Elements in a Slice

Some options are available in the four elements. The input register in all the elements can be directly loaded or can 
be loaded as a shift register from previous operand registers. By selecting “dynamic operation” the following opera-
tions are possible:

• In the Add/Sub option the Accumulator can be switched between addition and subtraction on every cycle.

• The loading of operands can switch between parallel and serial operations.

Width of Multiply x9 x18 x36

MULT 4 2 1/2

MAC 1 1 —

MULTADDSUB 2 1 —

MULTADDSUBSUM 11 1/2 —

1. One slice can implement 1/2 9x9 m9x9addsubsum and two m9x9addsubsum with two slices.
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Figure 2-31. MULTADDSUBSUM Slice 1

Advanced sysDSP Slice Features
Cascading
The LatticeECP3 sysDSP slice has been enhanced to allow cascading. Adder trees are implemented fully in sys-
DSP slices, improving the performance. Cascading of slices uses the signals CIN, COUT and C Mux of the slice.

Addition
The LatticeECP3 sysDSP slice allows for the bypassing of multipliers and cascading of adder logic. High perfor-
mance adder functions are implemented without the use of LUTs. The maximum width adders that can be imple-
mented are 54-bit.

Rounding
The rounding operation is implemented in the ALU and is done by adding a constant followed by a truncation oper-
ation. The rounding methods supported are:

• Rounding to zero (RTZ)

• Rounding to infinity (RTI)

• Dynamic rounding

• Random rounding

• Convergent rounding 
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Figure 2-36. Edge Clock, DLL Calibration and DQS Local Bus Distribution
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Figure 2-38. LatticeECP3 Banks

LatticeECP3 devices contain two types of sysI/O buffer pairs. 

1. Top (Bank 0 and Bank 1) and Bottom sysI/O Buffer Pairs (Single-Ended Outputs Only)
The sysI/O buffer pairs in the top banks of the device consist of two single-ended output drivers and two sets of 
single-ended input buffers (both ratioed and referenced). One of the referenced input buffers can also be con-
figured as a differential input. Only the top edge buffers have a programmable PCI clamp.

The two pads in the pair are described as “true” and “comp”, where the true pad is associated with the positive 
side of the differential input buffer and the comp (complementary) pad is associated with the negative side of 
the differential input buffer. 

On the top and bottom sides, there is no support for programmable on-chip input termination, which is required 
for DQ and DQS pins for DDR3 interface. This side is ideal for ADDR/CMD signals of DDR3, general purpose 
I/O, PCI, TR-LVDS (transition reduced LVDS) or LVDS inputs. Only the top I/O banks support hot socketing 
with IDK specified under the Hot Socketing Specifications. The configuration bank is not hot-socketable.
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Figure 2-40. SERDES/PCS Quads (LatticeECP3-150)

Table 2-13. LatticeECP3 SERDES Standard Support

Standard
Data Rate 

(Mbps)
Number of 

General/Link Width Encoding Style

PCI Express 1.1 2500 x1, x2, x4 8b10b

Gigabit Ethernet 1250, 2500 x1 8b10b

SGMII 1250 x1 8b10b

XAUI 3125 x4 8b10b

Serial RapidIO Type I,
Serial RapidIO Type II,
Serial RapidIO Type III

1250,
2500,
3125

x1, x4 8b10b

CPRI-1,
CPRI-2,
CPRI-3,
CPRI-4

614.4,
1228.8,
2457.6,
3072.0

x1 8b10b

SD-SDI
(259M, 344M)

1431,
1771, 
270,
360,
540

x1 NRZI/Scrambled

HD-SDI
(292M)

1483.5,
1485 x1 NRZI/Scrambled

3G-SDI
(424M)

2967,
2970 x1 NRZI/Scrambled

SONET-STS-32 155.52 x1 N/A

SONET-STS-122 622.08 x1 N/A

SONET-STS-482 2488 x1 N/A

1. For slower rates, the SERDES are bypassed and CML signals are directly connected to the FPGA routing.
2. The SONET protocol is supported in 8-bit SERDES mode. See TN1176 Lattice ECP3 SERDES/PCS Usage Guide for more information.

sysIO Bank 0 sysIO Bank 1

C
H

0

C
H

3

C
H

2

C
H

1

SERDES/PCS
Quad D

C
H

0

C
H

3

C
H

2

C
H

1

C
H

0

C
H

3

C
H

2

C
H

1

C
H

0

C
H

3

C
H

2

C
H

1

sy
sI

O
 B

an
k 

7
sysIO

 B
ank 2

SERDES/PCS
Quad B

SERDES/PCS
Quad A

SERDES/PCS
Quad C

sy
sI

O
 B

an
k 

6
sysIO

 B
ank 3

C
onfiguration B

ank

SEE Latt
ice

ECP3-E
A 

DATA SHEET FOR  

CURRENT IN
FORMATIO

N

www.latticesemi.com/dynamic/view_document.cfm?document_id=32316


3-9

DC and Switching Characteristics
Lattice Semiconductor LatticeECP3 Family Data Sheet

LVDS25E
The top and bottom sides of LatticeECP3 devices support LVDS outputs via emulated complementary LVCMOS 
outputs in conjunction with a parallel resistor across the driver outputs. The scheme shown in Figure 3-1 is one 
possible solution for point-to-point signals.

Figure 3-1. LVDS25E Output Termination Example

Table 3-1. LVDS25E DC Conditions

LVCMOS33D
All I/O banks support emulated differential I/O using the LVCMOS33D I/O type. This option, along with the external 
resistor network, provides the system designer the flexibility to place differential outputs on an I/O bank with 3.3V 
VCCIO. The default drive current for LVCMOS33D output is 12mA with the option to change the device strength to 
4mA, 8mA, 16mA or 20mA. Follow the LVCMOS33 specifications for the DC characteristics of the LVCMOS33D.

Parameter  Description Typical Units

VCCIO Output Driver Supply (+/-5%) 2.50 V

ZOUT Driver Impedance 20 

RS Driver Series Resistor (+/-1%) 158 

RP Driver Parallel Resistor (+/-1%) 140 

RT Receiver Termination (+/-1%) 100 

VOH Output High Voltage 1.43 V

VOL Output Low Voltage 1.07 V

VOD Output Differential Voltage 0.35 V

VCM Output Common Mode Voltage 1.25 V

ZBACK Back Impedance 100.5 

IDC DC Output Current 6.03 mA

+ 
- 

RS=158 ohms
(±1%)

RS=158 ohms
(±1%)

RP = 140 ohms
(±1%)

RT = 100 ohms
(±1%)

OFF-chip 

Transmission line, Zo = 100 ohm differential  

VCCIO = 2.5V (±5%) 

8 mA

VCCIO = 2.5V (±5%) 

ON-chip OFF-chip ON-chip

8 mA
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LatticeECP3 Internal Switching Characteristics1, 2 
Over Recommended Commercial Operating Conditions

Parameter Description

-8 -7 -6

Units.Min. Max. Min. Max. Min. Max.

PFU/PFF Logic Mode Timing

tLUT4_PFU LUT4 delay (A to D inputs to F output) — 0.147 — 0.163 — 0.179 ns

tLUT6_PFU LUT6 delay (A to D inputs to OFX output) — 0.273 — 0.307 — 0.342 ns

tLSR_PFU Set/Reset to output of PFU (Asynchronus) — 0.593 — 0.674 — 0.756 ns

tLSRREC_PFU
Asynchronous Set/Reset recovery time for 
PFU Logic — 0.298 — 0.345 — 0.391 ns

tSUM_PFU Clock to Mux (M0,M1) Input Setup Time 0.134 — 0.144 — 0.153 — ns

tHM_PFU Clock to Mux (M0,M1) Input Hold Time -0.097 — -0.103 — -0.109 — ns

tSUD_PFU Clock to D input setup time 0.061 — 0.068 — 0.075 — ns

tHD_PFU Clock to D input hold time 0.019 — 0.013 — 0.015 — ns

tCK2Q_PFU 
Clock to Q delay, (D-type Register 
Configuration) — 0.243 — 0.273 — 0.303 ns

PFU Dual Port Memory Mode Timing

tCORAM_PFU Clock to Output (F Port) — 0.710 — 0.803 — 0.897 ns

tSUDATA_PFU Data Setup Time -0.137 — -0.155 — -0.174 — ns

tHDATA_PFU Data Hold Time 0.188 — 0.217 — 0.246 — ns

tSUADDR_PFU Address Setup Time -0.227 — -0.257 — -0.286 — ns

tHADDR_PFU Address Hold Time 0.240 — 0.275 — 0.310 — ns

tSUWREN_PFU Write/Read Enable Setup Time -0.055 — -0.055 — -0.063 — ns

tHWREN_PFU Write/Read Enable Hold Time 0.059 — 0.059 — 0.071 — ns

PIC Timing

PIO Input/Output Buffer Timing

tIN_PIO Input Buffer Delay (LVCMOS25) — 0.423 — 0.466 — 0.508 ns

tOUT_PIO Output Buffer Delay (LVCMOS25) — 1.115 — 1.155 — 1.196 ns

IOLOGIC Input/Output Timing

tSUI_PIO
Input Register Setup Time (Data Before 
Clock) 0.956 — 1.124 — 1.293 — ns

tHI_PIO Input Register Hold Time (Data after Clock) 0.313 — 0.395 — 0.378 — ns

tCOO_PIO Output Register Clock to Output Delay4 — 1.455 — 1.564 — 1.674 ns

tSUCE_PIO Input Register Clock Enable Setup Time 0.220 — 0.185 — 0.150 — ns

tHCE_PIO Input Register Clock Enable Hold Time -0.085 — -0.072 — -0.058 — ns

tSULSR_PIO Set/Reset Setup Time 0.117 — 0.103 — 0.088 — ns

tHLSR_PIO Set/Reset Hold Time -0.107 — -0.094 — -0.081 — ns

EBR Timing

tCO_EBR Clock (Read) to output from Address or Data — 2.78 — 2.89 — 2.99 ns

tCOO_EBR
Clock (Write) to output from EBR output Reg-
ister — 0.31 — 0.32 — 0.33 ns

tSUDATA_EBR Setup Data to EBR Memory -0.218 — -0.227 — -0.237 — ns

tHDATA_EBR Hold Data to EBR Memory 0.249 — 0.257 — 0.265 — ns

tSUADDR_EBR Setup Address to EBR Memroy -0.071 — -0.070 — -0.068 — ns

tHADDR_EBR Hold Address to EBR Memory 0.118 — 0.098 — 0.077 — ns

tSUWREN_EBR Setup Write/Read Enable to PFU Memory -0.107 — -0.106 — -0.106 — ns
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SERDES High-Speed Data Transmitter1 
Table 3-6. Serial Output Timing and Levels

Table 3-7. Channel Output Jitter

Symbol Description Frequency Min. Typ. Max. Units

VTX-DIFF-P-P-1.44 Differential swing (1.44V setting)1, 2 0.25 to 3.125 Gbps 1150 1440 1730 mV, p-p

VTX-DIFF-P-P-1.35 Differential swing (1.35V setting)1, 2 0.25 to 3.125 Gbps 1080 1350 1620 mV, p-p

VTX-DIFF-P-P-1.26 Differential swing (1.26V setting)1, 2 0.25 to 3.125 Gbps 1000 1260 1510 mV, p-p

VTX-DIFF-P-P-1.13 Differential swing (1.13V setting)1, 2 0.25 to 3.125 Gbps 840 1130 1420 mV, p-p

VTX-DIFF-P-P-1.04 Differential swing (1.04V setting)1, 2 0.25 to 3.125 Gbps 780 1040 1300 mV, p-p

VTX-DIFF-P-P-0.92 Differential swing (0.92V setting)1, 2 0.25 to 3.125 Gbps 690 920 1150 mV, p-p

VTX-DIFF-P-P-0.87 Differential swing (0.87V setting)1, 2 0.25 to 3.125 Gbps 650 870 1090 mV, p-p

VTX-DIFF-P-P-0.78 Differential swing (0.78V setting)1, 2 0.25 to 3.125 Gbps 585 780 975 mV, p-p

VTX-DIFF-P-P-0.64 Differential swing (0.64V setting)1, 2 0.25 to 3.125 Gbps 480 640 800 mV, p-p

VOCM Output common mode voltage — VCCOB
-0.75

VCCOB
-0.60

VCCOB
-0.45 V

TTX-R Rise time (20% to 80%) — 145 185 265 ps

TTX-F Fall time (80% to 20%) — 145 185 265 ps

ZTX-OI-SE
Output Impedance 50/75/HiZ Ohms 
(single ended) — -20% 50/75/

Hi Z  +20% Ohms

RLTX-RL Return loss (with package) — 10  dB

TTX-INTRASKEW
Lane-to-lane TX skew within a 
SERDES quad block (intra-quad) — — — 200 ps

TTX-INTERSKEW
3 Lane-to-lane skew between SERDES 

quad blocks (inter-quad) — — — 1UI +200 ps

1. All measurements are with 50 ohm impedance.
2. See TN1176, LatticeECP3 SERDES/PCS Usage Guide for actual binary settings and the min-max range.
3. Inter-quad skew is between all SERDES channels on the device and requires the use of a low skew internal reference clock.

Description Frequency Min. Typ. Max. Units

Deterministic 3.125 Gbps — — 0.17 UI, p-p

Random 3.125 Gbps — — 0.25 UI, p-p

Total 3.125 Gbps — — 0.35 UI, p-p

Deterministic 2.5Gbps — — 0.17 UI, p-p

Random 2.5Gbps — — 0.20 UI, p-p

Total 2.5Gbps — — 0.35 UI, p-p

Deterministic 1.25 Gbps — — 0.10 UI, p-p

Random 1.25 Gbps — — 0.22 UI, p-p

Total 1.25 Gbps — — 0.24 UI, p-p

Deterministic 622 Mbps — — 0.10 UI, p-p

Random 622 Mbps — — 0.20 UI, p-p

Total 622 Mbps — — 0.24 UI, p-p

Deterministic 250 Mbps — — 0.10 UI, p-p

Random 250 Mbps — — 0.18 UI, p-p

Total 250 Mbps — — 0.24 UI, p-p

Note: Values are measured with PRBS 27-1, all channels operating, FPGA logic active, I/Os around SERDES pins quiet, 
reference clock @ 10X mode.
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SERDES External Reference Clock 
The external reference clock selection and its interface are a critical part of system applications for this product. 
Table 3-12 specifies reference clock requirements, over the full range of operating conditions.

Figure 3-13. SERDES External Reference Clock Waveforms

Table 3-12. External Reference Clock Specification (refclkp/refclkn) 

Symbol Description Min. Typ. Max. Units

FREF Frequency range 15 — 320 MHz 

FREF-PPM Frequency tolerance4 -1000 — 1000 ppm

VREF-IN-SE Input swing, single-ended clock1 200 — VCCA mV, p-p

VREF-IN-DIFF Input swing, differential clock 200 — 2*VCCA
mV, p-p 

differential

VREF-IN Input levels 0 — VCCA + 0.3 V

VREF-CM-AC Input common mode range (AC coupled)2 0.125 — VCCA V

DREF Duty cycle3 40 — 60 %

TREF-R Rise time (20% to 80%) 200 500 1000 ps

TREF-F Fall time (80% to 20%) 200 500 1000 ps

ZREF-IN-TERM-DIFF Differential input termination -20% 100/2K +20% Ohms

CREF-IN-CAP Input capacitance — — 7 pF

1. The signal swing for a single-ended input clock must be as large as the p-p differential swing of a differential input clock to get the same gain 
at the input receiver. Lower swings for the clock may be possible, but will tend to increase jitter.

2. When AC coupled, the input common mode range is determined by: 
(Min input level) + (Peak-to-peak input swing)/2  (Input common mode voltage)  (Max input level) - (Peak-to-peak input swing)/2

3. Measured at 50% amplitude.
4. Depending on the application, the PLL_LOL_SET and CDR_LOL_SET control registers may be adjusted for other tolerance values as 

described in TN1176, LatticeECP3 SERDES/PCS Usage Guide.
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PCI Express Electrical and Timing Characteristics 
AC and DC Characteristics

Over Recommended Operating Conditions

Symbol Description Test Conditions Min Typ Max Units

Transmit1

UI Unit interval 399.88 400 400.12 ps

VTX-DIFF_P-P Differential peak-to-peak output voltage 0.8 1.0 1.2 V

VTX-DE-RATIO
De-emphasis differential output voltage 
ratio -3 -3.5 -4 dB

VTX-CM-AC_P
RMS AC peak common-mode output 
voltage — — 20 mV

VTX-RCV-DETECT
Amount of voltage change allowed dur-
ing receiver detection — — 600 mV

VTX-DC-CM Tx DC common mode voltage 0 — VCCOB + 5% V

ITX-SHORT Output short circuit current VTX-D+=0.0V
VTX-D-=0.0V — — 90 mA

ZTX-DIFF-DC Differential output impedance 80 100 120 Ohms

RLTX-DIFF Differential return loss 10 — — dB

RLTX-CM Common mode return loss 6.0 — — dB

TTX-RISE Tx output rise time 20 to 80% 0.125 — — UI

TTX-FALL Tx output fall time 20 to 80% 0.125 — — UI

LTX-SKEW
Lane-to-lane static output skew for all 
lanes in port/link — — 1.3 ns

TTX-EYE Transmitter eye width 0.75 — — UI

TTX-EYE-MEDIAN-TO-MAX-JITTER
Maximum time between jitter median 
and maximum deviation from median — — 0.125 UI

Receive1, 2

UI Unit Interval 399.88 400 400.12 ps

VRX-DIFF_P-P Differential peak-to-peak input voltage 0.343 — 1.2 V

VRX-IDLE-DET-DIFF_P-P Idle detect threshold voltage 65 — 3403 mV

VRX-CM-AC_P
Receiver common mode voltage for AC 
coupling — — 150 mV

ZRX-DIFF-DC DC differential input impedance 80 100 120 Ohms

ZRX-DC DC input impedance 40 50 60 Ohms

ZRX-HIGH-IMP-DC Power-down DC input impedance 200K — — Ohms

RLRX-DIFF Differential return loss 10 — — dB

RLRX-CM Common mode return loss 6.0 — — dB

TRX-IDLE-DET-DIFF-ENTERTIME

Maximum time required for receiver to 
recognize and signal an unexpected idle 
on link

— — — ms

1. Values are measured at 2.5 Gbps.
2. Measured with external AC-coupling on the receiver.
3.Not in compliance with PCI Express 1.1 standard.
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Figure 3-16. sysCONFIG Parallel Port Read Cycle

tCHHH HOLDN Low Hold Time (Relative to CCLK) 5 — ns

Master and Slave SPI (Continued)

tCHHL HOLDN High Hold Time (Relative to CCLK) 5 — ns

tHHCH HOLDN High Setup Time (Relative to CCLK) 5 — ns

tHLQZ HOLDN to Output High-Z — 9 ns

tHHQX HOLDN to Output Low-Z — 9 ns

Parameter Min. Max. Units

Master Clock Frequency Selected value - 15% Selected value + 15% MHz

Duty Cycle 40 60 %

LatticeECP3 sysCONFIG Port Timing Specifications (Continued)
Over Recommended Operating Conditions

Parameter Description Min. Max. Units

CCLK

CS1N

CSN

WRITEN

BUSY

D[0:7]

tSUCS tHCS

tSUWD

tCORD

tDCB

tHWD

tBSCYC

tBSCH

tBSCL

Byte 0 Byte 1 Byte 2 Byte n*

*n = last byte of read cycle.SEE Latt
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Pin Information Summary (Cont.)
Pin Information Summary ECP3-70E ECP3-70EA

Pin Type 484 fpBGA 672 fpBGA
1156 

fpBGA 484 fpBGA 672 fpBGA
1156 

fpBGA

Emulated Differential 
I/O per Bank

Bank 0 21 30 43 21 30 43

Bank 1 18 24 39 18 24 39

Bank 2 10 15 16 8 12 13

Bank 3 23 27 39 20 23 33

Bank 6 26 30 39 22 25 33

Bank 7 14 20 22 11 16 18

Bank 8 12 12 12 12 12 12

High-Speed Differential 
I/O per Bank

Bank 0 0 0 0 0 0 0

Bank 1 0 0 0 0 0 0

Bank 2 4 6 6 6 9 9

Bank 3 6 8 10 9 12 16

Bank 6 7 9 10 11 14 16

Bank 7 6 8 9 9 12 13

Bank 8 0 0 0 0 0 0

Total Single-Ended/
Total Differential I/O
per Bank

Bank 0 42/21 60/30 86/43 42/21 60/30 86/43

Bank 1 36/18 48/24 78/39 36/18 48/24 78/39

Bank 2 28/14 42/21 44/22 28/14 42/21 44/22

Bank 3 58/29 71/35 98/49 58/29 71/35 98/49

Bank 6 67/33 79/38 98/49 67/33 78/39 98/49

Bank 7 40/20 56/28 62/31 40/20 56/28 62/31

Bank 8 24/12 24/12 24/12 24/12 24/12 24/12

DDR Groups Bonded
per Bank

Bank 0 3 5 7 3 5 7

Bank 1 3 4 7 3 4 7

Bank 2 2 3 3 2 3 3

Bank 3 3 4 5 3 4 5

Bank 6 4 4 5 4 4 5

Bank 7 3 4 4 3 4 4

Configuration Bank 8 0 0 0 0 0 0

SERDES Quads 1 2 3 1 2 3SEE Latt
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Industrial

The following devices may have associated errata. Specific devices with associated errata will be notated with a 
footnote.

Part Number Voltage Grade Package Pins Temp. LUTs (K) 

LFE3-17EA-6FTN256I 1.2V -6 Lead-Free ftBGA 256 IND 17

LFE3-17EA-7FTN256I 1.2V -7 Lead-Free ftBGA 256 IND 17

LFE3-17EA-8FTN256I 1.2V -8 Lead-Free ftBGA 256 IND 17

LFE3-17EA-6FN484I 1.2V -6 Lead-Free fpBGA 484 IND 17

LFE3-17EA-7FN484I 1.2V -7 Lead-Free fpBGA 484 IND 17

LFE3-17EA-8FN484I 1.2V -8 Lead-Free fpBGA 484 IND 17

Part Number Voltage Grade Package Pins Temp. LUTs (K) 

LFE3-35EA-6FTN256I 1.2V -6 Lead-Free ftBGA 256 IND 33

LFE3-35EA-7FTN256I 1.2V -7 Lead-Free ftBGA 256 IND 33

LFE3-35EA-8FTN256I 1.2V -8 Lead-Free ftBGA 256 IND 33

LFE3-35EA-6FN484I 1.2V -6 Lead-Free fpBGA 484 IND 33

LFE3-35EA-7FN484I 1.2V -7 Lead-Free fpBGA 484 IND 33

LFE3-35EA-8FN484I 1.2V -8 Lead-Free fpBGA 484 IND 33

LFE3-35EA-6FN672I 1.2V -6 Lead-Free fpBGA 672 IND 33

LFE3-35EA-7FN672I 1.2V -7 Lead-Free fpBGA 672 IND 33

LFE3-35EA-8FN672I 1.2V -7 Lead-Free fpBGA 672 IND 33

Part Number Voltage Grade Package Pins Temp. LUTs (K) 

LFE3-70EA-6FN484I 1.2V -6 Lead-Free fpBGA 484 IND 67

LFE3-70EA-7FN484I 1.2V -7 Lead-Free fpBGA 484 IND 67

LFE3-70EA-8FN484I 1.2V -8 Lead-Free fpBGA 484 IND 67

LFE3-70EA-6FN672I 1.2V -6 Lead-Free fpBGA 672 IND 67

LFE3-70EA-7FN672I 1.2V -7 Lead-Free fpBGA 672 IND 67

LFE3-70EA-8FN672I 1.2V -8 Lead-Free fpBGA 672 IND 67

LFE3-70EA-6FN1156I 1.2V -6 Lead-Free fpBGA 1156 IND 67

LFE3-70EA-7FN1156I 1.2V -7 Lead-Free fpBGA 1156 IND 67

LFE3-70EA-8FN1156I 1.2V -8 Lead-Free fpBGA 1156 IND 67
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For Further Information
A variety of technical notes for the LatticeECP3 family are available on the Lattice website at www.latticesemi.com.

• TN1169, LatticeECP3 sysCONFIG Usage Guide

• TN1176, LatticeECP3 SERDES/PCS Usage Guide

• TN1177, LatticeECP3 sysIO Usage Guide

• TN1178, LatticeECP3 sysCLOCK PLL/DLL Design and Usage Guide

• TN1179, LatticeECP3 Memory Usage Guide

• TN1180, LatticeECP3 High-Speed I/O Interface

• TN1181, Power Consumption and Management for LatticeECP3 Devices

• TN1182, LatticeECP3 sysDSP Usage Guide

• TN1184, LatticeECP3 Soft Error Detection (SED) Usage Guide

• TN1189, LatticeECP3 Hardware Checklist 

For further information on interface standards refer to the following websites:

• JEDEC Standards (LVTTL, LVCMOS, SSTL, HSTL): www.jedec.org
• PCI: www.pcisig.com

LatticeECP3 Family Data Sheet
Supplemental Information
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