

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Description						
Power-down	Seven power-down modes						
modes	Sleep (high-speed) mode						
	Sleep (medium-speed) mode						
	Standby mode						
	Watch mode						
	Subsleep mode						
Subactive mode							
	Active (medium-speed) mode						
Memory	Large on-chip memory						
	 H8/3842R, H8/38342, H8/38442: 16-Kbyte ROM, 1-Kbyte RAM 						
	 H8/3843R, H8/38343, H8/38443: 24-Kbyte ROM, 1-Kbyte RAM 						
	• H8/3844R, H8/3844S, H8/38344, H8/38444: 32-Kbyte ROM, 2-Kbyte RAM						
	• H8/3845R, H8/3845S, H8/38345, H8/38445: 40-Kbyte ROM, 2-Kbyte RAM						
	• H8/3846R, H8/3846S, H8/38346, H8/38446: 48-Kbyte ROM, 2-Kbyte RAM						
	• H8/3847R, H8/3847S, H8/38347, H8/38447: 60-Kbyte ROM, 2-Kbyte RAM						
I/O ports	84 pins						
	• 71 I/O pins						
	13 input pins						

Section 1 Overview

Item	Description
Timers	Six on-chip timers
	Timer A: 8-bit timer
	Count-up timer with selection of eight internal clock signals divided from the system clock $(\phi)^*$ and four clock signals divided from the watch clock $(\phi w)^*$
	Asynchronous event counter: 16-bit timer
	 Count-up timer able to count asynchronous external events independently of the MCU's internal clocks
	Timer C: 8-bit timer
	 Count-up/down timer with selection of seven internal clock signals or event input from external pin
	— Auto-reloading
	Timer F: 16-bit timer
	 Can be used as two independent 8-bit timers
	 Count-up timer with selection of four internal clock signals or event input from external pin
	 Provision for toggle output by means of compare-match function
	Timer G: 8-bit timer
	 Count-up timer with selection of four internal clock signals
	 Incorporates input capture function (built-in noise canceler)
	Watchdog timer
	 Reset signal generated by overflow of 8-bit counter
Serial	Three serial communication interface channels on chip
communication interface	 SCI1: Synchronous serial interface Choice of 8-bit or 16-bit transfer data
	 SCI3-1: 8-bit synchronous/asynchronous serial interface
	Incorporates multiprocessor communication function
	 SCI3-2: 8-bit synchronous/asynchronous serial interface Incorporates multiprocessor communication function
14-bit PWM	Pulse-division PWM output for reduced ripple
	 Can be used as a 14-bit D/A converter by connecting to an external low- pass filter.

6. Wakeup Interrupt Request Register (IWPR)

Bit	7	6	5	4	3	2	1	0
	IWPF7	IWPF6	IWPF5	IWPF4	IWPF3	IWPF2	IWPF1	IWPF0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/(W)*							

Note: * All bits can only be written with 0, for flag clearing.

IWPR is an 8-bit read/write register containing wakeup interrupt request flags. When one of pins \overline{WKP}_7 to \overline{WKP}_0 is designated for wakeup input and a rising or falling edge is input at that pin, the corresponding flag in IWPR is set to 1. A flag is not cleared automatically when the corresponding interrupt is accepted. Flags must be cleared by writing 0.

Bits 7 to 0: Wakeup interrupt request flags (IWPF7 to IWPF0)

Bit n IWPFn	Description	
0	Clearing condition: (in When IWPFn= 1, it is cleared by writing 0	iitial value)
1	Setting condition: When pin WKPn is designated for wakeup input and a rising or falling edg at that pin	je is input

(n = 7 to 0)

7. Wakeup Edge Select Register (WEGR)

Bit	7	6	5	4	3	2	1	0
	WKEGS7	WKEGS6	WKEGS5	WKEGS4	WKEGS3	WKEGS2	WKEGS1	WKEGS0
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W							

WEGR is an 8-bit read/write register that specifies rising or falling edge sensing for pins \overline{WKPn} .

WEGR is initialized to H'00 by a reset.

Interrupt Request		
Flags S	Set to 1	Conditions
IRR1	IRRI4	When PMR1 bit IRQ4 is changed from 0 to 1 while pin \overline{IRQ}_4 is low and IEGR bit IEG4 = 0.
		When PMR1 bit IRQ4 is changed from 1 to 0 while pin \overline{IRQ}_4 is low and IEGR bit IEG4 = 1.
	IRRI3	When PMR1 bit IRQ3 is changed from 0 to 1 while pin \overline{IRQ}_3 is low and IEGR bit IEG3 = 0.
		When PMR1 bit IRQ3 is changed from 1 to 0 while pin \overline{IRQ}_3 is low and IEGR bit IEG3 = 1.
	IRRI2	When PMR1 bit IRQ2 is changed from 0 to 1 while pin \overline{IRQ}_2 is low and IEGR bit IEG2 = 0.
		When PMR1 bit IRQ2 is changed from 1 to 0 while pin \overline{IRQ}_2 is low and IEGR bit IEG2 = 1.
	IRRI1	When PMR1 bit IRQ1 is changed from 0 to 1 while pin \overline{IRQ}_1 is low and IEGR bit IEG1 = 0.
		When PMR1 bit IRQ1 is changed from 1 to 0 while pin \overline{IRQ}_1 is low and IEGR bit IEG1 = 1.
	IRRI0	When PMR3 bit IRQ0 is changed from 0 to 1 while pin \overline{IRQ}_0 is low and IEGR bit IEG0 = 0.
		When PMR3 bit IRQ0 is changed from 1 to 0 while pin \overline{IRQ}_0 is low and IEGR bit IEG0 = 1.
IWPR	IWPF7	When PMR5 bit WKP7 is changed from 0 to 1 while pin \overline{WKP}_7 is low.
	IWPF6	When PMR5 bit WKP6 is changed from 0 to 1 while pin $\overline{\text{WKP}}_6$ is low.
	IWPF5	When PMR5 bit WKP5 is changed from 0 to 1 while pin \overline{WKP}_5 is low.
	IWPF4	When PMR5 bit WKP4 is changed from 0 to 1 while pin \overline{WKP}_4 is low.
	IWPF3	When PMR5 bit WKP3 is changed from 0 to 1 while pin \overline{WKP}_3 is low.
	IWPF2	When PMR5 bit WKP2 is changed from 0 to 1 while pin \overline{WKP}_2 is low.
	IWPF1	When PMR5 bit WKP1 is changed from 0 to 1 while pin \overline{WKP}_1 is low.
	IWPF0	When PMR5 bit WKP0 is changed from 0 to 1 while pin $\overline{\text{WKP}}_0$ is low.

Table 3.5 Conditions Under which Interrupt Request Flag is Set to 1

Figure 3.7 shows the procedure for setting a bit in a port mode register and clearing the interrupt request flag.

When switching a pin function, mask the interrupt before setting the bit in the port mode register. After accessing the port mode register, execute at least one instruction (e.g., NOP), then clear the interrupt request flag from 1 to 0. If the instruction to clear the flag is executed immediately after the port mode register access without executing an intervening instruction, the flag will not be cleared.

6.10.8 Programmer Mode Transition Time

Commands cannot be accepted during the oscillation stabilization period or the programmer mode setup period. After the programmer mode setup time, a transition is made to memory read mode.

Table 6.23	Stipulated Transition Times to Command Wait State
-------------------	---

Item	Symbol	Min	Мах	Unit	Notes
Oscillation stabilization time(crystal oscillator)	T _{osc1}	10	_	ms	Figure 6.20
Oscillation stabilization time(ceramic oscillator)	T _{osc1}	5		ms	
Programmer mode setup time	T _{bmv}	10		ms	
Vcc hold time	T_{dwn}	0		ms	

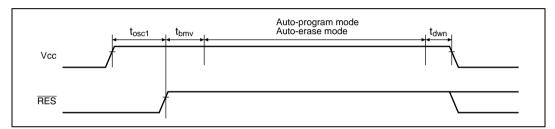


Figure 6.20 Oscillation Stabilization Time, Boot Program Transfer Time, and Power-Down Sequence

6.10.9 Notes on Memory Programming

- 1. When performing programming using programmer mode on a chip that has been programmed/erased in an on-board programming mode, auto-erasing is recommended before carrying out auto-programming.
- 2. The flash memory is initially in the erased state when the device is shipped by Renesas Technology. For other chips for which the erasure history is unknown, it is recommended that auto-erasing be executed to check and supplement the initialization (erase) level.

8.9.3 **Pin Functions**

Table 8.24 shows the port 8 pin functions.

Table 8.24 Port 8 Pin Functions

Pin Pin Functions and Selection Method

 $\begin{array}{ll} P8_7/SEG_{32} & \mbox{The pin function depends on bit PCR8}_n \mbox{ in PCR8 and bits SGS3 to SGS0 in} \\ to P8_0/SEG_{25} & \mbox{LPCR}. \end{array}$

(n = 7 to 0)

SGS3 to SGS0	(001*, 01**,1***	
PCR8n	0	*	
Pin function	P8 _n input pin	P8 _n output pin	SEG _{n+25} output pin

*: Don't care

8.9.4 Pin States

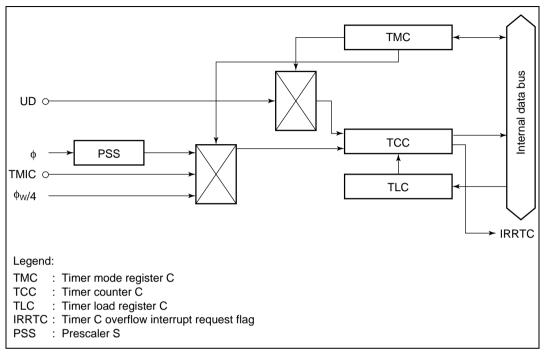

Table 8.25 shows the port 8 pin states in each operating mode.

Table 8.25 Port 8 Pin States

Pins	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P87/SEG32 to P80/SEG25	High- impedance	Retains previous state	Retains previous state	High- impedance	Retains previous state	Functional	Functional

2. Block Diagram

Figure 9.2 shows a block diagram of timer C.

3. Pin Configuration

Table 9.5 shows the timer C pin configuration.

Table 9.5Pin Configuration

Name	Abbr.	I/O	Function
Timer C event input	TMIC	Input	Input pin for event input to TCC
Timer C up/down-count selection	UD	Input	Timer C up/down select

4. Register Configuration

Table 9.6 shows the register configuration of timer C.

Table 9.6Timer C Registers

Name	Abbr.	R/W	Initial Value	Address
Timer mode register C	TMC	R/W	H'18	H'FFB4
Timer counter C	TCC	R	H'00	H'FFB5
Timer load register C	TLC	W	H'00	H'FFB5
Clock stop register 1	CKSTPR1	R/W	H'FF	H'FFFA

9.3.2 Register Descriptions

1. Timer Mode Register C (TMC)

Bit	7	6	5	4	3	2	1	0
	TMC7	TMC6	TMC5	—	—	TMC2	TMC1	TMC0
Initial value	0	0	0	1	1	0	0	0
Read/Write	R/W	R/W	R/W	_	_	R/W	R/W	R/W

TMC is an 8-bit read/write register for selecting the auto-reload function and input clock, and performing up/down-counter control.

Upon reset, TMC is initialized to H'18.

Bit 7: Auto-reload function select (TMC7)

Bit 7 selects whether timer C is used as an interval timer or auto-reload timer.

Bit 7 TMC7	Description	
0	Interval timer function selected	(initial value)
1	Auto-reload function selected	

2. Read Access

In access to TCF, when the upper byte is read the upper-byte data is transferred directly to the CPU and the lower-byte data is transferred to TEMP. Next, when the lower byte is read, the lower-byte data in TEMP is transferred to the CPU.

In access to OCRF, when the upper byte is read the upper-byte data is transferred directly to the CPU. When the lower byte is read, the lower-byte data is transferred directly to the CPU.

Figure 9.5 shows an example in which TCF is read when it contains H'AAFF.

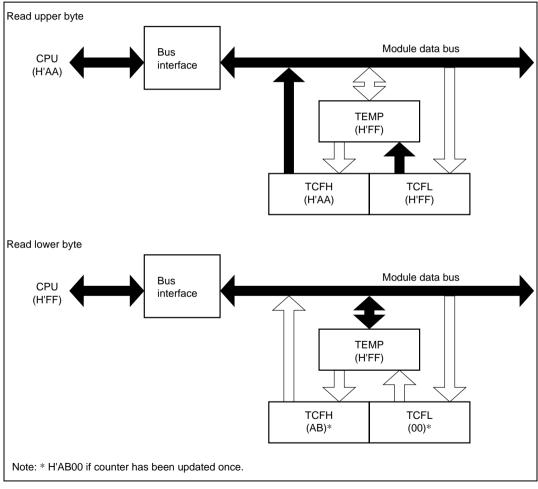


Figure 9.5 Read Access to TCF (TCF \rightarrow CPU)

9.5.6 Timer G Application Example

Using timer G, it is possible to measure the high and low widths of the input capture input signal as absolute values. For this purpose, CCLR1 and CCLR0 should both be set to 1 in TMG.

Figure 9.16 shows an example of the operation in this case.

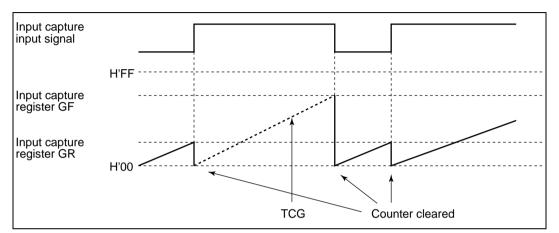


Figure 9.16 Timer G Application Example

9.7.4 Asynchronous Event Counter Operation Modes

Asynchronous event counter operation modes are shown in table 9.21.

Table 9.21 Asynchronous Event Counter Operation Modes

Reset	Active	Sleep	Watch	Subactive	Subsleep	Standby	Module Standby
Reset	Functions	Functions	Held*	Functions	Functions	Held*	Held
Reset	Functions	Functions	Functions*	Functions	Functions	Functions*	Halted
Reset	Functions	Functions	Functions*	Functions	Functions	Functions*	Halted
	Reset Reset	ResetFunctionsResetFunctions	ResetFunctionsFunctionsResetFunctionsFunctions	ResetFunctionsFunctionsHeld*ResetFunctionsFunctionsFunctions*	ResetFunctionsFunctionsHeld*FunctionsResetFunctionsFunctionsFunctions*Functions	ResetFunctionsFunctionsHeld*FunctionsFunctionsResetFunctionsFunctionsFunctions*FunctionsFunctions	ResetFunctionsFunctionsHeld*FunctionsFunctionsHeld*ResetFunctionsFunctionsFunctions*FunctionsFunctions*Functions*

Note: * When an asynchronous external event is input, the counter increments but the counter overflow H/L flags are not affected.

9.7.5 Application Notes

- 1. When reading the values in ECH and ECL, the correct value will not be returned if the event counter increments during the read operation. Therefore, if the counter is being used in the 8-bit mode, clear bits CUEH and CUEL in ECCSR to 0 before reading ECH or ECL. If the counter is being used in the 16-bit mode, clear CUEL only to 0 before reading ECH or ECL.
- 2. In the H8/3847R Group, if the internal power supply step-down circuit is not used, the maximum clock frequency to be input to the AEVH and AEVL pins is 16 MHz when Vcc = 4.5 to 5.5 V, 10 MHz when Vcc = 2.7 to 5.5 V, and 4 MHz when Vcc = 1.8 to 5.5 V. If the internal power step-down circuit is used, the maximum clock frequency to be input is 10 MHz when Vcc = 2.7 to 5.5 V, and 4 MHz when Vcc = 1.8 to 5.5 V. In the H8/3847S Group, the maximum clock frequency to be input is 10 MHz when Vcc = 1.8 to 3.6 V. In the H8/38347 Group and H8/38447 Group, the maximum clock frequency to be input is 16 MHz when Vcc = 2.7 to 5.5 V. In addition, ensure that the high and low widths of the clock are at least 32 ns. The duty cycle is immaterial.

Bit 3: Parity error (PER)

Bit 3 indicates that a parity error has occurred during reception with parity added in asynchronous mode.

Bit 3 PER		Description	
0		Reception in progress or completed ^{*1} Clearing condition: After reading PER = 1, cleared by writing 0 to PER	(initial value)
1		A parity error has occurred during reception ^{*2} Setting condition: When the number of 1 bits in the receive data plus parity bit does not match the parity designated by bit PM in the serial mode register (SMR)	
Notes:	1.	When bit RE in SCR3 is cleared to 0, bit PER is not affected and retains i state.	ts previous
	2.	Receive data in which it a parity error has occurred is still transferred to R	RDR. but bit

 Receive data in which it a parity error has occurred is still transferred to RDR, but bit RDRF is not set. Reception cannot be continued with bit PER set to 1. In synchronous mode, neither transmission nor reception is possible when bit FER is set to 1.

Bit 2: Transmit end (TEND)

Bit 2 indicates that bit TDRE is set to 1 when the last bit of a transmit character is sent.

Bit 2 is a read-only bit and cannot be modified.

Bit 2 TEND	Description	
0	Transmission in progress Clearing conditions: After reading TDRE = 1, cleared by writing 0 to TDRE When data is written to TDR by an instruction	
1	Transmission ended Setting conditions: When bit TE in SCR3 is cleared to 0 When bit TDRE is set to 1 when the last bit of a transmit character is sent	(initial value)

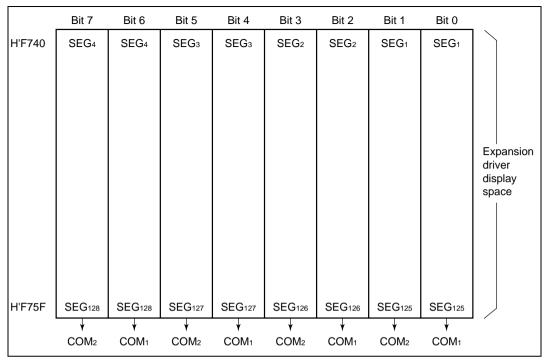
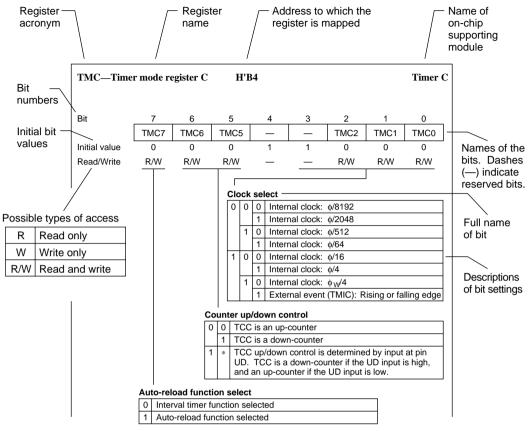


Figure 13.11 LCD RAM Map with Segment Externally Expanded (SGX = "1", SGS3 to SGS0 = "0000" 1/2 duty)



Instruc- tion	Mnemonic	Instruction Fetch I	Branch Addr. Read J	Stack Operation K	Word Data Access M	Internal Operation N
SUB	SUB.B Rs, Rd	1				
	SUB.W Rs, Rd	1				
SUBS	SUBS.W #1, Rd	1				
	SUBS.W #2, Rd	1				
POP	POP Rd	1		1		2
PUSH	PUSH Rs	1		1		2
SUBX	SUBX.B #xx:8, Rd	1				
	SUBX.B Rs, Rd	1				
XOR	XOR.B #xx:8, Rd	1				
	XOR.B Rs, Rd	1				
XORC	XORC #xx:8, CCR	1				

Notes: 1. n: Initial value in R4L. The source and destination operands are accessed n + 1 times each.

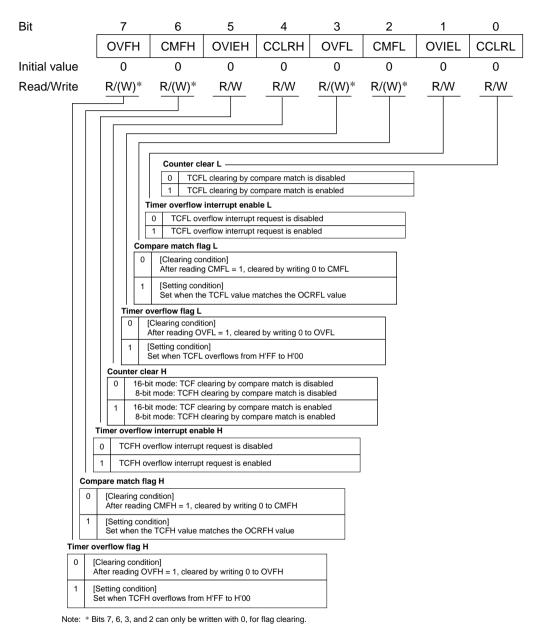
2. 1 in the H8/3847R Group and 0 in the H8/3847S Group, H8/38347 Group, and H8/38447 Group.

B.2 Functions

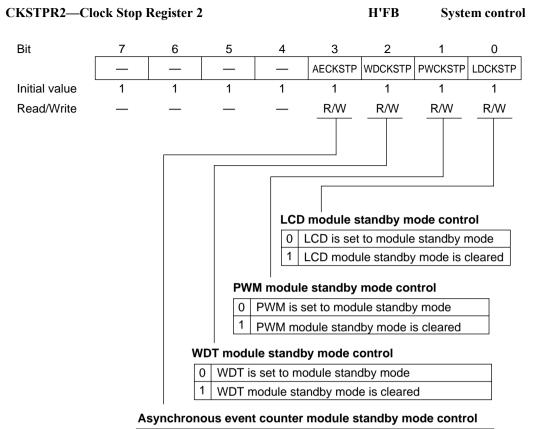
*: Don't care

EBR-Erase Block Register

H'F023 Flash Memory


Bit	7	6	5	4	3	2	1	0	
	EB7	EB6	EB5	EB4	EB3	EB2	EB1	EB0	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
			Blocks 71	to 0					
	0 When a block of EB7 to EB0 is not selected (initial value)								
		1 When a block of EB7 to EB0 is selected							

Note: Set the bit of EBR to H'00 when erasing.


FENR—Flash N	FENR—Flash Memory Enable Register H'F02B									
Bit	7	6	5	4	3	2	1	0		
	FLSHE					_		_		
Initial value	0	0	0	0	0	0	0	0		
Read/Write	R/W	_	_	_	_			_		
	Flash I	Memory C	Control Re	egister En	able					
	0 Th	e flash me	emory con	trol registe	er cannot	be accesse	d			
	1 Th	e flash me	emory con	trol registe	er can be	accessed				

TCSRF—Timer Control/Status Register F

0	Asynchronous event counter is set to module standby mode
---	--

1 Asynchronous event counter module standby mode is cleared

Product T	уре			Product Code	Mark Code	Package (Package Code)		
H8/38447	H8/38442	Mask	Regular	HD64338442H	38442H	100-pin QFP (FP-100B)		
Group		ROM versions	products	HD64338442W	38442W	100-pin TQFP (TFP- 100G)		
				HD64338442X	38442X	100-pin TQFP (TFP-100B)		
				HCD64338442	—	Die		
			Wide-	HD64338442HW	38442H	100-pin QFP (FP-100B)		
			range specifi- cation	HD64338442WW	38442W	100-pin TQFP (TFP- 100G)		
			products	HD64338442XW	38442X	100-pin TQFP (TFP-100B)		
	H8/38443	Mask	Regular	HD64338443H	38443H	100-pin QFP (FP-100B)		
		ROM versions	products	HD64338443W	38443W	100-pin TQFP (TFP- 100G)		
				HD64338443X	38443X	100-pin TQFP (TFP-100B)		
				HCD64338443	_	Die		
			Wide-	HD64338443HW	38443H	100-pin QFP (FP-100B)		
			range specifi- cation	HD64338443WW	38443W	100-pin TQFP (TFP- 100G)		
			products	HD64338443XW	38443X	100-pin TQFP (TFP-100B)		
	H8/38444		Regular	HD64338444H	38444H	100-pin QFP (FP-100B)		
		ROM versions	products	HD64338444W	38444W	100-pin TQFP (TFP- 100G)		
				HD64338444X	38444X	100-pin TQFP (TFP-100B		
				HCD64338444		Die		
			Wide-	HD64338444HW	38444H	100-pin QFP (FP-100B)		
			range specifi- cation	HD64338444WW	38444W	100-pin TQFP (TFP- 100G)		
			products	HD64338444XW	38444X	100-pin TQFP (TFP-100B)		
		F-ZTAT	Regular	HD64F38444H	F38444H	100-pin QFP (FP-100B)		
		versions	products	HD64F38444W	F38444W	100-pin TQFP (TFP- 100G)		
				HD64F38444X	F38444X	100-pin TQFP (TFP-100B)		
			Wide-	HD64F38444HW	F38444H	100-pin QFP (FP-100B)		
			range specifi- cation	HD64F38444W W	F38444W	100-pin TQFP (TFP- 100G)		
			products	HD64F38444XW	F38444X	100-pin TQFP (TFP-100B)		

The specifications of the chip tray for the HCD6433847S, HCD6433846S, HCD6433845S, and HCD6433844S are shown in figure I.2.

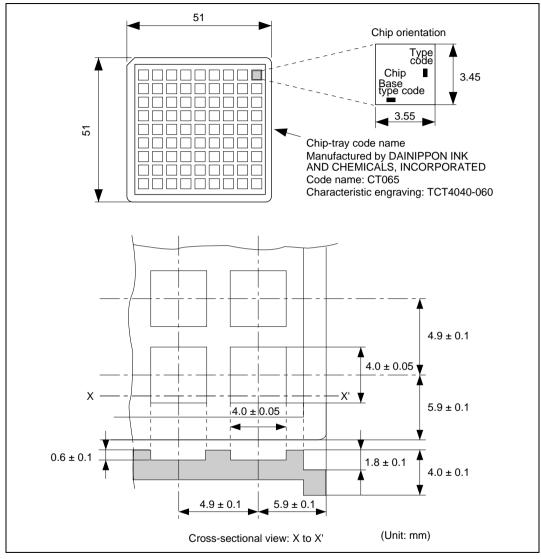


Figure I.2 Specifications of Chip Tray