

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	H8/300L
Core Size	8-Bit
Speed	8MHz
Connectivity	SCI
Peripherals	LCD, PWM, WDT
Number of I/O	71
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df38347xwv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 10.12	Example of Operation when Transmitting in Asynchronous Mode	
	(8-bit data, parity, 1 stop bit)	384
Figure 10.13	Example of Data Reception Flowchart (Asynchronous Mode)	385
Figure 10.14	Example of Operation when Receiving in Asynchronous Mode	
	(8-bit data, parity, 1 stop bit)	388
Figure 10.15	Data Format in Synchronous Communication	389
Figure 10.16	Example of Data Transmission Flowchart (Synchronous Mode)	391
Figure 10.17	Example of Operation when Transmitting in Synchronous Mode	392
Figure 10.18	Example of Data Reception Flowchart (Synchronous Mode)	393
Figure 10.19	Example of Operation when Receiving in Synchronous Mode	394
Figure 10.20	Example of Simultaneous Data Transmission/Reception Flowchart	
	(Synchronous Mode)	395
Figure 10.21	Example of Inter-Processor Communication Using Multiprocessor Format	
	(Sending data H'AA to receiver A)	397
Figure 10.22	Example of Multiprocessor Data Transmission Flowchart	398
Figure 10.23	Example of Operation when Transmitting Using Multiprocessor Format	
	(8-bit data, multiprocessor bit, 1 stop bit)	399
Figure 10.24	Example of Multiprocessor Data Reception Flowchart	400
Figure 10.25	Example of Operation when Receiving Using Multiprocessor Format	
	(8-bit data, multiprocessor bit, 1 stop bit)	402
Figure 10.26	Receive Data Sampling Timing in Asynchronous Mode	406
Figure 10.27	Relation between RDR Read Timing and Data	407

Section 11 14-Bit PWM

Figure 11.1	Block Diagram of the 14 bit PWM	410
Figure 11.2	PWM Output Waveform	416

Section 12 A/D Converter

Figure 12.1	Block Diagram of the A/D Converter	418
Figure 12.2	External Trigger Input Timing	424
Figure 12.3	Typical A/D Converter Operation Timing	426
Figure 12.4	Flow Chart of Procedure for Using A/D Converter (Polling by Software)	427
Figure 12.5	Flow Chart of Procedure for Using A/D Converter (Interrupts Used)	428
Figure 12.6	Analog Input Circuit Example	429

Section 13 LCD Controller/Driver

Figure 13.1	Block Diagram of LCD Controller/Driver	432
Figure 13.2	Example of A Waveform with 1/2 Duty and 1/2 Bias	439
Figure 13.3	Handling of LCD Drive Power Supply when Using 1/2 Duty	441
Figure 13.4	Examples of LCD Power Supply Pin Connections	442

[B: BCLR instruction executed]

BCLR #0 , @RAM	10
----------------	----

The BCLR instruction is executed designating the PCR3 work area (RAM0).

[C: After executing BCLR]

MOV.	В	@RAM0,	ROL
MOV.	В	ROL,	@PCR3

The work area (RAM0) value is written to PCR3.

	P37	P36	P3₅	P34	P33	P32	P3 1	P30
Input/output	Input	Input	Output	Output	Output	Output	Output	Output
Pin state	Low level	High Ievel	Low level	Low level	Low level	Low level	Low level	High level
PCR3	0	0	1	1	1	1	1	0
PDR3	1	0	0	0	0	0	0	0
RAM0	0	0	1	1	1	1	1	0

Table 2.12 lists the pairs of registers that share identical addresses. Table 2.13 lists the registers that contain write-only bits.

Table 2.12 Registers with Shared Addresses

Register Name	Abbr.	Address
Timer counter and timer load register C	TCC/TLC	H'FFB5
Port data register 1*	PDR1	H'FFD4
Port data register 2*	PDR2	H'FFD5
Port data register 3*	PDR3	H'FFD6
Port data register 4*	PDR4	H'FFD7
Port data register 5*	PDR5	H'FFD8
Port data register 6*	PDR6	H'FFD9
Port data register 7*	PDR7	H'FFDA
Port data register 8*	PDR8	H'FFDB
Port data register 9*	PDR9	H'FFDC
Port data register A*	PDRA	H'FFDD

Note: * Port data registers have the same addresses as input pins.

2. Pin Connection when Not Using Subclock

When the subclock is not used, connect pin X_1 to GND and leave pin X_2 open, as shown in figure 4.8.

Figure 4.8 Pin Connection when not Using Subclock

3. External Clock Input

• H8/3847R Group and H8/3847S Group

Connect the external clock to the X_1 pin and leave the X_2 pin open, as shown in figure 4.9 (a).

Figure 4.9 (a) Pin Connection when Inputting External Clock (H8/38347R Group and H8/3847S Group)

Frequency	Subclock (øw)
Duty	45% to 55%

Bit 3: Direct transfer on flag (DTON)

This bit designates whether or not to make direct transitions among active (high-speed), active (medium-speed) and subactive mode when a SLEEP instruction is executed. The mode to which the transition is made after the SLEEP instruction is executed depends on a combination of this and other control bits.

Bit 3 DTON	Description				
0	When a SLEEP instruction is executed in active mode, a (initial value transition is made to standby mode, watch mode, or sleep mode	e)			
	 When a SLEEP instruction is executed in subactive mode, a transition is made to watch mode or subsleep mode 	3			
1	 When a SLEEP instruction is executed in active (high-speed) mode, a direct transition is made to active (medium-speed) mode if SSBY = 0, MSON = 1, an LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1 	ıd			
	 When a SLEEP instruction is executed in active (medium-speed) mode, a dire transition is made to active (high-speed) mode if SSBY = 0, MSON = 0, and LSON = 0, or to subactive mode if SSBY = 1, TMA3 = 1, and LSON = 1 	ct			
	 When a SLEEP instruction is executed in subactive mode, a direct transition is made to active (high-speed) mode if SSBY = 1, TMA3 = 1, LSON = 0, and MSON = 0, or to active (medium-speed) mode if SSBY = 1, TMA3 = 1, LSON 0, and MSON = 1 	; =			

Bit 2: Medium speed on flag (MSON)

After standby, watch, or sleep mode is cleared, this bit selects active (high-speed) or active (medium-speed) mode.

Bit 2 MSON	Description	
0	Operation in active (high-speed) mode	(initial value)
1	Operation in active (medium-speed) mode	

5.9.3 Usage Note

If, due to the timing with which a peripheral module issues interrupt requests, the module in question is set to module standby mode before an interrupt is processed, the module will stop with the interrupt request still pending. In this situation, interrupt processing will be repeated indefinitely unless interrupts are prohibited.

It is therefore necessary to ensure that no interrupts are generated when a module is set to module standby mode. The surest way to do this is to specify the module standby mode setting only when interrupts are prohibited (interrupts prohibited using the interrupt enable register or interrupts masked using bit CCR-I).

6.4 Reliability of Programmed Data

A highly effective way to improve data retention characteristics is to bake the programmed chips at 150°C, then screen them for data errors. This procedure quickly eliminates chips with PROM memory cells prone to early failure.

Figure 6.6 shows the recommended screening procedure.

Figure 6.6 Recommended Screening Procedure

If a series of programming errors occurs while the same PROM programmer is in use, stop programming and check the PROM programmer and socket adapter for defects. Please inform Renesas Technology of any abnormal conditions noted during or after programming or in screening of program data after high-temperature baking.

Table 6.20 AC Characteristics in Status Read Mode

Conditions: $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$, $V_{SS} = 0 \text{ V}$, $T_a = 25^{\circ}C \pm 5^{\circ}C$

Item	Symbol	Min	Max	Unit	Notes
Read time after command write	t _{nxtc}	20	_	μs	Figure 6.19
CE hold time	t _{ceh}	0	—	ns	
CE setup time	t _{ces}	0	—	ns	
Data hold time	t _{dh}	50	—	ns	
Data setup time	t _{ds}	50	_	ns	
Write pulse width	t _{wep}	70	_	ns	
OE output delay time	t _{oe}	_	150	ns	
Disable delay time	t _{df}	_	100	ns	
CE output delay time	t _{ce}	—	150	ns	
WE rise time	tr	—	30	ns	
WE fall time	t _f	_	30	ns	

Figure 6.19 Status Read Mode Timing Waveforms

6.10.8 Programmer Mode Transition Time

Commands cannot be accepted during the oscillation stabilization period or the programmer mode setup period. After the programmer mode setup time, a transition is made to memory read mode.

Table 6.23	Stipulated	Transition	Times to	Command	Wait State
-------------------	------------	------------	----------	---------	------------

Item	Symbol	Min	Мах	Unit	Notes
Oscillation stabilization time(crystal oscillator)	T _{osc1}	10	_	ms	Figure 6.20
Oscillation stabilization time(ceramic oscillator)	T _{osc1}	5		ms	
Programmer mode setup time	T _{bmv}	10		ms	
Vcc hold time	T_{dwn}	0	_	ms	

Figure 6.20 Oscillation Stabilization Time, Boot Program Transfer Time, and Power-Down Sequence

6.10.9 Notes on Memory Programming

- 1. When performing programming using programmer mode on a chip that has been programmed/erased in an on-board programming mode, auto-erasing is recommended before carrying out auto-programming.
- 2. The flash memory is initially in the erased state when the device is shipped by Renesas Technology. For other chips for which the erasure history is unknown, it is recommended that auto-erasing be executed to check and supplement the initialization (erase) level.

8.9 Port 8

8.9.1 Overview

Port 8 is an 8-bit I/O port configured as shown in figure 8.8.

8.9.2 Register Configuration and Description

Table 8.23 shows the port 8 register configuration.

Table 8.23Port 8 Registers

Name	Abbr.	R/W	Initial Value	Address
Port data register 8	PDR8	R/W	H'00	H'FFDB
Port control register 8	PCR8	W	H'00	H'FFEB

Bit 3: Multiprocessor interrupt enable (MPIE)

Bit 3 selects enabling or disabling of the multiprocessor interrupt request. The MPIE bit setting is only valid when asynchronous mode is selected and reception is carried out with bit MP in SMR set to 1. The MPIE bit setting is invalid when bit COM is set to 1 or bit MP is cleared to 0.

Bit 3 MPIE		Description
0		Multiprocessor interrupt request disabled (normal receive operation) (initial value) Clearing condition: When data is received in which the multiprocessor bit is set to 1
1		Multiprocessor interrupt request enabled*
Note:	*	Receive data transfer from RSR to RDR, receive error detection, and setting of the RDRF, FER, and OER status flags in SSR is not performed. RXI, ERI, and setting of the RDRF, FER, and OER flags in SSR, are disabled until data with the multiprocessor bit set to 1 is received. When a receive character with the multiprocessor bit set to 1 is received, bit MPBR in SSR is set to 1, bit MPIE is automatically cleared to 0, and RXI and ERI requests (when bits TIE and RIE in serial control register 3 (SCR3) are set to 1) and setting of the RDRF, FER, and OER flags are enabled.

Bit 2: Transmit end interrupt enable (TEIE)

Bit 2 selects enabling or disabling of the transmit end interrupt request (TEI) if there is no valid transmit data in TDR when MSB data is to be sent.

Bit 2 TEIE		Description	
0		Transmit end interrupt request (TEI) disabled	(initial value)
1		Transmit end interrupt request (TEI) enabled*	
Note:	*	TEI can be released by clearing bit TDRE to 0 and clearin clearing bit TEIE to 0.	g bit TEND to 0 in SSR, or by

Bits 1 and 0: Clock enable 1 and 0 (CKE1, CKE0)

Bits 1 and 0 select the clock source and enabling or disabling of clock output from the SCK_{3X} pin. The combination of CKE1 and CKE0 determines whether the SCK_{3X} pin functions as an I/O port, a clock output pin, or a clock input pin.

The CKE0 bit setting is only valid in case of internal clock operation (CKE1 = 0) in asynchronous mode. In synchronous mode, or when external clock operation is used (CKE1 = 1), bit CKE0 should be cleared to 0.

	S	MR		Serial Data Transfer Format and Frame Length						
CHR	PE	MP	STOP	1 2 3 4 5 6 7 8 9 10 11 12						
0	0	0	0	S 8-bit data STOP						
0	0	0	1	S 8-bit data STOP STOP						
0	0	1	0	S 8-bit data MPB STOP						
0	0	1	1	S 8-bit data MPB STOP STOP						
0	1	0	0	S 8-bit data P STOP						
0	1	0	1	S 8-bit data P STOP STOP						
0	1	1	0	S 5-bit data STOP						
0	1	1	1	S 5-bit data STOP STOP						
1	0	0	0	S 7-bit data STOP						
1	0	0	1	S 7-bit data STOP STOP						
1	0	1	0	S 7-bit data MPB STOP						
1	0	1	1	S 7-bit data MPB STOP STOP						
1	1	0	0	S 7-bit data P STOP						
1	1	0	1	S 7-bit data P STOP STOP						
1	1	1	0	S 5-bit data P STOP						
1	1	1	1	S 5-bit data P STOP STOP						
1	J.									

Table 10.14 Data Transfer Formats (Asynchronous Mode)

Legend:

S: Start bit

STOP: Stop bit

P: Parity bit

MPB: Multiprocessor bit

Rev. 6.00 Aug 04, 2006 page 380 of 680 REJ09B0145-0600

			Values					
ltem	Symbol	Applicable Pins	Min	Тур	Max	Unit	Test Condition	Notes
Input/	I _{IL}	RES, P4 ₃	_		20.0	μA	V _{IN} = 0.5 V to	*2
output			_	—	1.0		$V_{CC} - 0.5 V$	*1
age current		$\label{eq:states} \hline \hline OSC_1, X_1, P1_0 \ to \ P1_7, \\ P2_0 \ to \ P2_7, P3_0 \ to \ P3_7, \\ P4_0 \ to \ P4_2, P5_0 \ to \ P5_7, \\ P6_0 \ to \ P6_7, P7_0 \ to \ P7_7, \\ P8_0 \ to \ P8_7, P9_0 \ to \ P9_7, \\ PA_0 \ to \ PA_3 \\ \hline \hline \hline$	_	_	1.0	μA	$V_{IN} = 0.5 V \text{ to}$ $V_{CC} - 0.5 V$	_
		PB_0 to PB_7 , PC_0 to PC_3	_	—	1.0		V_{IN} = 0.5 V to AV _{CC} - 0.5 V	
Pull-up	$-I_p$	$P1_0$ to $P1_7$, $P3_0$ to $P3_7$,	50.0		300.0	μA	V_{CC} = 5 V, V_{IN} = 0 V	
MOS current		$P5_0$ to $P5_7$, $P6_0$ to $P6_7$	_	35.0	—		$V_{CC} = 2.7 \text{ V}, V_{IN} = 0 \text{ V}$	Refer- ence value
Input capaci- tance	C _{IN}	All input pins except power supply, $\overline{\text{RES}}$, P4 ₃ , PB ₀ to PB ₇	_	_	15.0	pF	f = 1 MHz, V_{IN} =0 V, Ta = 25°C	
		RES	_	—	80.0			*2
			_	_	15.0			*1
		P4 ₃	_		50.0			*2
			_		15.0			*1
		PB ₀ to PB ₇	_	_	15.0			
Active	I _{OPE1}	V _{CC}	_	4.5	6.5	mA	Active (high-speed)	*3
mode current dissi-							mode $V_{CC} = 5 V$, $f_{OSC} = 10 MHz$	*5 *6
pation	I _{OPE2}	V _{cc}	_	1.3	2.0	mA	Active (medium- speed) mode $V_{CC} = 5 V$, $f_{OSC} = 10 MHz$, $\phi_{OSC}/128$	*3 *5 *6
Sleep mode current dissi- pation	I _{SLEEP}	Vcc	_	2.5	4.0	mA	V _{CC} = 5 V, f _{osc} = 10 MHz	*3 *5 *6

LCR—LCD Control Register

H'C1 LCD controller/driver

Bit	7	6	5	4		3		2	1		0	
	_	PSW	ACT	DIS	SP	CKS	3	CKS2	CK	S1 0	CKS0	
Initial value	1	0	0	C)	0		0	0		0	
Read/Write	_	R/W	R/W	R/W R/W		R/W		R/W	R/\	N	R/W	
						Fr	amo	froquo		loct		
							aine Rit 3	Bit 2	Bit 1	Bit 1		
						C	KS3	CKS2	CKS1	CKS0	Operatin	g Clock
							0	*	0	0	φw	
							0	*	0	1	φw	/2
							0	*	1	*	φw	/4
							1	0	0	0	ф/2	
							1	0	0	1	φ/4	
							1	0	1	0	φ/8	
							1	0	1	1	φ/1	6
							1	1	0	0	φ/3	2
							1	1	0	1	φ/6	4
							1	1	1	0	φ/1	28
							1	1	1	1	φ/2	56
				Dis	play d	lata c	ontro	bl			* D	on't care
				0	Blank	data	is dis	splayed				
				1	LCD	RAM	data	is displ	ayed			
			Displav fu	unctio	on act	ivate						
				contro	oller/dr	iver o	pera	tion hal	ted			
			1 LCD o	contro	oller/dr	iver o	pera	tes				
		LCD drive	e power si	upply	on/o	ff con	trol					

0	LCD drive power supply off
1	LCD drive power supply on

AMR—A/D Mode Register

H'C6 A/D converter

Bit	7	6		5		4	3	2		1	0
	CKS	TRO	GE	_		_	СНЗ	C⊢	2	CH1	CH0
Initial value	0	0		1		1	0	0		0	0
Read/Write	R/W	R/	N	_		_	R/W	R/\	N	R/W	R/W
				ſ							
				Ch	anno	el selec	ct				
				B	it 3	Bit 2	Bit 1	Bit 0			
				С	H3	CH2	CH1	CH0	Ana	alog Input	Channel
					0	0	*	*	No	channel s	elected
					0	1	0	0	AN	0	
					0	1	0	1	AN	1	
					0	1	1	0	AN	2	
					0	1	1	1	AN	3	
					1	0	0	0	AN	4	
					1	0	0	1	AN	5	
					1	0	1	0	AN	6	
					1	0	1	1	AN	7	
					1	1	0	0	AN	8	
					1	1	0	1	AN	9	
					1	1	1	0	AN	10	
					1	1	1	1	AN	11	
		Ext	ernal ti	rigger	sele	ect				* [Don't care
		0	Disabl	es sta	rt of	A/D co	nversio	h by ext	erna	l trigger	
		1	Enable of exte	es star ernal tr	t of <i>i</i> igge	A/D cor r at pin	version	by risir	ng or	falling ed	ge

Clock select

Bit 7		Convers	ion Time
CKS	Conversion Period	$\phi = 1 \text{ MHz}$	$\phi = 5 \text{ MHz}$
0	62/ 	62 µs	12.4 µs
1	31/ф	31 µs	_

Figure C.1 (d) Port 1 Block Diagram (Pin P1₀)

Figure C.3 (e-1) Port 3 Block Diagram (Pin P3₂, H8/3847R Group and H8/3847S Group)

C.11 Block Diagram of Port B

Figure C.11 Port B Block Diagram

Appendix D Port States in the Different Processing States

Table D.1	Port States	Overview

Port	Reset	Sleep	Subsleep	Standby	Watch	Subactive	Active
P1 ₇ to P1 ₀	High- impedance	Retained	Retained	High- impedance ^{*1}	Retained	Functions	Functions
P27 to P20	High- impedance ^{*3}	Retained	Retained	High- impedance	Retained	Functions	Functions
P37 to P30	High- impedance ^{*2}	Retained	Retained	High- impedance ^{*1}	Retained	Functions	Functions
P4 ₃ to P4 ₀	High- impedance	Retained	Retained	High- impedance	Retained	Functions	Functions
P57 to P50	High- impedance	Retained	Retained	High- impedance ^{*1}	Retained	Functions	Functions
P67 to P60	High- impedance	Retained	Retained	High- impedance	Retained	Functions	Functions
P7 ₇ to P7 ₀	High- impedance	Retained	Retained	High- impedance	Retained	Functions	Functions
P87 to P80	High- impedance	Retained	Retained	High- impedance	Retained	Functions	Functions
P97 to P90	High- impedance	Retained	Retained	High- impedance	Retained	Functions	Functions
PA ₃ to PA ₀	High- impedance	Retained	Retained	High- impedance	Retained	Functions	Functions
PB7 to PB0	High- impedance	High- impedance	High- impedance	High- impedance	High- impedance	High- impedance	High- impedance
PC₃ to PC₀	High- impedance	High- impedance	High- impedance	High- impedance	High- impedance	High- impedance	High- impedance

Notes: 1. High level output when MOS pull-up is in on state.

2. Reset output from $P3_2$ pin only (H8/3847R Group and H8/3847S Group).

3. On-chip pull-up MOS turns on for pin P2 $_4$ only (F-ZTAT Version of the H8/38347 Group and H8/38447 Group).

Figure F.4 TFP-100G Package Dimension

