

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	H8/300L
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI
Peripherals	LCD, PWM, WDT
Number of I/O	71
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BFQFP
Supplier Device Package	100-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df38344hwv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	10.2.4	Operation in SSB Mode	343
	10.2.5	Interrupt Source	346
	10.2.6	Application Notes	346
10.3	SCI3		347
	10.3.1	Overview	347
	10.3.2	Register Descriptions	351
	10.3.3	Operation	374
	10.3.4	Interrupts	403
	10.3.5	Application Notes	404
Secti	on 11	14-Bit PWM	409
11.1	Overvi	2W	409
	11.1.1	Features	409
	11.1.2	Block Diagram	410
	11.1.3	Pin Configuration	410
	11.1.4	Register Configuration	411
11.2	Registe	r Descriptions	411
	11.2.1	PWM Control Register (PWCR)	411
	11.2.2	PWM Data Registers U and L (PWDRU, PWDRL)	413
	11.2.3	Clock Stop Register 2 (CKSTPR2)	414
11.3	Operati	on	415
	11.3.1	Operation	415
	11.3.2	PWM Operation Modes	416
Secti	on 12	A/D Converter	417
12.1	Overvi	2W	417
	12.1.1	Features	417
	12.1.2	Block Diagram	418
	12.1.3	Pin Configuration	419
	12.1.4	Register Configuration	419
12.2	Registe	r Descriptions	420
	12.2.1	A/D Result Registers (ADRRH, ADRRL)	420
	12.2.2	A/D Mode Register (AMR)	420
	12.2.3	A/D Start Register (ADSR)	422
	12.2.4	Clock Stop Register 1 (CKSTPR1)	423
12.3	Operati	on	424
	1231	A/D Conversion Operation	424
	12.3.1		
	12.3.2	Start of A/D Conversion by External Trigger Input	424
	12.3.2 12.3.3	Start of A/D Conversion by External Trigger Input A/D Converter Operation Modes	424 425

Section 1 Overview

1.1 Overview

The H8/300L Series is a series of single-chip microcomputers (MCU: microcomputer unit), built around the high-speed H8/300L CPU and equipped with peripheral system functions on-chip.

Within the H8/300L Series, the H8/3847R Group, H8/3847S Group, H8/38347 Group, and H8/38447 Group comprise single-chip microcomputers equipped with an LCD (liquid crystal display) controller/driver. Other on-chip peripheral functions include six types of timers, a 14-bit pulse width modulator (PWM), three serial communication interface channels, and an A/D converter. Together, these functions make the H8/3847R Group, H8/3847S Group, H8/3847S Group, H8/38347 Group, and H8/38447 Group ideally suited for embedded applications in systems requiring low power consumption and LCD display. Also available are models incorporating 16 Kbytes to 60 Kbytes of ROM and 1 Kbyte to 2 Kbytes of RAM on-chip.

The H8/3847R is also available in a ZTAT^{M*1} version with on-chip PROM which can be programmed as required by the user.

The H8/38347 and H8/38447 are available in a F-ZTAT^{M*2} version with on-chip flash memory that can be programmed on-board.

Table 1.1 summarizes the features of the H8/3847R Group, H8/3847S Group, H8/38347 Group, and H8/38447 Group.

Notes: 1. ZTAT (Zero Turn Around Time) is a trademark of Renesas Technology Corp.

2. F-ZTAT is a trademark of Renesas Technology Corp.

5.2.2 Clearing Sleep Mode

Sleep mode is cleared by any interrupt (timer A, timer C, timer F, timer G, asynchronous counter, IRQ_4 to IRQ_0 , WKP_7 to WKP_0 , SCI1, SCI3-1, SCI3-2, or A/D converter), or by input at the \overline{RES} pin.

• Clearing by interrupt

When an interrupt is requested, sleep mode is cleared and interrupt exception handling starts. A transition is made from sleep (high-speed) mode to active (high-speed) mode, or from sleep (medium-speed) mode to active (medium-speed) mode. Sleep mode is not cleared if the I bit of the condition code register (CCR) is set to 1 or the particular interrupt is disabled in the interrupt enable register.

To synchronize the interrupt request signal with the system clock, up to $2/\phi$ (s) delay may occur after the interrupt request signal occurrence, before the interrupt exception handling start.

• Clearing by RES input

When the $\overline{\text{RES}}$ pin goes low, the CPU goes into the reset state and sleep mode is cleared.

5.2.3 Clock Frequency in Sleep (Medium-Speed) Mode

Operation in sleep (medium-speed) mode is clocked at the frequency designated by the MA1 and MA0 bits in SYSCR1.

5.6 Subactive Mode

5.6.1 Transition to Subactive Mode

Subactive mode is entered from watch mode if a timer A, timer F, timer G, IRQ₀, or WKP₇ to WKP0 interrupt is requested while the LSON bit in SYSCR1 is set to 1. From subsleep mode, subactive mode is entered if a timer A, timer C, timer F, timer G, asynchronous counter, SCI1, SCI3-1, SCI3-2, IRQ₄ to IRQ₀, or WKP₇ to WKP₀ interrupt is requested. A transition to subactive mode does not take place if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

5.6.2 Clearing Subactive Mode

Subactive mode is cleared by a SLEEP instruction or by a low input at the $\overline{\text{RES}}$ pin.

• Clearing by SLEEP instruction

If a SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1 and TMA3 bit in TMA is set to 1, subactive mode is cleared and watch mode is entered. If a SLEEP instruction is executed while SSBY = 0 and LSON = 1 in SYSCR1 and TMA3 = 1 in TMA, subsleep mode is entered. Direct transfer to active mode is also possible; see section 5.8, Direct Transfer, below.

• Clearing by $\overline{\text{RES}}$ pin

Clearing by $\overline{\text{RES}}$ pin is the same as for standby mode; see 2. Clearing by $\overline{\text{RES}}$ pin in section 5.3.2.

5.6.3 Operating Frequency in Subactive Mode

The operating frequency in subactive mode is set in bits SA1 and SA0 in SYSCR2. The choices are $\phi_W/2$, $\phi_W/4$, and $\phi_W/8$.

6.2 **PROM Mode (H8/3847R)**

6.2.1 Setting to PROM Mode

If the on-chip ROM is PROM, setting the chip to PROM mode stops operation as a microcontroller and allows the PROM to be programmed in the same way as the standard HN27C101 EPROM. However, page programming is not supported. Table 6.1 shows how to set the chip to PROM mode.

Table 6.1Setting to PROM Mode

Pin Name	Setting
TEST	High level
PB ₄ /AN ₄	Low level
PB ₅ /AN ₅	
PB ₆ /AN ₆	High level

6.2.2 Socket Adapter Pin Arrangement and Memory Map

A standard PROM programmer can be used to program the PROM. A socket adapter is required for conversion to 32 pins, as listed in table 6.2.

Figure 6.2 shows the pin-to-pin wiring of the socket adapter. Figure 6.3 shows a memory map.

Table 6.2Socket Adapter

Package	Socket Adapter Model (Manufacturer)
100-pin (FP-100B)	ME3887ESHS1H (MINATO)
	H7388BQ100D3201 (DATA-I/O)
100-pin (FP-100A)	ME3887ESFS1H (MINATO)
	H7388AQ100D3201 (DATA-I/O)
100-pin (TFP-100B)	ME3887ESNS1H (MINATO)
	H7388BT100D3201 (DATA-I/O)
100-pin (TFP-100G)	ME3887ESMS1H (MINATO)
	H7388GT100D3201 (DATA-I/O)

Table 6.5AC Characteristics

(Conditions: $V_{CC} = 6.0 \text{ V} \pm 0.25 \text{ V}$, $V_{PP} = 12.5 \text{ V} \pm 0.3 \text{ V}$, $T_a = 25^{\circ}\text{C} \pm 5^{\circ}\text{C}$)

Item	Symbol	Min	Тур	Мах	Unit	Test Condition
Address setup time	t _{AS}	2	_	_	μs	Figure 6.5 ^{*1}
OE setup time	t _{OES}	2	_	_	μs	-
Data setup time	t _{DS}	2	_	_	μs	-
Address hold time	t _{AH}	0	_	_	μs	-
Data hold time	t _{DH}	2	_	_	μs	-
Data output disable time	t _{DF} *2	—		130	μs	-
V _{PP} setup time	t _{VPS}	2	_	_	μs	-
Programming pulse width	t _{PW}	0.19	0.20	0.21	ms	-
PGM pulse width for overwrite programming	t _{OPW} *3	0.19) <u> </u>	5.25	ms	-
CE setup time	t _{CES}	2		_	μs	-
V _{CC} setup time	t _{vcs}	2	_	_	μs	-
Data output delay time	t _{OE}	0		200	ns	-

Notes: 1. Input pulse level: 0.45 V to 2.2 VInput rise time/fall time $\leq 20 \text{ ns}$ Timing reference levels Input: 0.8 V, 2.0 VOutput: 0.8 V, 2.0 V

2. t_{DF} is defined at the point at which the output is floating and the output level cannot be read.

3. t_{OPW} is defined by the value given in figure 6.4, High-Speed, High-Reliability Programming Flow Chart.

Bit 2—Program-Verify (PV)

This bit is to set changing to or cancelling program-verify mode (do not set SWE, ESU, PSU, EV, E, and P bits at the same time).

Bit 2 PV	Description	
0	Program-verify mode is cancelled	(initial value)
1	The flash memory changes to program-verify mode	

Bit 1—Erase (E)

This bit is to set changing to or cancelling erase mode (do not set SWE, ESU, PSU, EV, PV, and P bits at the same time).

Bit 1 Description 0 Erase mode is cancelled (initial value) 1 When this bit is set to 1, while the SWE = 1 and ESU = 1, the flash memory changes to erase mode.

Bit 0—Program (P)

This bit is to set changing to or cancelling program mode (do not set SWE, ESU, PSU, EV, PV, and E bits at the same time).

Bit 0

Р	Description	
0	Program mode is cancelled	(initial value)
1	When this bit is set to 1, while the SWE = 1 and PSU = 1, the flash me changes to program mode.	emory

	Number of Cycles	1st Cycle				2nd Cycle		
Command Name		Mode	Address	Data	Mode	Address	Data	
Memory read	1 + n	Write	Х	H'00	Read	RA	Dout	
Auto-program	129	Write	Х	H'40	Write	WA	Din	
Auto-erase	2	Write	Х	H'20	Write	Х	H'20	
Status read	2	Write	Х	H'71	Write	Х	H'71	

Table 6.14 Command Sequence in Programmer Mode

n: the number of address write cycles

1. Port Data Register 1 (PDR1)

Bit	7	6	5	4	3	2	1	0
	P17	P1 ₆	P1 ₅	P14	P1 ₃	P12	P1 ₁	P1 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PDR1 is an 8-bit register that stores data for port 1 pins $P1_7$ to $P1_0$. If port 1 is read while PCR1 bits are set to 1, the values stored in PDR1 are read, regardless of the actual pin states. If port 1 is read while PCR1 bits are cleared to 0, the pin states are read.

Upon reset, PDR1 is initialized to H'00.

2. Port Control Register 1 (PCR1)

Bit	7	6	5	4	3	2	1	0
	PCR17	PCR1 ₆	PCR1 ₅	PCR1 ₄	PCR1 ₃	PCR1 ₂	PCR1 ₁	PCR1 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W

PCR1 is an 8-bit register for controlling whether each of the port 1 pins $P1_7$ to $P1_0$ functions as an input pin or output pin. Setting a PCR1 bit to 1 makes the corresponding pin an output pin, while clearing the bit to 0 makes the pin an input pin. The settings in PCR1 and in PDR1 are valid only when the corresponding pin is designated in PMR1 as a general I/O pin.

Upon reset, PCR1 is initialized to H'00.

PCR1 is a write-only register, which is always read as all 1s.

3. Port Pull-up Control Register 1 (PUCR1)

Bit	7	6	5	4	3	2	1	0
	PUCR17	PUCR16	PUCR15	PUCR14	PUCR1 ₃	PUCR12	PUCR11	PUCR10
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

PUCR1 controls whether the MOS pull-up of each of the port 1 pins $P1_7$ to $P1_0$ is on or off. When a PCR1 bit is cleared to 0, setting the corresponding PUCR1 bit to 1 turns on the MOS pull-up for the corresponding pin, while clearing the bit to 0 turns off the MOS pull-up.

Upon reset, PUCR1 is initialized to H'00.

Pin	Pin Functions and Selection Method								
P1 ₃ /TMIG	The pin function de	The pin function depends on bit TMIG in PMR1 and bit PCR1 ₃ in PCR1.							
	TMIG	()	1					
	PCR1 ₃	0	1	*					
	Pin function	P1 ₃ input pin	P1 ₃ output pin	TMIG input pin					
P1 ₂ /TMOFH	The pin function de	epends on bit TM	IOFH in PMR1 a	nd bit PCR1 ₂ in PCR1.					
	TMOFH	()	1					
	PCR1 ₂	0	1	*					
	Pin function	P1 ₂ input pin	P1 ₂ output pin	TMOFH output pin					
P1 ₁ /TMOFL	The pin function de	epends on bit TM	IOFL in PMR1 a	nd bit PCR11 in PCR1.					
	TMOFL	()	1					
	PCR11	0	1	*					
	Pin function	P1 ₁ input pin	P1 ₁ output pin	TMOFL output pin					
P1 ₀ /TMOW	The pin function de	epends on bit TM	IOW in PMR1 ar	Id bit PCR10 in PCR1.					
	TMOW	()	1					
	PCR1₀	0	1	*					
	Pin function	P1 ₀ input pin	P1 ₀ output pin	TMOW output pin					

*: Don't care

8.2.4 Pin States

Table 8.4 shows the port 1 pin states in each operating mode.

Table 8.4Port 1 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P1 ₇ /IRQ ₃ /TMIF P1 ₉ /IRQ ₂ P1 ₅ /IRQ ₁ /TMIC P1 ₄ /IRQ ₄ /ADTRG P1 ₃ /TMIG P1 ₂ /TMOFH P1 ₁ /TMOFL P1 ₀ /TMOW	High- impedance	Retains previous state	Retains previous state	High- impedance*	Retains previous state	Functional	Functional

Note: * A high-level signal is output when the MOS pull-up is in the on state.

Bit 3: Timer G module standby mode control (TGCKSTP)

Bit 3 controls setting and clearing of module standby mode for timer G.

TGCKSTP	Description	
0	Timer G is set to module standby mode	
1	Timer G module standby mode is cleared	(initial value)

9.5.3 Noise Canceler

The noise canceler consists of a digital low-pass filter that eliminates high-frequency component noise from the pulses input from the input capture input pin. The noise canceler is set by NCS* in PMR3.

Figure 9.9 shows a block diagram of the noise canceler.

Figure 9.9 Noise Canceler Block Diagram

The noise canceler consists of five latch circuits connected in series and a match detector circuit. When the noise cancellation function is not used (NCS = 0), the system clock is selected as the sampling clock. When the noise cancellation function is used (NCS = 1), the sampling clock is the internal clock selected by CKS1 and CKS0 in TMG, the input capture input is sampled on the rising edge of this clock, and the data is judged to be correct when all the latch outputs match. If all the outputs do not match, the previous value is retained. After a reset, the noise canceler output is initialized when the falling edge of the input capture input signal has been sampled five times.

Section 10 Serial Communication Interface

10.1 Overview

This LSI is provided with three serial communication interface (SCI) channels. The functions of the three SCI channels are summarized in table 10.1.

SCI Name	Functions	Features
SCI1	 Synchronous serial transfer functions Choice of transfer data length (8 or 16 bits) Continuous clock output function 	 Choice of 8 internal clocks (φ/1024 to φ/4, φ_W/4) or external clock Open-drain output option Interrupt generated on completion of transfer
SCI31, SCI32	 Synchronous serial transfer functions 8-bit transfer data length Transmission/reception/simultaneous transmission and reception Asynchronous serial transfer functions Multiprocessor communication function Choice of transfer data length (5 or 7 or 8 bits) Choice of stop bit length (1 or 2 bits) Parity addition function 	 On-chip baud rate generator Receive error detection Break detection Interrupt generated on completion of transfer or in case of error

Table 10.1 Overview of SCI Functions

Bit 7: A/D start flag (ADSF)

Bit 7 controls and indicates the start and end of A/D conversion.

Bit 7 ADSF	Description						
0	Read: Indicates the completion of A/D conversion (initial value						
	Write: Stops A/D conversion						
1	Read: Indicates A/D conversion in progress						
	Write: Starts A/D conversion						

Bits 6 to 0: Reserved bits

Bits 6 to 0 are reserved; they are always read as 1, and cannot be modified.

12.2.4 Clock Stop Register 1 (CKSTPR1)

Bit	7	6	5	4	3	2	1	0
	S1CKSTP	S31CKSTP	S32CKSTP	ADCKSTP	TGCKSTP	TFCKSTP	TCCKSTP	TACKSTP
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

CKSTPR1 is an 8-bit read/write register that performs module standby mode control for peripheral modules. Only the bit relating to the A/D converter is described here. For details of the other bits, see the sections on the relevant modules.

Bit 4: A/D converter module standby mode control (ADCKSTP)

Bit 4 controls setting and clearing of module standby mode for the A/D converter.

ADCKSTP	Description	
0	A/D converter is set to module standby mode	
1	A/D converter module standby mode is cleared	(initial value)

Figure 13.11 LCD RAM Map with Segment Externally Expanded (SGX = "1", SGS3 to SGS0 = "0000" 1/2 duty)

Instruc- tion	Mnemonic	Instruction Fetch I	Branch Addr. Read J	Stack Operation K	Byte Data Access L	Word Data Access M	Internal Operation N
ADD	ADD.B #xx:8, Rd	1					
	ADD.B Rs, Rd	1					
	ADD.W Rs, Rd	1					
ADDS	ADDS.W #1, Rd	1					
	ADDS.W #2, Rd	1					
ADDX	ADDX.B #xx:8, Rd	1					
	ADDX.B Rs, Rd	1					
AND	AND.B #xx:8, Rd	1					
	AND.B Rs, Rd	1					
ANDC	ANDC #xx:8, CCR	1					
BAND	BAND #xx:3, Rd	1					
	BAND #xx:3, @Rd	2			1		
	BAND #xx:3, @aa:8	2			1		
Bcc	BRA d:8 (BT d:8)	2					
	BRN d:8 (BF d:8)	2					
	BHI d:8	2					
	BLS d:8	2					
	BCC d:8 (BHS d:8)	2					
	BCS d:8 (BLO d:8)	2					
	BNE d:8	2					
	BEQ d:8	2					
	BVC d:8	2					
	BVS d:8	2					
	BPL d:8	2					
	BMI d:8	2					
	BGE d:8	2					
	BLT d:8	2					
	BGT d:8	2					
	BLE d:8	2					
BCLR	BCLR #xx:3, Rd	1					
	BCLR #xx:3, @Rd	2			2		
	BCLR #xx:3, @aa: 8	2			2		
	BCLR Rn, Rd	1					
	BCLR Rn, @Rd	2			2		
	BCLR Rn, @aa:8	2			2		

 Table A.4
 Number of Cycles in Each Instruction

SCR32—Serial Control Register 32

Bit					7	6	6	5	4		3		2	1	0
				٦	TIE32	RIE	32	TE32	RE3	2 MP	IE32	TEI	E32	CKE321	CKE320
Initia	al val	ue			0	C)	0	0		0)	0	0
Rea	d/Wı	ite			R/W	R/	W	R/W	R/W	/ R	/W	R/	W/	R/W	R/W
_				_				<u> </u>			Γ				
				_]		
					Clock e	nable -]
					Bit 1	Bit 0	-			Descri	ption				
					CKE321	CKE320	Con	nmunication I	Mode	Clock So	ource		SCK ₃	Pin Function	
					0	0	Svn	chronous		Internal	clock		Serial	clock output	
					0	1	Asy	nchronous		Internal	clock		Clock	output	
							Syn	chronous		Reserve	ed (Do	not sp	ecify th	is combinatio	on)
					1	0	Asy	nchronous		Externa	l clock		Clock	input	
					1	1	Syn	chronous		Externa	I CIOCK	not sp	Serial	CIOCK INPUT	<u>)</u>
					1	'	Syn	chronous		Reserved (Do not specify this combination)					on)
				' _											,
				Tra	nsmit e	nd inter	rupt e	nable							
				0	Trans	smit end	interru	ipt request (T	EI) disat	bled				_	
				1	Trans		interru	ipi requesi (1	EI) enab	lea					
			Mu	itipi	rocesso	or interru	ipt en	able							
			0	N	Aultiproc Clearing	conditio	n]	request disa	abled (no	mal recei	ve ope	ration)			
					When da	ita is rece	eived i	n which the r	nultiproc	essor bit is	s set to	1			
			1		/luitiproc The rece	ive interr	terrupi rupt re	request ena quest (RXI).	bied receive e	rror interr	upt rea	uest (E	RI), a	nd setting of t	the
				F	RDRF, F	ER, and	OER	flags in the s	erial statu	us register	r (SSR)	, are d	isable	d until data w	ith
			Ļ	t	he multi	processo	or bit s	et to 1 is rece	eived.						
		Re	cei	/e e	nable										
		0	+	Rec	eive ope	eration di	sabled	I (RXD pin is	I/O port)				_		
		1		Rec	eive ope	eration er	nabled	(RXD pin is	receive c	ata pin)					
	Tra	nsn	nit e	enak	ble								_		
	0	Т	ran	smit	t operati	on disab	led (T	XD pin is tran	smit data	a pin)					
	1	Т	ran	smit	t operati	on enabl	ed (T)	CD pin is tran	smit data	ı pin)					
F	eceiv	/e ir	nter	rupt	enable	•									
	0	Rec	eive	dat	a full int	errupt re	quest	(RXI) and red	ceive erro	or interrup	t reque	est (EF	RI) disa	bled	
	1	Rec	eive	dat	a full int	errupt re	quest	(RXI) and red	ceive erro	or interrup	t reque	est (EF	RI) ena	bled	
Trar	smit	inte	rru	ot e	nable										
0	Trai	nsm	it da	ata e	empty in	terrupt re	equest	(TXI) disable	ed		_				
1	Trai	ารm	it da	ata e	empty in	terrupt re	equest	(TXI) enable	d						

LPCR—LCD Port Control Register

H'C0 LCD controller/driver

Bit	7	7 6		5		4		3	2	1	0
	DTS1	I DT	S0	CI	МХ	SG>	(s	GS3	SGS2	SGS	SI SGS0
Initial value	0	()	0		0		0	0	0	0
Read/Write	R/W	R	W/	R	/W	R/W	/ 1	R/W	R/W	R/V	V R/W
	s	Segment c	 river s	select							
	I G	Bit 4 Bit 3	Bit 2	Bit 1	Bit 0	Function	of Pins S	EG ₃₂ to SE	G ₁		
		SGX SGS	SGS2	SGS1	SGS0	SEG ₄₀ to SEG ₃₃	SEG ₃₂ to SEG ₂₅	SEG ₂₄ to SEG ₁₇	SEG ₁₆ to SEG ₉	SEG ₈ to SEG ₁	Notes
		0 0	0	0	0	Port	Port	Port	Port	Port	(Initial value)
		0 0	0	0	1	SEG	Port	Port	Port	Port	
		0 0	0	1	*	SEG	SEG	Port	Port	Port	
		0 0	1	0	*	SEG	SEG	SEG	Port	Port	
		0 0	1	1	*	SEG	SEG	SEG	SEG	Port	
		0 1	*	*	*	SEG	SEG	SEG	SEG	SEG	
		1 0	0	0	0	Port	Port	Port	Port	Port	
		1 0	0	0	1			Do not use	9		
		1 0	1	*	*						
		1 1	*	*	*	-					
		lote: 1. SI	G40 to	SEG37	are ex	ternal exp	ansion pir	IS.			*: Don't care
			- 10	01							
E	Expansio	n signal s	elect								
Г	0	SEG ₄₀	to SEG	37 pin*	(Initia	l value)					
	1	CL ₁ , C	L ₂ , DO	and M	pin	,					
1	Note: * Fur	nctions as p	orts wh	nen SG	S3 to S	SGS0 are s	set at "000	00".			

In the case of the H8/38347 Group and H8/38447 Group the initial values of these bits must not be changed.

Duty select, common function select

Bit 7	Bit 6	Bit 5			Notos					
DTS1	DTS0	CMX	Duty Cycle	Common Drivers	INULES					
0	0	0	Statio	COM ₁	Do not use COM ₄ , COM ₃ , and COM ₂					
0	0	1	Static	COM ₄ to COM ₁	COM ₄ to COM ₂ output the same waveform as COM ₁					
0	1	0	1/2 duty	COM ₂ to COM ₁	Do not use COM ₄ and COM ₃					
0	1	1	1/2 duty	COM ₄ to COM ₁	COM ₄ outputs the same waveform as COM ₃ and COM ₂ outputs the same waveform as COM ₁					
1	0	0	1/3 duty	COM ₃ to COM ₁	Do not use COM ₄					
1	0	1	1/5 duty	COM ₄ to COM ₁	Do not use COM ₄					
1	1	0	1/4 duty		_					
1	1	1	1/4 duty							

C.4 Block Diagrams of Port 4

Figure C.4 (a) Port 4 Block Diagram (Pin P4₃)

C.12 Block Diagram of Port C

Figure C.12 Port C Block Diagram

Appendix H Form of Bonding Pads

The form of the bonding pads for the HCD6433847R, HCD6433846R, HCD6433845R, HCD6433844R, HCD6433843R, and HCD6433842R is shown in figure H.1.

Figure H.1 Bonding Pad Form

