

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8/300L
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI
Peripherals	LCD, PWM, WDT
Number of I/O	71
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df38347wv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Section 6 ROM

Table 6.1	Setting to PROM Mode	157
Table 6.2	Socket Adapter	157
Table 6.3	Mode Selection in PROM Mode (H8/3847R)	160
Table 6.4	DC Characteristics	162
Table 6.5	AC Characteristics	163
Table 6.6	Register Configuration	170
Table 6.7	Division of Blocks to Be Erased	175
Table 6.8	Setting Programming Modes	177
Table 6.9	Boot Mode Operation	179
Table 6.10	Oscillating Frequencies (f_{OSC}) for which Automatic Adjustment of LSI Bit Rat	e Is
	Possible	179
Table 6.11	Reprogram Data Computation Table	183
Table 6.12	Additional-Program Data Computation Table	183
Table 6.13	Programming Time	183
Table 6.14	Command Sequence in Programmer Mode	188
Table 6.15	AC Characteristics in Transition to Memory Read Mode	190
Table 6.16	AC Characteristics in Transition from Memory Read Mode to Another Mode	191
Table 6.17	AC Characteristics in Memory Read Mode	192
Table 6.18	AC Characteristics in Auto-Program Mode	194
Table 6.19	AC Characteristics in Auto-Erase Mode	195
Table 6.20	AC Characteristics in Status Read Mode	197
Table 6.21	Status Read Mode Return Codes	198
Table 6.22	Status Polling Output Truth Table	198
Table 6.23	Stipulated Transition Times to Command Wait State	199
Table 6.24	Flash Memory Operating States	200

Section 8 I/O Ports

Table 8.1	Port Functions	203
Table 8.2	Port 1 Registers	205
Table 8.3	Port 1 Pin Functions	210
Table 8.4	Port 1 Pin States	211
Table 8.5	Port 2 Registers	213
Table 8.6	Port 2 Pin Functions	217
Table 8.7	Port 2 Pin States	218
Table 8.8	Port 3 Registers	219
Table 8.9	Port 3 Pin Functions	223
Table 8.10	Port 3 Pin States	225
Table 8.11	Port 4 Registers	226
Table 8.12	Port 4 Pin Functions	228

Rev. 6.00 Aug 04, 2006 page xxxi of xxxvi

		Coordinates*			
Pad No.	Pad Name	X (μm)	Υ (μm)		
95	PB ₇ /AN ₇	-767	1605		
96	PC ₀ /AN ₈	-879	1605		
97	PC ₁ /AN ₉	-991	1605		
98	PC ₂ /AN ₁₀	-1103	1605		
99	PC ₃ /AN ₁₁	-1290	1605		
100	AV _{SS}	-1523	1605		

Note: * These values show the coordinates of the centers of pads. The accuracy is ±5 μm. The home-point position is the chip's center and the center is located at half the distance between the upper and lower pads and left and right pads.

Table 2.2 Effective Address Calculation

Rev. 6.00 Aug 04, 2006 page 50 of 680 REJ09B0145-0600

4.4 Prescalers

The H8/3847R Group is equipped with two on-chip prescalers having different input clocks (prescaler S and prescaler W). Prescaler S is a 13-bit counter using the system clock (ϕ) as its input clock. Its prescaled outputs provide internal clock signals for on-chip peripheral modules. Prescaler W is a 5-bit counter using a 32.768 kHz or 38.4 kHz signal divided by 4 (ϕ_W /4) as its input clock. Its prescaled outputs are used by timer A as a time base for timekeeping.

1. Prescaler S (PSS)

Prescaler S is a 13-bit counter using the system clock (ϕ) as its input clock. It is incremented once per clock period.

Prescaler S is initialized to H'0000 by a reset, and starts counting on exit from the reset state.

In standby mode, watch mode, subactive mode, and subsleep mode, the system clock pulse generator stops. Prescaler S also stops and is initialized to H'0000.

The CPU cannot read or write prescaler S.

The output from prescaler S is shared by timer A, timer C, timer F, timer G, SCI1, SCI3-1, SC3-2, the A/D converter, the LCD controller, the watchdog timer, and the 14-bit PWM. The divider ratio can be set separately for each on-chip peripheral function.

In active (medium-speed) mode the clock input to prescaler S is ϕ osc/16, ϕ osc/32, ϕ osc/64, or ϕ osc/128.

2. Prescaler W (PSW)

Prescaler W is a 5-bit counter using a 32.768 kHz/38.4 kHz signal divided by 4 ($\phi_W/4$) as its input clock.

Prescaler W is initialized to H'00 by a reset, and starts counting on exit from the reset state.

Even in standby mode, watch mode, subactive mode, or subsleep mode, prescaler W continues functioning so long as clock signals are supplied to pins X1 and X2.

Prescaler W can be reset by setting 1s in bits TMA3 and TMA2 of timer mode register A (TMA).

Output from prescaler W can be used to drive timer A, in which case timer A functions as a time base for timekeeping.

If the same kind of erroneous operation occurs after a reset as after a state transition, hold the $\overline{\text{RES}}$ pin low for a longer period.

Bit 5—Erase Setup (ESU)

This bit is to prepare for changing to erase mode. Set this bit to 1 before setting the E bit to 1 in FLMCR1 (do not set SWE, PSU, EV, PV, E, and P bits at the same time).

Bit 5 ESU	Description	
0	The erase setup state is cancelled	(initial value)
1	The flash memory changes to the erase setup state. Set this bit to 1 b the E bit to 1 in FLMCR1.	efore setting

Bit 4—Program Setup (PSU)

This bit is to prepare for changing to program mode. Set this bit to 1 before setting the P bit to 1 in FLMCR1 (do not set SWE, ESU, EV, PV, E, and P bits at the same time).

Bit 4 PSU	Description	
0	The program setup state is cancelled	(initial value)
1	The flash memory changes to the program setup state. Set this bit to setting the P bit to 1 in FLMCR1.	1 before

Bit 3—Erase-Verify (EV)

This bit is to set changing to or cancelling erase-verify mode (do not set SWE, ESU, PSU, PV, E, and P bits at the same time).

Bit 3 EV	Description	
0	Erase-verify mode is cancelled	(initial value)
1	The flash memory changes to erase-verify mode	

8.12 Port B

8.12.1 Overview

Port B is an 8-bit input-only port, configured as shown in figure 8.11.

8.12.2 Register Configuration and Description

Table 8.32 shows the port B register configuration.

Table 8.32Port B Register

Name	Abbr.	R/W	Address
Port data register B	PDRB	R	H'FFDE

1. Port Data Register B (PDRB)

Bit	7	6	5	4	3	2	1	0
	PB ₇	PB ₆	PB 5	PB ₄	PB 3	PB ₂	PB 1	PB ₀
Read/Write	R	R	R	R	R	R	R	R

Reading PDRB always gives the pin states. However, if a port B pin is selected as an analog input channel for the A/D converter by AMR bits CH3 to CH0, that pin reads 0 regardless of the input voltage.

9.3.4 Timer C Operation States

Table 9.7 summarizes the timer C operation states.

Table 9.7Timer C Operation States

Operation Mode		Reset	Active	Sleep	Watch	Sub- active	Sub- sleep	Standby	Module Standby	
тсс	Inte	rval	Reset	Functions	Functions	Halted	Functions/ Halted*	Functions/ Halted*	Halted	Halted
	Aut	o reload	Reset	Functions	Functions	Halted	Functions/ Halted*	Functions/ Halted*	Halted	Halted
TMC			Reset	Functions	Retained	Retained	Functions	Retained	Retained	Retained
Note:	*	When ϕ the system maintain $1/\phi$ (s). select ϕ operate counter operate the operate	w/4 is se tem clock ned by a When th w/4 as th on any c when ow on the s ration of	lected as t and interr synchroniz e counter e internal other interr n/8 has been ame cycle the counter	he TCC in nal clock a zation circu is operated clock or se nal clock. I en selected , and the o r.	ternal cloc re mutually uit. This re d in subact elect an ex f \u00f6w/4 is s d as subcle peration o	k in active y asynchro soults in a l tive mode ternal cloc elected as ock ϕ_{SUB} , th f the least	mode or s nous, sync maximum or subslee k. The cou the interna- ne lower 2 significant	sleep mode chronizatic count cycle p mode, e unter will n al clock for bits of the bit is unre	e, since on is e error of ither ither r the counter lated to

Bits 7 and 6: Operating mode select 1 and 0 (SNC1, SNC0)

Bits 7 and 6 select the operating mode.

Bit 7 SNC1	Bit 6 SNC0	Description	
0	0	8-bit synchronous mode	(initial value)
0	1	16-bit synchronous mode	
1	0	Continuous clock output mode*1	
1	1	Reserved ^{*2}	
Notes:	1. Use pin	is SI ₁ and SO ₁ as ports.	

2. Do not set bits SNC1 and SNC0 to 11.

Bit 5: TAIL MARK control (MRKON)

Bit 5 controls tail mark output after transfer of 8-bit or 16-bit data.

Bit 5 MRKON	Description	
0	TAIL MARK is not output (synchronous mode)	(initial value)
1	TAIL MARK is output (SSB mode)	

Bit 4: LATCH TAIL select (LTCH)

Bit 4 selects whether LATCH TAIL or HOLD TAIL is output as the tail mark when MRKON = 1 (i.e. in SSB mode).

Bit 4		
LTCH	Description	
0	HOLD TAIL is output	(initial value)
1	LATCH TAIL is output	

 Table 10.6
 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode) (2)

	OSC					
	10 MH	łz		łz		
Bit Rate (bit/s)	n	N	Error (%)	n	N	Error (%)
110	2	88	-0.25	2	141	0.03
150	2	64	0.16	2	103	0.16
200	2	48	-0.35	2	77	0.16
250	2	38	0.16	2	62	-0.79
300	—	—	_	2	51	0.16
600	_	_	_	2	25	0.16
1200	0	129	0.16	0	207	0.16
2400	0	64	0.16	0	103	0.16
4800	—	—	—	0	51	0.16
9600	_	_	_	0	25	0.16
19200	_	_	_	0	12	0.16
31250	0	4	0	0	7	0
38400	_	_	_	_	_	_

Notes: 1. The setting should be made so that the error is not more than 1%.

2. The value set in BRR is given by the following equation:

$$\begin{split} &\mathsf{N} = \frac{\mathsf{OSC}}{(64\times 2^{2n}\times \mathsf{B})} - 1\\ &\mathsf{where}\\ &\mathsf{B}: \ \mathsf{Bit\ rate\ (bit/s)}\\ &\mathsf{N}: \ \mathsf{Baud\ rate\ generator\ BRR\ setting\ (0 \leq \mathsf{N} \leq 255)\\ &\mathsf{OSC}: \ \mathsf{Value\ of\ } \phi_{\mathsf{OSC}\ }(\mathsf{Hz})\\ &\mathsf{n}: \ \mathsf{Baud\ rate\ generator\ input\ clock\ number\ (n = 0, 2, \text{ or\ } 3)}\\ &\mathsf{(The\ relation\ between\ n\ and\ the\ clock\ is\ shown\ in\ table\ 10.7.)} \end{split}$$

Table 10.7Relation between n and Clock

		SMR Setting		
n	Clock	CKS1	CKS0	
0	φ	0	0	
0	φ _W /2 ^{*1} /φ _W ^{*2}	0	1	
2	ф/16	1	0	
3	ф/64	1	1	

- Notes: 1. φ_W/2 clock is selected in active (medium- and high-speed) or sleep (medium- and high-speed) mode.
 - 2. ϕ_W clock is selected in subactive or subsleep mode. SCI3 can be used only when the $\phi_W/2$ is selected as the CPU clock in subactive or subsleep mode.
- 3. The error in table 10.6 is the value obtained from the following equation, rounded to two decimal places.

 $Error (\%) = \frac{B (rate obtained from n, N, OSC) - R (bit rate in left-hand column in table 10.6.)}{R (bit rate in left-hand column in table 10.6.)} \times 100$

Table 10.8 shows the maximum bit rate for each frequency. The values shown are for active (high-speed) mode.

		Setting	Setting				
OSC (MHz)	Maximum Bit Rate (bit/s) n	Ν				
0.0384*	600	0	0				
2	31250	0	0				
2.4576	38400	0	0				
4	62500	0	0				
10	156250	0	0				
16	250000	0	0				
Note: * WI	hen SMR is set up to CKS1 =	"0", CKS0 = "1".					

Table 10.8 Maximum Bit Rate for Each Frequency (Asynchronous Mode)

Table 10.9 shows examples of BRR settings in synchronous mode. The values shown are for active (high-speed) mode.

a. Data transfer format

The general data transfer format in synchronous communication is shown in figure 10.15.

Figure 10.15 Data Format in Synchronous Communication

In synchronous communication, data on the communication line is output from one falling edge of the serial clock until the next falling edge. Data confirmation is guaranteed at the rising edge of the serial clock.

One transfer data character begins with the LSB and ends with the MSB. After output of the MSB, the communication line retains the MSB state.

When receiving in synchronous mode, SCI3 latches receive data at the rising edge of the serial clock.

The data transfer format uses a fixed 8-bit data length.

Parity and multiprocessor bits cannot be added.

b. Clock

Either an internal clock generated by the baud rate generator or an external clock input at the SCK_{3x} pin can be selected as the SCI3 serial clock. The selection is made by means of bit COM in SMR and bits CKE1 and CKE0 in SCR3. See table 10.12 for details on clock source selection.

When SCI3 operates on an internal clock, the serial clock is output at the SCK_{3x} pin. Eight pulses of the serial clock are output in transmission or reception of one character, and when SCI₃ is not transmitting or receiving, the clock is fixed at the high level.

SCI3 operates as follows when transmitting data.

SCI3 monitors bit TDRE in SSR, and when it is cleared to 0, recognizes that data has been written to TDR and transfers data from TDR to TSR. It then sets bit TDRE to 1 and starts transmitting. If bit TIE in SCR3 is set to 1 at this time, a TXI request is made.

When clock output mode is selected, SCI3 outputs 8 serial clock pulses. When an external clock is selected, data is output in synchronization with the input clock.

Serial data is transmitted from the TXD3x pin in order from the LSB (bit 0) to the MSB (bit 7). When the MSB (bit 7) is sent, checks bit TDRE. If bit TDRE is cleared to 0, SCI3 transfers data from TDR to TSR, and starts transmission of the next frame. If bit TDRE is set to 1, SCI3 sets bit TEND to 1 in SSR, and after sending the MSB (bit 7), retains the MSB state. If bit TEIE in SCR3 is set to 1 at this time, a TEI request is made.

After transmission ends, the SCK pin is fixed at the high level.

Note: Transmission is not possible if an error flag (OER, FER, or PER) that indicates the data reception status is set to 1. Check that these error flags are all cleared to 0 before a transmit operation.

Figure 10.17 shows an example of the operation when transmitting in synchronous mode.

Figure 10.17 Example of Operation when Transmitting in Synchronous Mode

SCI3 operates as follows when transmitting data.

SCI3 monitors bit TDRE in SSR, and when it is cleared to 0, recognizes that data has been written to TDR and transfers data from TDR to TSR. It then sets bit TDRE to 1 and starts transmitting. If bit TIE in SCR3 is set to 1 at this time, a TXI request is made.

Serial data is transmitted from the TXD pin using the relevant data transfer format in table 10.14. When the stop bit is sent, SCI3 checks bit TDRE. If bit TDRE is cleared to 0, SCI3 transfers data from TDR to TSR, and when the stop bit has been sent, starts transmission of the next frame. If bit TDRE is set to 1 bit TEND in SSR bit is set to 1, the mark state, in which 1s are transmitted, is established after the stop bit has been sent. If bit TEIE in SCR3 is set to 1 at this time, a TEI request is made.

Start Transmit Stop Start Transmit Stop Mark bit data bit data MPB bit MPB bit state Serial 0 D0 D1 0/1 0 D0 D7 0/1 1 1 D7 1 D1 1 data 1 frame 1 frame TDRE TEND TXI request TDRE **TXI** request LSI TEI request cleared to 0 operation User Data written processing to TDR

Figure 10.23 shows an example of the operation when transmitting using the multiprocessor format.

Figure 10.23 Example of Operation when Transmitting Using Multiprocessor Format (8-bit data, multiprocessor bit, 1 stop bit)

• Multiprocessor receiving

Figure 10.24 shows an example of a flowchart for multiprocessor data reception. This procedure should be followed for multiprocessor data reception after initializing SCI3.

12.3 Operation

12.3.1 A/D Conversion Operation

The A/D converter operates by successive approximations, and yields its conversion result as 10-bit data.

A/D conversion begins when software sets the A/D start flag (bit ADSF) to 1. Bit ADSF keeps a value of 1 during A/D conversion, and is cleared to 0 automatically when conversion is complete.

The completion of conversion also sets bit IRRAD in interrupt request register 2 (IRR2) to 1. An A/D conversion end interrupt is requested if bit IENAD in interrupt enable register 2 (IENR2) is set to 1.

If the conversion time or input channel needs to be changed in the A/D mode register (AMR) during A/D conversion, bit ADSF should first be cleared to 0, stopping the conversion operation, in order to avoid malfunction.

12.3.2 Start of A/D Conversion by External Trigger Input

The A/D converter can be made to start A/D conversion by input of an external trigger signal. External trigger input is enabled at pin ADTRG when bit IRQ4 in PMR1 is set to 1 and bit TRGE in AMR is set to 1. Then when the input signal edge designated in bit IEG4 of interrupt edge select register (IEGR) is detected at pin ADTRG, bit ADSF in ADSR will be set to 1, starting A/D conversion.

Figure 12.2 shows the timing.

Figure 12.2 External Trigger Input Timing

15.8.3 AC Characteristics

Table 15.27 lists the control signal timing and table 15.28 and 15.29 list the serial interface timing.

Table 15.27 Control Signal Timing

 V_{CC} = 2.7 V to 5.5 V, AV_{CC} = 2.7 V to 5.5 V, V_{SS} = AV_{SS} = 0.0 V, unless otherwise specified

		Applicable	Values					Reference
Item	Symbol	Pins	Min	Тур	Max	Unit	Test Condition	Figure
System clock	fosc	OSC ₁ ,	2.0	_	16.0	MHz		*3
oscillation		OSC ₂	2.0	_	16.0	-	V_{CC} = 4.5 to 5.5 V	*4
nequency			2.0	_	10.0	-	$V_{\rm CC}$ = 2.7 to 5.5 V	-
OSC clock (ϕ_{OSC}) cycle time	tosc	OSC ₁ , OSC ₂	62.5		500 (1000)	ns		Figure 15.1 ^{*2 *3}
			62.5	—	500 (1000)	_	V_{CC} = 4.5 to 5.5 V	Figure 15.1 ^{*2 *4}
			100		500 (1000)	_	V_{CC} = 2.7 to 5.5 V	-
System clock (t _{cyc}		2	_	128	tosc		
cycle time			_	_	128	μs		
Subclock oscillation frequency	f₩	X ₁ , X ₂ , EXCL		32.768 or 38.4	_	kHz		
Watch clock (ϕ_W) cycle time	t₩	X ₁ , X ₂ , EXCL		30.5 or 26.0	_	μs		Figure 15.1
Subclock (ϕ_{SUB}) cycle time	t _{subcyc}		2	_	4	t _W		*1
Instruction cycle time			2	_	_	t _{cyc} t _{subcyc}		
Oscillation stabilization time	t _{rc}	OSC ₁ , OSC ₂	_	20	45	μs	Ceramic resonator $(V_{CC} = 3.0 \text{ to } 5.5 \text{ V})$	Figure 15.11
			_	80	_	_	Ceramic resonator other than above	-
			_	0.8	2	ms	Crystal resonator	-
			_	—	50	-	Other than above	
	t _{rc}	X ₁ , X ₂		_	2.0	S		

15.8.6 Flash Memory Characteristics

Table 15.32 Flash Memory Characteristics

Condition: $AV_{CC} = 2.7 \text{ V}$ to 5.5 V, $V_{SS} = AV_{SS} = 0.0 \text{ V}$, $V_{CC} = 2.7 \text{ V}$ to 5.5 V (range of operating voltage when reading), $V_{CC} = 3.0 \text{ V}$ to 5.5 V (range of operating voltage when programming/erasing), $T_a = -20^{\circ}\text{C}$ to $+75^{\circ}\text{C}$ (range of operating temperature when programming/erasing: product with regular specifications, product with wide-range temperature specifications)

			Values				Test
Item		Symbol	Min	Тур	Max	Unit	Conditions
Programming time ^{*1*2*4}		t _P		7	200	ms/128 bytes	
Erase time*1*3*	5	t _E	_	100	1200	ms/block	
Reprogramming	g count	N_{WEC}	1000 ^{*8}	10000 ^{*9}	_	times	
Data retain peri	od	t _{DRP}	10 ^{*10}	_	_	year	
Programming	Wait time after SWE-bit setting ^{*1}	х	1	_	_	μs	
	Wait time after PSU-bit setting ^{*1}	у	50	_	_	μs	
	Wait time after	z1	28	30	32	μs	$1 \le n \le 6$
	P-bit setting ^{*1*4}	z2	198	200	202	μs	$7 \le n \le 1000$
		z3	8	10	12	μs	Additional programming
	Wait time after P-bit clear ^{*1}	α	5	—	—	μs	
	Wait time after PSU-bit clear ^{*1}	β	5	—	—	μs	
	Wait time after PV-bit setting ^{*1}	γ	4	—	_	μs	
	Wait time after dummy write ^{*1}	ε	2	—	_	μs	
	Wait time after PV-bit clear ^{*1}	η	2	_	_	μs	
	Wait time after SWE-bit clear ^{*1}	θ	100	—	_	μs	
	Maximum programming count ^{*1*4*5}	N	_	-	1000	times	

Figure C.3 (f-2) Port 3 Block Diagram (Pin P3₁, H8/38347 Group and H8/38447 Group)

Product Type				Product Code	Mark Code	Package (Package Code)
H8/38347 Group	H8/38342	Mask ROM versions	Regular products	HD64338342H	38342H	100-pin QFP (FP-100B)
				HD64338342W	38342W	100-pin TQFP (TFP- 100G)
				HD64338342X	38342X	100-pin TQFP (TFP-100B)
				HCD64338342	—	Die
			Wide- range specifi- cation products	HD64338342HW	38342H	100-pin QFP (FP-100B)
				HD64338342WW	38342W	100-pin TQFP (TFP- 100G)
				HD64338342XW	38342X	100-pin TQFP (TFP-100B)
	H8/38343	Mask	Regular	HD64338343H	38343H	100-pin QFP (FP-100B)
		ROM versions	products	HD64338343W	38343W	100-pin TQFP (TFP- 100G)
				HD64338343X	38343X	100-pin TQFP (TFP-100B)
				HCD64338343	_	Die
			Wide- range specifi- cation	HD64338343HW	38343H	100-pin QFP (FP-100B)
				HD64338343WW	38343W	100-pin TQFP (TFP- 100G)
			products	HD64338343XW	38343X	100-pin TQFP (TFP-100B)
	H8/38344	Mask ROM versions	Regular products	HD64338344H	38344H	100-pin QFP (FP-100B)
				HD64338344W	38344W	100-pin TQFP (TFP- 100G)
				HD64338344X	38344X	100-pin TQFP (TFP-100B)
				HCD64338344	_	Die
			Wide- range specifi-	HD64338344HW	38344H	100-pin QFP (FP-100B)
				HD64338344WW	38344W	100-pin TQFP (TFP- 100G)
			products	HD64338344XW	38344X	100-pin TQFP (TFP-100B)
		F-ZTAT	Regular	HD64F38344H	F38344H	100-pin QFP (FP-100B)
		versions	products	HD64F38344W	F38344W	100-pin TQFP (TFP- 100G)
				HD64F38344X	F38344X	100-pin TQFP (TFP-100B)
			Wide- range specifi-	HD64F38344HW	F38344H	100-pin QFP (FP-100B)
				HD64F38344W W	F38344W	100-pin TQFP (TFP- 100G)
			products	HD64F38344XW	F38344X	100-pin TQFP (TFP-100B)