

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H8/300L
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI
Peripherals	LCD, PWM, WDT
Number of I/O	71
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df38344xv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 9.2	Block Diagram of Timer C	. 267
Figure 9.3	Block Diagram of Timer F	. 276
Figure 9.4	Write Access to TCR (CPU \rightarrow TCF)	. 286
Figure 9.5	Read Access to TCF (TCF \rightarrow CPU)	. 287
Figure 9.6	TMOFH/TMOFL Output Timing	. 289
Figure 9.7	Clear Interrupt Request Flag when Interrupt Factor Generation Signal	
	is Valid	. 293
Figure 9.8	Block Diagram of Timer G	. 295
Figure 9.9	Noise Canceler Block Diagram	. 301
Figure 9.10	Noise Canceler Timing (Example)	. 302
Figure 9.11	Input Capture Input Timing (without Noise Cancellation Function)	. 304
Figure 9.12	Input Capture Input Timing (with Noise Cancellation Function)	. 304
Figure 9.13	Timing of Input Capture by Input Capture Input	. 305
Figure 9.14	TCG Clear Timing	. 305
Figure 9.15	Port Mode Register Manipulation and Interrupt Enable Flag Clearing	
	Procedure	. 310
Figure 9.16	Timer G Application Example	. 311
Figure 9.17	Block Diagram of Watchdog Timer	. 312
Figure 9.18	Typical Watchdog Timer Operations (Example)	. 318
Figure 9.19	Block Diagram of Asynchronous Event Counter	. 321
Figure 9.20	Example of Software Processing when Using ECH and ECL as 16-Bit	
	Event Counter	. 327
Figure 9.21	Example of Software Processing when Using ECH and ECL as 8-Bit Event	
	Counters	. 328

Section 10 Serial Communication Interface

Figure 10.1	SCI1 Block Diagram	333
Figure 10.2	Transfer Format	340
Figure 10.3	Example of SSB Connections	343
Figure 10.4	Transfer Format (When SNC1 = 0, SNC0 = 1, MRKON = 1)	344
Figure 10.5	HOLD TAIL and LATCH TAIL Output Waveforms	344
Figure 10.6	SCI3 Block Diagram	349
Figure 10.7 (a)	RDRF Setting and RXI Interrupt	378
Figure 10.7 (b)	TDRE Setting and TXI Interrupt	378
Figure 10.7 (c)	TEND Setting and TEI Interrupt	378
Figure 10.8	Data Format in Asynchronous Communication	379
Figure 10.9	Phase Relationship between Output Clock and Transfer Data	
	(Asynchronous Mode) (8-bit data, parity, 2 stop bits)	381
Figure 10.10	Example of SCI3 Initialization Flowchart	382
Figure 10.11	Example of Data Transmission Flowchart (Asynchronous Mode)	383

Rev. 6.00 Aug 04, 2006 page xxv of xxxvi

Figure 13.5	LCD RAM Map with Segments Not Externally Expanded (1/4 Duty)	444
Figure 13.6	LCD RAM Map with Segments Not Externally Expanded (1/3 Duty)	445
Figure 13.7	LCD RAM Map with Segments Not Externally Expanded (1/2 Duty)	446
Figure 13.8	LCD RAM Map with Segments Not Externally Expanded (Static Mode)	447
Figure 13.9	LCD RAM Map with Segment Externally Expanded	
	(SGX = "1", SGS3 to SGS0 = "0000" 1/4 duty)	448
Figure 13.10	LCD RAM Map with Segment Externally Expanded	
	(SGX = "1", SGS3 to SGS0 = "0000" 1/3 duty)	449
Figure 13.11	LCD RAM Map with Segment Externally Expanded	
	(SGX = "1", SGS3 to SGS0 = "0000" 1/2 duty)	450
Figure 13.12	LCD RAM Map with Segment Externally Expanded	
	(SGX = "1", SGS3 to SGS0 = "0000" static)	451
Figure 13.13	LCD Drive Power Supply Unit	452
Figure 13.14	Example of Low-Power-Consumption LCD Drive Operation	454
Figure 13.15	Output Waveforms for Each Duty Cycle (A Waveform)	455
Figure 13.16	Output Waveforms for Each Duty Cycle (B Waveform)	456
Figure 13.17	Connection of External Split-Resistance	458
Figure 13.18	Connection to HD66100	460

Section 14 Power Supply Circuit

Figure 14.1	Power Supply Connection when Internal Step-Down Circuit is Used	461
Figure 14.2	Power Supply Connection when Internal Step-Down Circuit is Not Used	462

Section 15 Electrical Characteristics

Figure 15.1	Clock Input Timing	535
Figure 15.2	RES Low Width	535
Figure 15.3	Input Timing	535
Figure 15.4	UD Pin Minimum Modulation Width Timing	536
Figure 15.5	SCI1 Input/Output Timing	536
Figure 15.6	SCK3 Input Clock Timing	537
Figure 15.7	SCI3 Synchronous Mode Input/Output Timing	537
Figure 15.8	Segment Expansion Signal Timing	538
Figure 15.9	Output Load Condition	539
Figure 15.10	Resonator Equivalent Circuit	540
Figure 15.11	Recommended Resonators	540

Appendix C I/O Port Block Diagrams

Figure C.1 (a)	Port 1 Block Diagram (Pins P1 ₇ to P1 ₄)	630
Figure C.1 (b)	Port 1 Block Diagram (Pin P1 ₃)	631
Figure C.1 (c)	Port 1 Block Diagram (Pin P1 ₂ , P1 ₁)	632

Rev. 6.00 Aug 04, 2006 page xxvii of xxxvi

		Coordinates*	Coordinates*			
Pad No.	Pad Name	X (μm)	Υ (μm)			
63	P74/SEG21	2866	-76			
64	P75/SEG22	2866	112			
65	P76/SEG23	2866	300			
66	P77/SEG24	2866	528			
67	P80/SEG25	2866	756			
68	P81/SEG26	2866	944			
69	P82/SEG27	2866	1132			
70	P83/SEG28	2866	1318			
71	P84/SEG29	2866	1506			
72	P85/SEG30	2866	1694			
73	P8 ₆ /SEG ₃₁	2866	1882			
74	P87/SEG32	2866	2070			
75	P90/SEG33	2866	2367			
76	P91/SEG34	2866	2931			
77	P9 ₂ /SEG ₃₅	2654	2931			
78	P93/SEG36	1998	2931			
79	P9 ₄ /SEG ₃₇ /M	1803	2931			
80	P95/SEG38/DO	1396	2931			
81	P96/SEG39/CL2	1209	2931			
82	P97/SEG40/CL1	977	2931			
83	P40/SCK32	631	2931			
84	P4 ₁ /RXD ₃₂	456	2931			
85	P4 ₂ /TXD ₃₂	284	2931			
86	P4 ₃ /IRQ ₀	109	2931			
87	AV _{CC}	-64	2931			
88	PB ₀ /AN ₀	-236	2931			
89	PB ₁ /AN ₁	-409	2931			
90	PB ₂ /AN ₂	-581	2931			
91	PB ₃ /AN ₃	-753	2931	-		
92	PB ₄ /AN ₄	-925	2931			
93	PB ₅ /AN ₅	-1097	2931			
94	PB ₆ /AN ₆	-1268	2931			

Section 2 CPU

Rev. 6.00 Aug 04, 2006 page 56 of 680 REJ09B0145-0600

2.5.7 System Control Instructions

Table 2.10 describes the system control instructions. Figure 2.9 shows their object code formats.

Instruction	n s	Size [*]	Function					
RTE	-	_	Returns from an exception-handling routine					
SLEEP	-	_	Causes a transition from active mode to a power-down mode. See section 5, Power-Down Modes, for details.					
LDC		В	$Rs \to CCR, \ \ \text{\#IMM} \to CCR$					
			Moves immediate data or general register contents to the condition code register					
STC		В	$CCR \rightarrow Rd$					
			Copies the condition code register to a specified general register					
ANDC		В	$CCR \land \#IMM \to CCR$					
			Logically ANDs the condition code register with immediate data					
ORC		В	$CCR \lor \#IMM \to CCR$					
			Logically ORs the condition code register with immediate data					
XORC		В	$CCR \oplus \#IMM \to CCR$					
			Logically exclusive-ORs the condition code register with immediate data					
NOP	-		$PC + 2 \rightarrow PC$					
			Only increments the program counter					
Note: *	Size: B:	Operand size Byte						

Table 2.10 System Control Instructions

Rev. 6.00 Aug 04, 2006 page 67 of 680 REJ09B0145-0600

Bit n: WKPn edge select (WKEGSn)

Bit n selects \overline{WKP} n pin input sensing.

Bit n WKEGSn	Description	
0	WKPn pin falling edge detected	(initial value)
1	WKPn pin rising edge detected	

(n = 7 to 0)

3.3.3 External Interrupts

There are 13 external interrupts: IRQ4 to IRQ0 and WKP7 to WKP0.

1. Interrupts WKP₇ to WKP₀

Interrupts WKP₇ to WKP₀ are requested by either rising or falling edge input to pins $\overline{WKP_7}$ to $\overline{WKP_0}$. When these pins are designated as pins $\overline{WKP_7}$ to $\overline{WKP_0}$ in port mode register 5 and a rising or falling edge is input, the corresponding bit in IWPR is set to 1, requesting an interrupt. Recognition of wakeup interrupt requests can be disabled by clearing the IENWP bit to 0 in IENR1. These interrupts can all be masked by setting the I bit to 1 in CCR.

When WKP_7 to WKP_0 interrupt exception handling is initiated, the I bit is set to 1 in CCR. Vector number 9 is assigned to interrupts WKP_7 to WKP_0 . All eight interrupt sources have the same vector number, so the interrupt-handling routine must discriminate the interrupt source.

2. Interrupts IRQ₄ to IRQ₀

Interrupts IRQ4 to IRQ₀ are requested by input signals to pins $\overline{\text{IRQ}}_4$ to $\overline{\text{IRQ}}_0$. These interrupts are detected by either rising edge sensing or falling edge sensing, depending on the settings of bits IEG₄ to IEG₀ in IEGR.

When these pins are designated as pins \overline{IRQ}_4 to \overline{IRQ}_0 in port mode register 3 and 1 and the designated edge is input, the corresponding bit in IRR1 is set to 1, requesting an interrupt. Recognition of these interrupt requests can be disabled individually by clearing bits IEN4 to IEN0 to 0 in IENR1. These interrupts can all be masked by setting the I bit to 1 in CCR.

When IRQ_4 to IRQ_0 interrupt exception handling is initiated, the I bit is set to 1 in CCR. Vector numbers 8 to 4 are assigned to interrupts IRQ_4 to IRQ_0 . The order of priority is from IRQ_0 (high) to IRQ_4 (low). Table 3.2 gives details.

5.7 Active (Medium-Speed) Mode

5.7.1 Transition to Active (Medium-Speed) Mode

If the $\overline{\text{RES}}$ pin is driven low, active (medium-speed) mode is entered. If the LSON bit in SYSCR2 is set to 1 while the LSON bit in SYSCR1 is cleared to 0, a transition to active (medium-speed) mode results from IRQ₀, IRQ₁, or WKP₇ to WKP₀ interrupts in standby mode, timer A, timer F, timer G, IRQ₀, or WKP₇ to WKP₀ interrupts in watch mode, or any interrupt in sleep mode. A transition to active (medium-speed) mode does not take place if the I bit of CCR is set to 1 or the particular interrupt is disabled in the interrupt enable register.

The CPU may operate at a 1/2 state faster timing at transition to active (medium-speed) mode.

5.7.2 Clearing Active (Medium-Speed) Mode

Active (medium-speed) mode is cleared by a SLEEP instruction.

• Clearing by SLEEP instruction

A transition to standby mode takes place if the SLEEP instruction is executed while the SSBY bit in SYSCR1 is set to 1, the LSON bit in SYSCR1 is cleared to 0, and the TMA3 bit in TMA is cleared to 0. The system goes to watch mode if the SSBY bit in SYSCR1 is set to 1 and bit TMA3 in TMA is set to 1 when a SLEEP instruction is executed.

When both SSBY and LSON are cleared to 0 in SYSCR1 and a SLEEP instruction is executed, sleep mode is entered. Direct transfer to active (high-speed) mode or to subactive mode is also possible. See section 5.8, Direct Transfer, below for details.

• Clearing by $\overline{\text{RES}}$ pin

When the $\overline{\text{RES}}$ pin is driven low, a transition is made to the reset state and active (medium-speed) mode is cleared.

5.7.3 Operating Frequency in Active (Medium-Speed) Mode

Operation in active (medium-speed) mode is clocked at the frequency designated by the MA1 and MA0 bits in SYSCR1.

6.7.2 Programming/Erasing in User Program Mode

The term user mode refers to the status when a user program is being executed. On-board programming/erasing of an individual flash memory block can also be performed in user program mode by branching to a user program/erase control program. The user must set branching conditions and provide on-board means of supplying programming data. The flash memory must contain the user program/erase control program or a program that provides the user program/erase control program from external memory. As the flash memory itself cannot be read during programming/erasing, transfer the user program/erase control program to on-chip RAM, as in boot mode. Figure 6.9 shows a sample procedure for programming/erasing in user program mode. Prepare a user program/erase control program in accordance with the description in section 6.8, Flash Memory Programming/Erasing.

Figure 6.9 Programming/Erasing Flowchart Example in User Program Mode

6.8 Flash Memory Programming/Erasing

A software method using the CPU is employed to program and erase flash memory in the onboard programming modes. Depending on the FLMCR1 setting, the flash memory operates in one of the following four modes: Program mode, program-verify mode, erase mode, and erase-verify mode. The programming control program in boot mode and the user program/erase control

program in user program mode use these operating modes in combination to perform programming/erasing. Flash memory programming and erasing should be performed in accordance with the descriptions in section 6.8.1, Program/Program-Verify and section 6.8.2, Erase/Erase-Verify, respectively.

6.8.1 Program/Program-Verify

When writing data or programs to the flash memory, the program/program-verify flowchart shown in figure 6.10 should be followed. Performing programming operations according to this flowchart will enable data or programs to be written to the flash memory without subjecting the chip to voltage stress or sacrificing program data reliability.

- 1. Programming must be done to an empty address. Do not reprogram an address to which programming has already been performed.
- 2. Programming should be carried out 128 bytes at a time. A 128-byte data transfer must be performed even if writing fewer than 128 bytes. In this case, H'FF data must be written to the extra addresses.
- 3. Prepare the following data storage areas in RAM: A 128-byte programming data area, a 128byte reprogramming data area, and a 128-byte additional-programming data area. Perform reprogramming data computation according to table 6.11, and additional programming data computation according to table 6.12.
- 4. Consecutively transfer 128 bytes of data in byte units from the reprogramming data area or additional-programming data area to the flash memory. The program address and 128-byte data are latched in the flash memory. The lower 8 bits of the start address in the flash memory destination area must be H'00 or H'80.
- 5. The time during which the P bit is set to 1 is the programming time. Figure 6.12 shows the allowable programming times.
- 6. The watchdog timer (WDT) is set to prevent overprogramming due to program runaway, etc. An overflow cycle of approximately 6.6 ms is allowed.
- 7. For a dummy write to a verify address, write 1-byte data H'FF to an address whose lower 1 bit is b'0. Verify data can be read in word size from the address to which a dummy write was performed.
- 8. The maximum number of repetitions of the program/program-verify sequence of the same bit is 1,000.

8.7 Port 6

8.7.1 Overview

Port 6 is an 8-bit I/O port. The port 6 pin configuration is shown in figure 8.6.

8.7.2 Register Configuration and Description

Table 8.17 shows the port 6 register configuration.

Table 8.17Port 6 Registers

Name	Abbr.	R/W	Initial Value	Address
Port data register 6	PDR6	R/W	H'00	H'FFD9
Port control register 6	PCR6	W	H'00	H'FFE9
Port pull-up control register 6	PUCR6	R/W	H'00	H'FFE3

SMR						Data Transfer Format			
bit 7 COM	bit 6 CHR	bit 2 MP	bit 5 PE	bit 3 STOP	Mode	Data Length	Multiprocessor Bit	Parity Bit	Stop Bit Length
0	0	0	0	0	Asynchronous	8-bit data	No	No	1 bit
0	0	0	0	1	mode				2 bits
0	0	0	1	0	-			Yes	1 bit
0	0	0	1	1	-				2 bits
0	1	0	0	0	-	7-bit data	-	No	1 bit
0	1	0	0	1	-				2 bits
0	1	0	1	0	-			Yes	1 bit
0	1	0	1	1	-				2 bits
0	0	1	0	0	-	8-bit data	Yes	No	1 bit
0	0	1	0	1	-				2 bits
0	0	1	1	0	-	5-bit data	No		1 bit
0	0	1	1	1	-				2 bits
0	1	1	0	0	-	7-bit data	Yes		1 bit
0	1	1	0	1	-				2 bits
0	1	1	1	0	-	5-bit data	No	Yes	1 bit
0	1	1	1	1	-				2 bits
1	*	0	*	*	Synchronous mode	8-bit data	No	No	No

Table 10.11 SMR Settings and Corresponding Data Transfer Formats

*: Don't care

Bit 4: Display data control (DISP)

Bit 4 specifies whether the LCD RAM contents are displayed or blank data is displayed regardless of the LCD RAM contents.

Bit 4 DISP	Description	
0	Blank data is displayed	(initial value)
1	LCD RAM data is display	

Bits 3 to 0: Frame frequency select 3 to 0 (CKS3 to CKS0)

Bits 3 to 0 select the operating clock and the frame frequency. In subactive mode, watch mode, and subsleep mode, the system clock (ϕ) is halted, and therefore display operations are not performed if one of the clocks from $\phi/2$ to $\phi/256$ is selected. If LCD display is required in these modes, ϕw , $\phi w/2$, or $\phi w/4$ must be selected as the operating clock.

Bit 3	Bit 2	Bit 1	Bit 0		Frame Frequency ^{*2}	
CKS3	CKS2	CKS1	CKS0	Operating Clock	φ = 2 MHz	φ = 250 kHz ^{*1}
0	*	0	0	φw	128 Hz ^{*3} (initial v	alue)
0	*	0	1	φw/2	64 Hz ^{*3}	
0	*	1	*	φw/4	32 Hz ^{*3}	
1	0	0	0	φ/2	_	244 Hz
1	0	0	1	φ/4	977 Hz	122 Hz
1	0	1	0	φ/8	488 Hz	61 Hz
1	0	1	1	ф/16	244 Hz	30.5 Hz
1	1	0	0	ф/32	122 Hz	_
1	1	0	1	ф/64	61 Hz	_
1	1	1	0	ф/128	30.5 Hz	—
1	1	1	1	ф/256	_	_

*: Don't care

Notes: 1. This is the frame frequency in active (medium-speed, ϕ osc/16) mode when ϕ = 2 MHz.

- 2. When 1/3 duty is selected, the frame frequency is 4/3 times the value shown.
- 3. This is the frame frequency when ϕw = 32.768 kHz.

Figure 13.9 LCD RAM Map with Segment Externally Expanded (SGX = "1", SGS3 to SGS0 = "0000" 1/4 duty)

15.2.5 LCD Characteristics

Table 15.7 shows the LCD characteristics.

Table 15.7 LCD Characteristics

 $V_{CC} = 1.8 \text{ V}$ to 5.5 V, $AV_{CC} = 1.8 \text{ V}$ to 5.5 V, $V_{SS} = AV_{SS} = 0.0 \text{ V}$, $Ta = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}^{*3}$ (including subactive mode) unless otherwise indicated.

		Applicable	Values	5		Test		
ltem	Symbol	Pins	Min	Тур	Max	Unit	Conditions	Notes
Segment driver drop voltage	V _{DS}	SEG ₁ to SEG ₄₀	_	_	0.6	V	$I_D = 2 \ \mu A$ V ₁ = 2.7 V to 5.5 V	*1
Common driver drop voltage	V _{DC}	COM ₁ to COM ₄	_	_	0.3	V	$I_D = 2 \ \mu A$ V ₁ = 2.7 V to 5.5 V	*1
LCD power supply split- resistance	R _{LCD}		0.5	3.0	9.0	MΩ	Between V_1 and V_{SS}	
Liquid crystal display voltage	V _{LCD}	V ₁	2.2		5.5	V		*2

Notes: 1. The voltage drop from power supply pins V₁, V₂, V₃, and V_{SS} to each segment pin or common pin.

2. When the liquid crystal display voltage is supplied from an external power source, ensure that the following relationship is maintained: $V_1 \ge V_2 \ge V_3 \ge V_{SS}$.

3. The guaranteed temperature as an electrical characteristic for Die products is 75°C.

15.4.4 A/D Converter Characteristics

Table 15.14 shows the A/D converter characteristics.

Table 15.14 A/D Converter Characteristics

 $V_{CC} = 1.8$ V to 5.5 V, $V_{SS} = AV_{SS} = 0.0$ V, $Ta = -40^{\circ}C$ to $+85^{\circ}C$ unless otherwise indicated.

		Applicable	Values			_		
ltem	Symbol	Pins	Min	Тур	Max	Unit	Test Condition	Notes
Analog power supply voltage	AV _{CC}	AV _{CC}	1.8	_	5.5	V		*1
Analog input voltage	AV_{IN}	AN_0 to AN_{11}	- 0.3	—	AV _{CC} + 0.3	V		
Analog power	Alope	AV _{CC}	_	_	1.5	mA	AV _{CC} = 5.0 V	
supply current	AI _{STOP1}	AV _{cc}	—	600	_	μA		*2
	_							Reference value
	AI _{STOP2}	AV _{CC}	_	_	5	μA		*3
Analog input capacitance	C_{AIN}	AN_0 to AN_{11}	—	—	15.0	pF		
Allowable signal source impedance	R _{AIN}		_	—	10.0	kΩ		
Resolution (data length)			—	—	10	bit		
Nonlinearity error			_	—	±2.5	LSB	AV_{CC} = 2.7 V to 5.5 V V _{CC} = 2.7 V to 5.5 V	*4
			-	_	±5.5		AV_{CC} = 2.0 V to 5.5 V V _{CC} = 2.0 V to 5.5 V	
			—	—	±7.5	_	Except the above	*5
Quantization error			—	_	±0.5	LSB		
Absolute accuracy			_	_	±3.0	LSB	AV _{CC} = 2.7 V to 5.5 V V _{CC} = 2.7 V to 5.5 V	*4
			_	_	±6.0	-	AV_{CC} = 2.0 V to 5.5 V V _{CC} = 2.0 V to 5.5 V	_
			_	_	±8.0		Except the above	*5
Conversion time			12.4	_	124	μs	$AV_{CC} = 2.7 V \text{ to } 5.5 V$ $V_{CC} = 2.7 V \text{ to } 5.5 V$	*4
			62	_	124		Except the above	

Notes: 1. Set $AV_{CC} = V_{CC}$ when the A/D converter is not used.

2. $AI_{\mbox{\scriptsize STOP1}}$ is the current in active and sleep modes while the A/D converter is idle.

3. Al_{STOP2} is the current at reset and in standby, watch, subactive, and subsleep modes while the A/D converter is idle.

4. When internal power supply step-down circuit is not used.

5. Conversion time: 62 µs

Section 15 Electrical Characteristics

			Values				
Item	Symbol	Applicable Pins	Min	Тур	Max	Unit Test Condition	Notes
Allowable output high current (total)	Σ – Ι _{ΟΗ}	All output pins			10.0	mA	

Notes: Connect the TEST pin to V_{SS} .

1. Pin States during Current Dissipation Measurement.

			Other	Constant-		
Mode	RES Pin	Internal State	Pins	Voltage	Oscillator Pins	
Active (high-speed) mode	V _{CC}	Only CPU Operates	V _{cc}	Halted	System clock oscillator: Crystal	
Active (medium- speed) mode					Subclock oscillator: Pin X ₁ = GND	
Sleep mode	V _{cc}	Only timers operate	V _{cc}	-		
Subactive mode	V _{cc}	Only CPU Operates	V_{CC}	Halted	System clock oscillator:	
Subsleep mode	V _{cc}	Only timers operate, CPU stops	V _{cc}	Halted	crystal Subclock oscillator:	
Watch mode	V _{CC}	Only time base operates, CPU stops	V _{cc}	Halted	crystal	
Standby mode	V _{cc}	CPU and timers both stop	V _{cc}	Halted	System clock oscillator: crystal	
					Subclock oscillator: Pin X ₁ = GND	

2. Excludes current in pull-up MOS transistors and output buffers.

3. The maximum current consumption value (standard) is $1.1 \times typ$.

		Applicable	Values				Reference	
Item	Symbol	Pins	Min	Тур	Мах	Unit	Test Condition	Figure
Oscillation stabilization time	t _{rc}	OSC ₁ , OSC ₂	_	4.0	_		Crystal Oscillator Parameters Except the above	Figure 15.10
			—	—	50		Except the above	
		X1, X2	_	_	2	S	$V_{\rm CC}$ = 2.2 V to 3.6 V	
			_	4			Except the above	
External clock	t _{CPH}	OSC ₁	40			ns	$V_{\rm CC}$ = 2.7 V to 3.6 V	Figure 15.1
high width			100				$V_{\rm CC}$ = 1.8 V to 3.6 V	_
		X ₁	_	15.26 or 13.02	_	μs		_
External clock	t _{CPL}	OSC ₁	40	_		ns	$V_{\rm CC}$ = 2.7 V to 3.6 V	Figure 15.1
low width			100				$V_{\rm CC}$ = 1.8 V to 3.6 V	_
		X ₁	—	15.26 or 13.02	_	μs		
External clock	t _{CPr}	OSC ₁	_	_	10	ns	V_{CC} = 2.7 V to 3.6 V	Figure 15.1
rise time			_	_	25	_	$V_{\rm CC}$ = 1.8 V to 3.6 V	
		X ₁	—	_	55.0	ns		Figure 15.1
External clock	t _{CPf}	OSC ₁	_	_	10	ns	$V_{\rm CC}$ = 2.7 V to 3.6 V	Figure 15.1
fall time			—		25		V_{CC} = 1.8 V to 3.6 V	
		X ₁	_	_	55.0	ns		Figure 15.1
Pin RES low width	t _{REL}	RES	10	_	_	t _{cyc}		Figure 15.2
Input pin high width	t _{iH}	IRQ ₀ to IRQ ₄ , WKP ₀ to WKP ₇ , ADTRG, TMIC TMIF, TMIG, AEVL, AEVH	2	_	_	t _{cyc} t _{subcyc}		Figure 15.3
Input pin low width	t _{iL}	IRQ₀ to IRQ₄, WKP₀ to WKP ₇ , ADTRG, TMIC, TMIF, TMIG, AEVL, AEVH	2	_	_	t _{cyc} t _{subcyc}		Figure 15.3

Section 15 Electrical Characteristics

Figure C.3 (f-2) Port 3 Block Diagram (Pin P3₁, H8/38347 Group and H8/38447 Group)

