

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	H8/300L
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI
Peripherals	LCD, PWM, WDT
Number of I/O	71
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df38347xv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Tables

Section 1 Overview

Table 1.1	Features	2
Table 1.2	Bonding Pad Coordinates of H8/3847R Group (Mask ROM Version)	13
Table 1.3	Bonding Pad Coordinates of H8/3847S Group (Mask ROM Version)	18
Table 1.4	Bonding Pad Coordinates of HCD64F38347 and HCD64F38447	23
Table 1.5	Bonding Pad Coordinates of H8/38347 Group (Mask ROM Version)	
	and H8/38447 Group (Mask ROM Version)	28
Table 1.6	Pin Functions	32

Section 2 CPU

Table 2.1	Addressing Modes	47
Table 2.2	Effective Address Calculation	50
Table 2.3	Instruction Set	53
Table 2.4	Data Transfer Instructions	55
Table 2.5	Arithmetic Instructions	57
Table 2.6	Logic Operation Instructions	58
Table 2.7	Shift Instructions	59
Table 2.8	Bit-Manipulation Instructions	61
Table 2.9	Branching Instructions	65
Table 2.10	System Control Instructions	67
Table 2.11	Block Data Transfer Instruction	68
Table 2.12	Registers with Shared Addresses	90
Table 2.13	Registers with Write-Only Bits	91

Section 3 Exception Handling

Table 3.1	Exception Handling Types and Priorities	93
Table 3.2	Interrupt Sources and Their Priorities	96
Table 3.3	Interrupt Control Registers	97
Table 3.4	Interrupt Wait States	113
Table 3.5	Conditions Under which Interrupt Request Flag is Set to 1	116

Section 5 Power-Down Modes

Table 5.1	Operating Modes	131
Table 5.2	Internal State in Each Operating Mode	133
Table 5.3	System Control Registers	134
Table 5.4	Clock Frequency and Settling Time (Times are in ms)	141
Table 5.5	Setting and Clearing Module Standby Mode by Clock Stop Register	153

Rev. 6.00 Aug 04, 2006 page xxx of xxxvi

Section 1 Overview

Item	Description				
Product lineup	Mask ROM Version	ZTAT Version	F-ZTAT Version	Package	ROM/RAM Size (Byte)
	HD6433847R	HD6473847R	HD64F38347	FP-100A (H8/3847R only)	60 K/2 K
	HD6433847S		HD64F38447	FP-100B	
	HD64338347			TFP-100B	
	HD64338447			TFP-100G	
				Die	
	HD6433846R		_	FP-100A (H8/3846R only)	48 K/2 K
	HD6433846S			FP-100B	
	HD64338346			TFP-100B	
	HD64338446			TFP-100G	
				Die	
	HD6433845R	_	_	FP-100A (H8/3845R only)	40 K/2 K
	HD6433845S			FP-100B	
	HD64338345			TFP-100B	
	HD64338445			TFP-100G	
				Die	
	HD6433844R	—	HD64F38344	FP-100A (H8/3844R only)	32 K/2 K
	HD6433844S		HD64F38444	FP-100B	
	HD64338344			TFP-100B	
	HD64338444			TFP-100G	
				Die (Mask ROM version only)	
	HD6433843R	—	—	FP-100A (H8/3843R only)	24 K/1 K
	HD64338343			FP-100B	
	HD64338443			TFP-100B	
				TFP-100G	
				Die	
	HD6433842R	—	—	FP-100A (H8/3842R only)	16 K/1 K
	HD64338342			FP-100B	
	HD64338442			TFP-100B	
				TFP-100G	
				Die	
	See appendiz	x E for a list of	product codes.		

See appendix E for a list of product codes.

Note: * See section 4, Clock Pulse Generators, for the definition of ϕ and ϕw .

		Coordinates*	
Pad No.	Pad Name	Χ (μm)	Υ (μm)
95	PB ₇ /AN ₇	-766	1767
96	PC ₀ /AN ₈	-872	1767
97	PC ₁ /AN ₉	-978	1767
98	PC ₂ /AN ₁₀	-1084	1767
99	PC ₃ /AN ₁₁	-1190	1767
100	AV _{SS}	-1629	1767

Note: * These values show the coordinates of the centers of pads. The accuracy is ±5 µm. The home-point position is the chip's center and the center is located at half the distance between the upper and lower pads and left and right pads. Pad numbers 11, 33, and 100 are power supply (V_{SS}) pads and must be connected. They should not be left open. Pad number 14 (TEST) must be connected to the Vss position. The device will not operate properly if the pads are not connected as indicated.

Section 1	Overview				
Туре	Symbol	Pin No. FP-100B TFP-100B TFP-100G	FP-100A		Name and Functions
I/O ports	P87 to P80	74 to 67	77 to 70	I/O	Port 8: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 8 (PCR8).
	P97 to P90	82 to 75	85 to 78	I/O	Port 9: This is an 8-bit I/O port. Input or output can be designated for each bit by means of port control register 9 (PCR9).
Serial communi- cation interface (SCI)	SI₁	17	20	Input	SCI1 receive data input: This is the SCI1 data input pin.
	SO ₁	18	21	Output	SCI1 transmit data output: This is the SCI1 data output pin.
	SCK ₁	16	19	I/O	SCI1 clock I/O: This is the SCI1 clock I/O pin.
	RXD ₃₁	28	31	Input	SCI3-1 receive data input: This is the SCI31 data input pin.
	TXD ₃₁	29	32	Output	SCI3-1 transmit data output: This is the SCI31 data output pin.
	SCK ₃₁	27	30	I/O	SCI3-1 clock I/O: This is the SCI31 clock I/O pin.
	RXD ₃₂	84	87	Input	SCI3-2 receive data input: This is the SCI32 data input pin.
	TXD ₃₂	85	88	Output	SCI3-2 transmit data output: This is the SCI32 data output pin.
	SCK ₃₂	83	86	I/O	SCI3-2 clock I/O: This is the SCI32 clock I/O pin.
A/D converter	AN ₁₁ to An ₀	99 to 88	2,1 100 to 91	Input	Analog input channels 11 to 0: These are analog data input channels to the A/D converter
	ADTRG	5	8	Input	A/D converter trigger input: This is the external trigger input pin to the A/D converter

Table 3.2 Interrupt Sources and Their Priorities

Interrupt Source	Interrupt	Vector Number	Vector Address	Priority
RES	Reset 0		H'0000 to H'0001	High
Watchdog timer				A
IRQ ₀	IRQ ₀	4	H'0008 to H'0009	-
IRQ ₁	IRQ ₁	5	H'000A to H'000B	-
IRQ ₂	IRQ ₂	6	H'000C to H'000D	-
IRQ ₃	IRQ ₃	7	H'000E to H'000F	-
IRQ ₄	IRQ ₄	8	H'0010 to H'0011	-
WKP ₀	WKP ₀	9	H'0012 to H'0013	-
WKP ₁	WKP ₁			-
WKP ₂	WKP ₂			-
WKP ₃	WKP ₃			-
WKP ₄	WKP4			-
WKP ₅	WKP ₅			-
WKP ₆	WKP ₆			-
WKP7	WKP7			-
SCI1	SCI1 transfer complete	10	H'0014 to H'0015	-
Timer A	Timer A overflow	11	H'0016 to H'0017	-
Asynchronous counter	Asynchronous counter overflow	12	H'0018 to H'0019	_
Timer C	Timer C overflow or underflow	13	H'001A to H'001B	-
Timer FL	Timer FL compare match Timer FL overflow	14	H'001C to H'001D	-
Timer FH	Timer FH compare match Timer FH overflow	15	H'001E to H'001F	-
Timer G	Timer G input capture Timer G overflow	16	H'0020 to H'0021	-
SCI3-1	SCI3-1 transmit end SCI3-1 transmit data empty SCI3-1 receive data full SCI3-1 overrrun error SCI3-1 framing error SCI3-1 parity error	17	H'0022 to H'0023	-
SCI3-2	SCI3-2 transmit end SCI3-2 transmit data empty SCI3-2 receive data full SCI3-2 overrun error SCI3-2 framing error SCI3-2 parity error	18	H'0024 to H'0025	-
A/D	A/D conversion end	19	H'0026 to H'0027	_
(SLEEP instruction executed)	Direct transfer	20	H'0028 to H'0029	_ ↓ Low

6.5 Flash Memory Overview

6.5.1 Features

The features of the 60 Kbytes or 32 Kbytes of flash memory built into the F-ZTAT versions are summarized below.

- Programming/erase methods
 - The flash memory is programmed 128 bytes at a time. Erase is performed in single-block units. The 60-Kbyte flash memory is configured as follows: 1 Kbyte × 4 blocks, 28 Kbytes × 1 block, 16 Kbytes × 1 block, 8 Kbytes × 1 block and 4 Kbytes × 1 block. The 32-Kbyte flash memory is configured as follows: 1 Kbyte × 4 blocks, 28 Kbytes × 1 block. To erase the entire flash memory, each block must be erased in turn.
- Reprogramming capability
 - The flash memory can be reprogrammed up to 1,000 times.
- On-board programming
 - On-board programming/erasing can be done in boot mode, in which the boot program built into the chip is started to erase or program of the entire flash memory. In normal user program mode, individual blocks can be erased or programmed.
- Programmer mode
 - Flash memory can be programmed/erased in programmer mode using a PROM programmer, as well as in on-board programming mode.
- Automatic bit rate adjustment
 - For data transfer in boot mode, this LSI's bit rate can be automatically adjusted to match the transfer bit rate of the host.
- Programming/erasing protection
 - Sets software protection against flash memory programming/erasing.
- Power-down mode
 - The power supply circuit is partly halted in the subactive mode and can be read in the power-down mode.

Renesas

Table 6.18 AC Characteristics in Auto-Program Mode

Conditions: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_a = 25^{\circ}C \pm 5^{\circ}C$

Item	Symbol	Min	Max	Unit	Notes
Command write cycle	t _{nxtc}	20	_	μs	Figure 6.17
CE hold time	t _{ceh}	0	_	ns	
CE setup time	t _{ces}	0	_	ns	
Data hold time	t _{dh}	50	_	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
Status polling start time	t _{wsts}	1	_	ms	
Status polling access time	t _{spa}	_	150	ns	
Address setup time	t _{as}	0	_	ns	
Address hold time	t _{ah}	60	—	ns	
Memory write time	t _{write}	1	3000	ms	
WE rise time	t _r	_	30	ns	
WE fall time	t _f	_	30	ns	

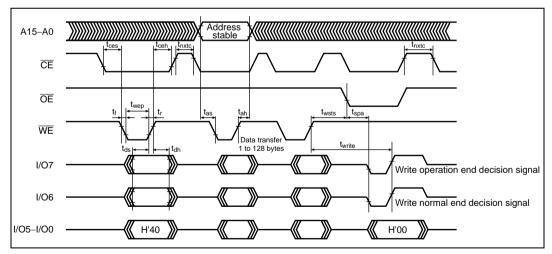


Figure 6.17 Auto-Program Mode Timing Waveforms

Bit 1: P1₁/TMOFL pin function switch (TMOFL)

This bit selects whether pin $P1_1/TMOFL$ is used as $P1_1$ or as TMOFL.

Bit 1		
TMOFL	Description	
0	Functions as P1 ₁ I/O pin	(initial value)
1	Functions as TMOFL output pin	

Bit 0: P1₀/TMOW pin function switch (TMOW)

This bit selects whether pin $P1_0$ /TMOW is used as P10 or as TMOW.

Bit 0 TMOW	Description	
0	Functions as P1 ₀ I/O pin	(initial value)
1	Functions as TMOW output pin	

8.3.4 Pin States

Table 8.7 shows the port 2 pin states in each operating mode.

Table 8.7Port 2 Pin States

Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
High- impedance	Retains previous	Retains previous	High- impedance	Retains previous	Functional	Functional
Pull-up MOS on	state	state		state		
High- impedance	_					
High- impedance	_					
	High- impedance Pull-up MOS on High- impedance High-	High- impedance Pull-up MOS on High- impedance High-	High- impedance Previous previous state state state High- impedance High-	High- impedance Retains previous state Retains previous state High- impedance Pull-up MOS on Mos High- impedance High- impedance High- impedance High- impedance High- impedance	High- impedance Retains previous state Retains previous state High- impedance Retains previous state Pull-up MOS on Additional High- impedance High- High- High- High- High- High- High- High- High- High- High- High- High- High- High- High- High-	High- impedance Retains previous state Retains previous state High- impedance Retains previous state Functional Pull-up MOS on Mos on High- impedance High-

Notes: 1. Applies to the F-ZTAT version of the H8/38347 Group and H8/38447 Group.

2. Applies to H8/3847R Group and H8/3847S Group. Also applies to the mask ROM version of the H8/38347 Group and H8/38447 Group.

Bits 7 to 5: Clock output select (TMA7 to TMA5)

Bits 7 to 5 choose which of eight clock signals is output at the TMOW pin. The system clock divided by 32, 16, 8, or 4 can be output in active mode and sleep mode. A 32.768 kHz or 38.4 kHz signal divided by 32, 16, 8, or 4 can be output in active mode, sleep mode, and subactive mode. ϕ_w is output in all modes except the reset state.

•••					
cwos	Bit 7 TMA7	Bit 6 TMA6	Bit 5 TMA5	 Clock Output	
0	0	0	0	ф/32	(initial value)
			1	ф/16	
		1	0	φ/8	
			1	φ/4	
	1	0	0	φ _W /32	
			1	φ _W /16	
		1	0	φ _W /8	
			1	φ _W /4	
1	*	*	*	φw	

CWOSR TMA

*: Don't care

Bit 4: Reserved bit

Bit 4 is reserved; it is always read as 1, and cannot be modified.

2. Block Diagram

Figure 9.3 shows a block diagram of timer F.

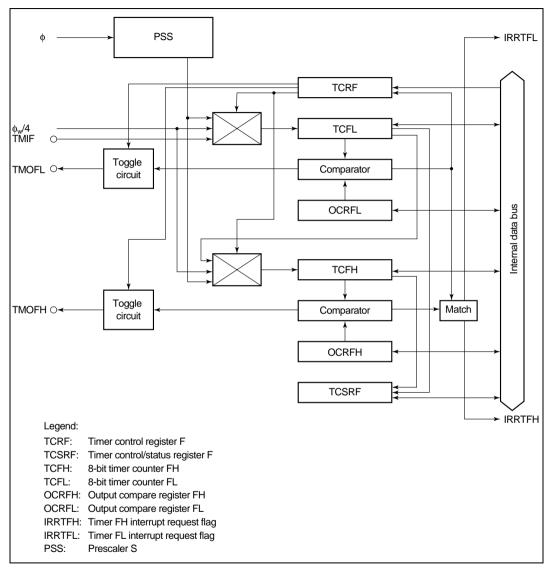


Figure 9.3 Block Diagram of Timer F

10.3 SCI3

10.3.1 Overview

In addition to SCI1, this LSI has two serial communication interfaces, SCI3-1 and SCI3-2, with identical functions. In this manual, the generic term SCI3 is used to refer to both of these SCIs.

Serial communication interface 3 (SCI3) can carry out serial data communication in either asynchronous or synchronous mode. It is also provided with a multiprocessor communication function that enables serial data to be transferred among processors.

1. Features

Features of SCI3 are listed below.

- Choice of asynchronous or synchronous mode for serial data communication
 - Asynchronous mode

Serial data communication is performed asynchronously, with synchronization provided character by character. In this mode, serial data can be exchanged with standard asynchronous communication LSIs such as a Universal Asynchronous Receiver/Transmitter (UART) or Asynchronous Communication Interface Adapter (ACIA). A multiprocessor communication function is also provided, enabling serial data communication among processors.

There is a choice of 16 data transfer formats.

Data length	7, 8, 5 bits
Stop bit length	1 or 2 bits
Parity	Even, odd, or none
Multiprocessor bit	"1" or "0"
Receive error detection	Parity, overrun, and framing errors
Break detection	Break detected by reading the RXD _{3X} pin level directly when a framing error occurs

After setting bits CKE1 and CKE0, set the operating mode in the serial mode register (SMR).

For details on clock source selection, see table 10.12 in 10.3.3,1, Overview.

Bit 0	Description									
CKE0	Communication Mode	Clock Source	SCK _{3X} Pin Function							
0	Asynchronous	Internal clock	I/O port ^{*1}							
	Synchronous	Internal clock	Serial clock output*1							
1	Asynchronous	Internal clock	Clock output*2							
	Synchronous	Reserved								
0	Asynchronous	External clock	Clock input*3							
	Synchronous	External clock	Serial clock input							
1	Asynchronous	Reserved								
	Synchronous	Reserved								
	СКЕ0 0 1	CKE0 Communication Mode 0 Asynchronous 1 Asynchronous 1 Asynchronous 0 Asynchronous 1 Asynchronous 0 Asynchronous 1 Asynchronous 1 Asynchronous 1 Asynchronous 1 Asynchronous 1 Asynchronous	CKE0Communication ModeClock Source0AsynchronousInternal clock1AsynchronousInternal clock1AsynchronousInternal clock0AsynchronousReserved0AsynchronousExternal clock1AsynchronousExternal clock1AsynchronousExternal clock1AsynchronousExternal clock1AsynchronousReserved							

Notes: 1. Initial value

- 2. A clock with the same frequency as the bit rate is output.
- 3. Input a clock with a frequency 16 times the bit rate.

7. Serial Status Register (SSR)

Bit	7	6	5	4	3	2	1	0					
	TDRE	RDRF	OER	FER	PER	TEND	MPBR	MPBT					
Initial value	1	0	0	0	0	1	0	0					
Read/Write	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R/(W)*	R	R	R/W					
Note: * Onl	Note: * Only a write of 0 for flag clearing is possible.												

SSR is an 8-bit register containing status flags that indicate the operational status of SCI3, and multiprocessor bits.

SSR can be read or written by the CPU at any time, but only a write of 1 is possible to bits TDRE, RDRF, OER, PER, and FER. In order to clear these bits by writing 0, 1 must first be read.

Bits TEND and MPBR are read-only bits, and cannot be modified.

SSR is initialized to H'84 upon reset, and in standby, module standby, or watch mode.

	SMR Serial Data Transfer Format and Frame Le						
CHR	PE	MP	STOP	1 2 3 4 5 6 7 8 9 10 11 12			
0	0	0	0	S 8-bit data STOP			
0	0	0	1	S 8-bit data STOP STOP			
0	0	1	0	S 8-bit data MPB STOP			
0	0	1	1	S 8-bit data MPB STOP STOP			
0	1	0	0	S 8-bit data P STOP			
0	1	0	1	S 8-bit data P STOP STOP			
0	1	1	0	S 5-bit data STOP			
0	1	1	1	S 5-bit data STOP STOP			
1	0	0	0	S 7-bit data STOP			
1	0	0	1	S 7-bit data STOP STOP			
1	0	1	0	S 7-bit data MPB STOP			
1	0	1	1	S 7-bit data MPB STOP STOP			
1	1	0	0	S 7-bit data P STOP			
1	1	0	1	S 7-bit data P STOP STOP			
1	1	1	0	S 5-bit data P STOP			
1	1	1	1	S 5-bit data P STOP STOP			
Legen	d:						

Table 10.14 Data Transfer Formats (Asynchronous Mode)

Legend:

S: Start bit

STOP: Stop bit

P: Parity bit

MPB: Multiprocessor bit

Rev. 6.00 Aug 04, 2006 page 380 of 680 REJ09B0145-0600

Bit 4: Expansion Signal Selection (SGX)

Bit 4 (SGX) selects whether the SEG_{40}/CL_1 , SEG_{39}/CL_2 , SEG_{38}/DO , and SEG_{37}/M pins are used as segment pins (SEG_{40} to SEG_{37}) or as segment external expansion signal pins (CL_1 , CL_2 , DO, and M). In the H8/38347 Group and H8/38447 Group this bit should be left at its initial value and not written to. Changing the value of this bit may prevent the SEG/COM signal from operating normally.

Bit 4 SGX		Description	
0		SEG ₄₀ to SEG ₃₇ pins*	(initial value)
1		CL ₁ , CL ₂ , DO, and M pins	
Note:	*	Functions as ports when SGS3 to SGS0 are set at "0000".	

Bits 3 to 0: Segment driver select 3 to 0 (SGS3 to SGS0)

Bits 3 to 0 select the segment drivers to be used. The SGX = 0 setting is selected on the H8/38347 and H8/38447.

					i anono					
Bit 4 SGX	Bit 3 SGS3	Bit 2 SGS2		Bit 0 SGS0	SEG ₄₀ to SEG ₃₃	SEG ₃₂ to SEG ₂₅	SEG ₂₄ to SEG ₁₇	SEG ₁₆ to SEG ₉	SEG ₈ to SEG ₁	Notes
0	0	0	0	0	Port	Port	Port	Port	Port	(initial value)
0	0	0	0	1	SEG	Port	Port	Port	Port	
0	0	0	1	*	SEG	SEG	Port	Port	Port	
0	0	1	0	*	SEG	SEG	SEG	Port	Port	
0	0	1	1	*	SEG	SEG	SEG	SEG	Port	
0	1	*	*	*	SEG	SEG	SEG	SEG	SEG	
1	0	0	0	0	Port(*1)	Port	Port	Port	Port	
1	0	0	0	1	Do not u	ise				
1	0	0	1	*	-					
1	0	1	*	*	-					
1	1	*	*	*	-					

Function of Pins SEG_{40} to SEG_1

*: Don't care

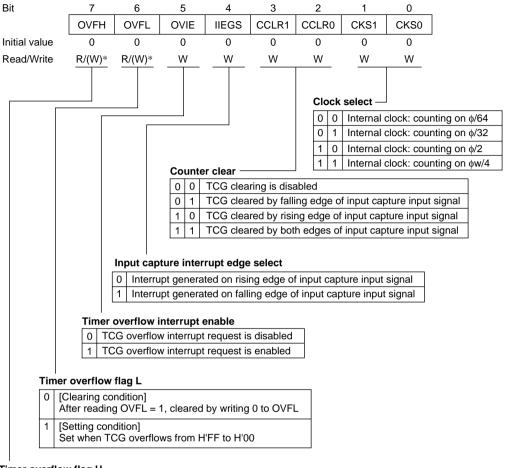
Note: 1. SEG_{40} to SEG_{37} are external expansion pins.

Renesas

Table 15.16 Segment External Expansion AC Characteristics

 $V_{CC} = 1.8 \text{ V}$ to 5.5 V, $V_{SS} = AV_{SS} = 0.0 \text{ V}$, $Ta = -40^{\circ}\text{C}$ to $+85^{\circ}\text{C}$ (including subactive mode) unless otherwise indicated.

		Applicable	Values			_	Test	Reference
Item	Symbol	Pins	Min	Тур	Мах	Unit	Conditions	Figure
Clock high width	t _{CWH}	CL ₁ , CL ₂	800.0	—	—	ns	*	Figure 15.8
Clock low width	t _{CWL}	CL ₂	800.0	—	_	ns	*	Figure 15.8
Clock setup time	t _{CSU}	CL ₁ , CL ₂	500.0	—	_	ns	*	Figure 15.8
Data setup time	ts∪	DO	300.0	—	_	ns	*	Figure 15.8
Data retaining time	t _{DH}	DO	300.0	_	_	ns	*	Figure 15.8
M delay time	t _{DM}	М	-1000.0	—	1000.0	ns	*	Figure 15.8
Clock rise/fall time	t _{ст}	CL ₁ , CL ₂			170.0	ns		Figure 15.8


Note: * When the frame frequency is set at 488 Hz to 30.5 Hz.

TMG—Timer Mode Register G

H'BC

Timer G

Timer overflow flag H

0	[Clearing condition] After reading OVFH = 1, cleared by writing 0 to OVFH
1	[Setting condition] Set when TCG overflows from H'FF to H'00

Note: * Bits 7 and 6 can only be written with 0, for flag clearing.

Renesas

PDR5—Port Da	ata Regist	er 5				H'D8		I/O ports
Bit	7	6	5	4	3	2	1	0
	P57	P5 ₆	P5 ₅	P5 ₄	P5 ₃	P5 ₂	P5 ₁	P5 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				Data for p	oort 5 pins	;		
PDR6—Port Da	ata Regist	er 6				H'D9		I/O ports
Bit	7	6	5	4	3	2	1	0
	P67	P6 ₆	P6 ₅	P6 ₄	P6 ₃	P6 ₂	P6 ₁	P6 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				Data for	l port 6 pins	5		
PDR7—Port Da	ata Regist	er 7				H'DA		I/O ports
Bit	7	6	5	4	3	2	1	0
	P77	P7 ₆	P7 ₅	P7 ₄	P7 ₃	P72	P7 ₁	P7 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				Data for p	ort 7 pins	i		
PDR8—Port Da	ata Regist	er 8				H'DB		I/O port
Bit	7	6	5	4	3	2	1	0
	P87	P8 ₆	P8 ₅	P84	P8 ₃	P82	P8 ₁	P8 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				Data for	 port 8 pins	6		

Product T	уре			Product Code	Mark Code	Package (Package Code		
H8/38347	H8/38342	Mask	Regular	HD64338342H	38342H	100-pin QFP (FP-100B)		
Group		ROM versions	products	HD64338342W	38342W	100-pin TQFP (TFP- 100G)		
				HD64338342X	38342X	100-pin TQFP (TFP-100B)		
				HCD64338342	_	Die		
			Wide-	HD64338342HW	38342H	100-pin QFP (FP-100B)		
			range specifi- cation	HD64338342WW	38342W	100-pin TQFP (TFP- 100G)		
			products	HD64338342XW	38342X	100-pin TQFP (TFP-100B)		
	H8/38343		Regular	HD64338343H	38343H	100-pin QFP (FP-100B)		
		ROM versions	products	HD64338343W	38343W	100-pin TQFP (TFP- 100G)		
				HD64338343X	38343X	100-pin TQFP (TFP-100B)		
				HCD64338343		Die		
			Wide- range specifi- cation	HD64338343HW	38343H	100-pin QFP (FP-100B)		
				HD64338343WW	38343W	100-pin TQFP (TFP- 100G)		
			products	HD64338343XW	38343X	100-pin TQFP (TFP-100B		
	H8/38344		Regular products s	HD64338344H	38344H	100-pin QFP (FP-100B)		
		ROM versions		HD64338344W	38344W	100-pin TQFP (TFP- 100G)		
				HD64338344X	38344X	100-pin TQFP (TFP-100B		
				HCD64338344		Die		
			Wide-	HD64338344HW	38344H	100-pin QFP (FP-100B)		
			range specifi- cation	HD64338344WW	38344W	100-pin TQFP (TFP- 100G)		
			products	HD64338344XW	38344X	100-pin TQFP (TFP-100B)		
		F-ZTAT	Regular	HD64F38344H	F38344H	100-pin QFP (FP-100B)		
		versions	products	HD64F38344W	F38344W	100-pin TQFP (TFP- 100G)		
				HD64F38344X	F38344X	100-pin TQFP (TFP-100B		
			Wide-	HD64F38344HW	F38344H	100-pin QFP (FP-100B)		
			range specifi- cation	HD64F38344W W	F38344W	100-pin TQFP (TFP- 100G)		
			products	HD64F38344XW	F38344X	100-pin TQFP (TFP-100B		