

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UQFN Exposed Pad
Supplier Device Package	16-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18426-i-jq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.8.2 INDF1

Name: INDF1 Address: 0x01 + n*0x80 [n=0..63]

Indirect Data Register. This is a virtual register. The GPR/SFR register addressed by the FSR1 register is the target for all operations involving the INDF1 register.

Bit	7	6	5	4	3	2	1	0
				INDF	1[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 – INDF1[7:0] Indirect data pointed to by the FSR1 register Related Links Core Registers

8.14 Register Summary - BOR Control and Power Control

Offset	Name	Bit Pos.								
0x0811	BORCON	7:0	SBOREN							BORRDY
0x0812	Reserved									
0x0813	PCON0	7:0	STKOVF	STKUNF	WDTWV	RWDT	RMCLR	RĪ	POR	BOR
0x0814	PCON1	7:0							MEMV	

8.15 Register Definitions: Power Control

PIC16(L)F18426/46 (NVM) Nonvolatile Memory Control

loaded in ADDRH		ted in common RAM (locations 0x70 - 0x7F)
		aken into account
BANKSEL MOVF MOVWF MOVF MOVWF	NVMADRH ADDRH,W NVMADRH ADDRL,W NVMADRL	; Load initial address
MOVUW MOVUW MOVUW MOVUW		; Load initial data address
MOVWF BCF BSF BSF	NVMCON1, NVMREGS NVMCON1, WREN NVMCON1, LWLO	; Set Program Flash Memory as write location ; Enable writes ; Load only write latches
LOOP		
MOVIW MOVWF MOVIW MOVWF	FSR0++ NVMDATL FSR0++ NVMDATH	; Load first data byte ; Load second data byte
MOVF XORLW ANDLW BTFSC GOTO	NVMADRL,W 0x1F 0x1F STATUS,Z START_WRITE	; Check if lower bits of address are 00000 ; and if on last of 32 addresses ; Last of 32 words? ; If so, go write latches into memory
CALL INCF GOTO	UNLOCK_SEQ NVMADRL,F LOOP	; If not, go load latch ; Increment address
START_WRITE		
BCF CALL BCF		; Latch writes complete, now write memory ; Perform required unlock sequence ; Disable writes
UNLOCK_SEQ		
MOVLW BCF MOVWF MOVLW MOVWF BSF	55h INTCON,GIE NVMCON2 AAh NVMCON2 NVMCON1,WR	; Disable interrupts ; Begin unlock sequence
BSF interrupts return	INTCON, GIE	; Unlock sequence complete, re-enable

13.4.6 Modifying Flash Program Memory

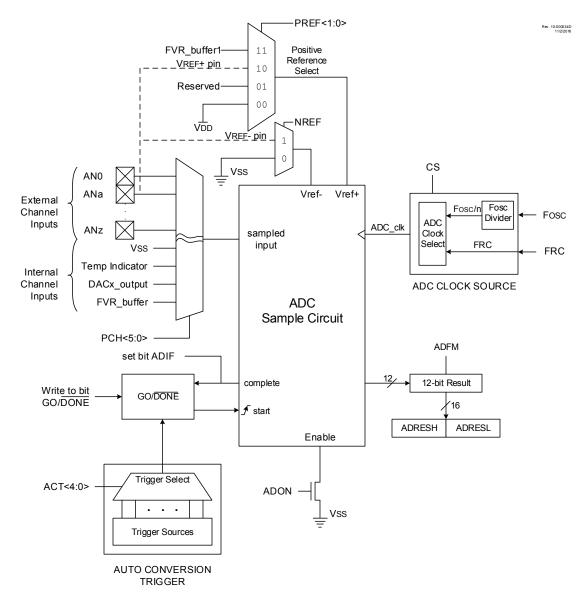
When modifying existing data in a program memory row, and data within that row must be preserved, it must first be read and saved in a RAM image. Program memory is modified using the following steps:

- 1. Load the starting address of the row to be modified.
- 2. Read the existing data from the row into a RAM image.
- 3. Modify the RAM image to contain the new data to be written into program memory.
- 4. Load the starting address of the row to be rewritten.
- 5. Erase the program memory row.
- 6. Load the write latches with data from the RAM image.
- 7. Initiate a programming operation.

14.6.18 ODCONC

Name:	ODCONC
Address:	0x1F50

Open-Drain Control Register


Bit	7	6	5	4	3	2	1	0
	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7 – ODCCn Open-Drain Configuration on RC Pins

Value	Description
1	Port pin operates as open-drain drive (sink current only)
0	Port pin operates as standard push-pull drive (source and sink current)

Note: Bits ODCC6 and ODCC7 available on 20-pin or higher pin-count devices only; Bits unimplemented for lower pin-count devices.

Figure 20-1. ADC² Block Diagram

20.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port Configuration
- Channel Selection
- ADC Voltage Reference Selection
- ADC Conversion Clock Source
- Interrupt Control
- Result Formatting
- Conversion Trigger Selection
- ADC Acquisition Time

20.8.1 ADCON0

Name:	ADCON0
Address:	0x111

ADC Control Register 0

Bit	7	6	5	4	3	2	1	0
	ON	CONT		CS		FRM		GO
Access	R/W	R/W		R/W		R/W		R/W/HC
Reset	0	0		0		0		0

Bit 7 – ON ADC Enable bit

Value	Description
1	ADC is enabled
0	ADC is disabled

Bit 6 – CONT ADC Continuous Operation Enable bit

Value	Description
1	GO is retriggered upon completion of each conversion trigger until TIF is set (if SOI is set) or
	until GO is cleared (regardless of the value of SOI)
0	GO is cleared upon completion of each conversion trigger

Bit 4 – CS ADC Clock Selection bit

Value	Description
1	Clock supplied from FRC dedicated oscillator
0	Clock supplied by F _{OSC} , divided according to ADCLK register

Bit 2 - FRM ADC results Format/alignment Selection

Value	Description
1	ADRES and ADPREV data are right-justified
0	ADRES and ADPREV data are left-justified, zero-filled

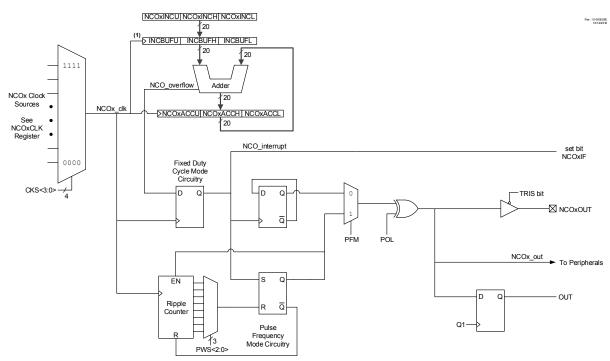
Bit 0 – GO ADC Conversion Status bit^(1,2)

Value	Description
1	ADC conversion cycle in progress. Setting this bit starts an ADC conversion cycle. The bit is
	cleared by hardware as determined by the CONT bit
0	ADC conversion completed/not in progress

Note:

- 1. This bit requires ON bit to be set.
- 2. If cleared by software while a conversion is in progress, the results of the conversion up to this point will be transferred to ADRES and the state machine will be reset, but the ADIF interrupt flag bit will not be set; filter and threshold operations will not be performed.

22. Numerically Controlled Oscillator (NCO) Module


The Numerically Controlled Oscillator (NCO) module is a timer that uses overflow from the addition of an increment value to divide the input frequency. The advantage of the addition method over simple counter driven timer is that the output frequency resolution does not vary with the divider value. The NCO is most useful for application that requires frequency accuracy and fine resolution at a fixed duty cycle.

Features of the NCO include:

- 20-bit Increment Function
- Fixed Duty Cycle mode (FDC) mode
- Pulse Frequency (PF) mode
- Output Pulse Width Control
- Multiple Clock Input Sources
- Output polarity Control
- Interrupt Capability

The following figure is a simplified block diagram of the NCO module.

Figure 22-1. Numerically Controlled Oscillator Module Simplified Block Diagram

Note:

1. The increment registers are double-buffered to allow for value changes to be made without first disabling the NCO module. The full increment value is loaded into the buffer registers on the second rising edge of the NCOx_clk signal that occurs immediately after a write to NCOxINCL register. The buffers are not user-accessible and are shown here for reference.

22.1 NCO Operation

The NCO operates by repeatedly adding a fixed value to an accumulator. Additions occur at the input clock rate. The accumulator will overflow with a carry periodically, which is the raw NCO output (NCO_overflow). This effectively reduces the input clock by the ratio of the addition value to the maximum accumulator value. See the following equation.

Equation 22-1. NCO Overflow Frequency

 $F_{OVERFLOW} = \frac{NCO Clock Frequency \times Increment Value}{2^{20}}$

22.1.1 NCO Clock Sources

Clock sources available to the NCO are shown in the following table:

Table 22-1. NCO Clock Sources

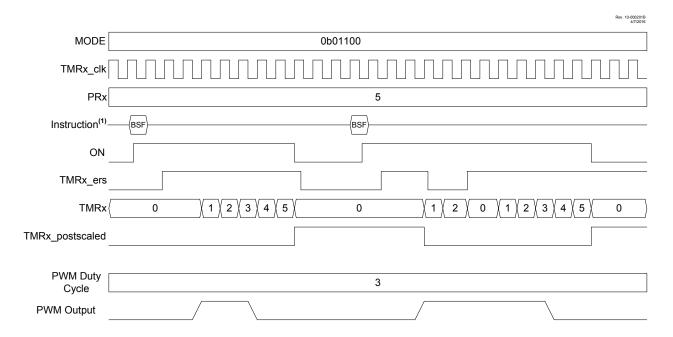
CKS	Clock Source
1111-1011	Reserved
1010	CLC4_out
1001	CLC3_out
1000	CLC2_out
0111	CLC1_out
0110	CLKR
0101	SOSC
0100	MFINTOSC (32 kHz)
0011	MFINTOSC (500 kHz)
0010	LFINTOSC
0001	HFINTOSC
0000	F _{OSC}

The NCO clock source is selected by configuring the CKS bits.

Related Links

NCOxCLK

22.1.2 Accumulator


The accumulator is a 20-bit register. Read and write access to the accumulator is available through three registers:

- NCOxACCL
- NCOxACCH
- NCOxACCU

Related Links

NCOxACC

PIC16(L)F18426/46 Timer2 Module

Note:

1. BSF and BCF represent Bit-Set File and Bit-Clear File instructions executed by the CPU to set or clear the ON bit of TxCON. CPU execution is asynchronous to the timer clock input.

Related Links

PWM Overview (PWM) Pulse-Width Modulation

27.6.8 Level Reset, Edge-Triggered Hardware Limit One-Shot Modes

In Level -Triggered One-Shot mode the timer count is reset on the external signal level and starts counting on the rising/falling edge of the transition from Reset level to the active level while the ON bit is set. Reset levels are selected as follows:

- Low Reset level (MODE<4:0> = 01110)
- High Reset level (MODE<4:0> = 01111)

When the timer count matches the PRx period count, the timer is reset and the ON bit is cleared. When the ON bit is cleared by either a PRx match or by software control, a new external signal edge is required after the ON bit is set to start the counter.

When Level-Triggered Reset One-Shot mode is used in conjunction with the CCP PWM operation, the PWM drive goes active with the external signal edge that starts the timer. The PWM drive goes inactive when the timer count equals the CCPRx pulse width count. The PWM drive does not go active when the timer count clears at the PRx period count match.

31.14 Register Summary - CWG Control

Offset	Name	Bit Pos.								
0x060C	CWG1CLK	7:0								CS
0x060D	CWG1ISM	7:0						ISM	[3:0]	
0x060E	CWG1DBR	7:0					DBR	[5:0]		
0x060F	CWG1DBF	7:0					DBF	[5:0]		
0x0610	CWG1CON0	7:0	EN	LD					MODE[2:0]	
0x0611	CWG1CON1	7:0			IN		POLD	POLC	POLB	POLA
0x0612	CWG1AS0	7:0	SHUTDOWN	REN	LSBI	D[1:0]	LSAC	C[1:0]		
0x0613	CWG1AS1	7:0			AS5E	AS4E	AS3E	AS2E	AS1E	AS0E
0x0614	CWG1STR	7:0	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA
0x0615	Reserved									
0x0616	CWG2CLK	7:0								CS
0x0617	CWG2ISM	7:0						ISM	[3:0]	
0x0618	CWG2DBR	7:0			DBR[5:0]					
0x0619	CWG2DBF	7:0			DBF[5:0]					
0x061A	CWG2CON0	7:0	EN	LD					MODE[2:0]	
0x061B	CWG2CON1	7:0			IN		POLD	POLC	POLB	POLA
0x061C	CWG2AS0	7:0	SHUTDOWN	REN	LSBI	D[1:0]	LSAC	C[1:0]		
0x061D	CWG2AS1	7:0			AS5E	AS4E	AS3E	AS2E	AS1E	AS0E
0x061E	CWG2STR	7:0	OVRD	OVRC	OVRB	OVRA	STRD	STRC	STRB	STRA

31.15 Register Definitions: CWG Control

Long bit name prefixes for the CWG peripherals are shown in the table below. Refer to the "Long Bit Names Section" for more information.

Table 31-3. CWG Bit Name Prefixes

Peripheral	Bit Name Prefix
CWG1	CWG1
CWG2	CWG2

Related Links

Long Bit Names

(DSM) Data Signal Modulator Module

	MDCARH					
CHS<3:0>	Connection					
1010	NCO1 OUT					
1001	PWM7 OUT					
1000	PWM6 OUT					
0111	CCP4 OUT					
0110	CCP3 OUT					
0101	CCP2 OUT					
0100	CCP1 OUT					
0011	CLKREF output					
0010	HFINTOSC					
0001	F _{OSC} (system clock)					
0000	Pin selected by MDCARHPPS					

The carrier low signal is selected by configuring the CLS bits.

Table 32-3. MDCARL Source Selections

MDCARL					
CLS<3:0>	Connection				
1111	Reserved				
1110	CLC4 OUT				
1101	CLC3 OUT				
1100	CLC2 OUT				
1011	CLC1 OUT				
1010	NCO1 OUT				
1001	PWM7 OUT				
1000	PWM6 OUT				
0111	CCP4 OUT				
0110	CCP3 OUT				
0101	CCP2 OUT				
0100	CCP1 OUT				
0011	CLKREF output				
0010	HFINTOSC				

32.12.2 MDxCON1

Name:	MDxCON1
Address:	0x0898

Modulation Control Register 1

Bit	7	6	5	4	3	2	1	0
			CHPOL	CHSYNC			CLPOL	CLSYNC
Access			R/W	R/W			R/W	R/W
Reset			0	0			0	0

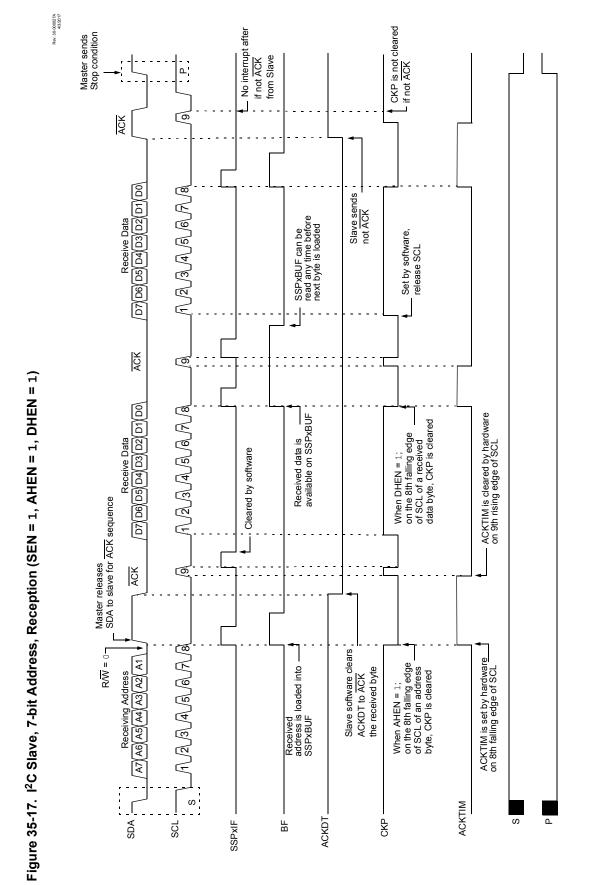
Bit 5 – CHPOL Modulator High Carrier Polarity Select bit

Value	Description
1	Selected high carrier signal is inverted
0	Selected high carrier signal is not inverted

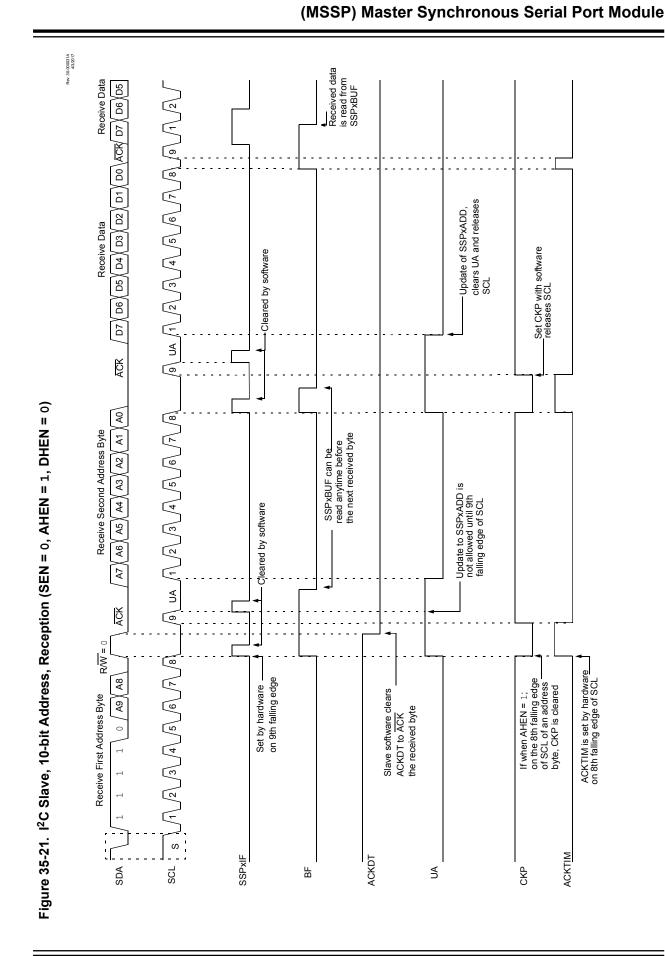
Bit 4 – CHSYNC Modulator High Carrier Synchronization Enable bit

Value	Description
1	Modulator waits for a falling edge on the high time carrier signal before allowing a switch to
	the low time carrier
0	Modulator output is not synchronized to the high time carrier signal

Bit 1 – CLPOL Modulator Low Carrier Polarity Select bit


Value	Description
1	Selected low carrier signal is inverted
0	Selected low carrier signal is not inverted

Bit 0 – CLSYNC Modulator Low Carrier Synchronization Enable bit

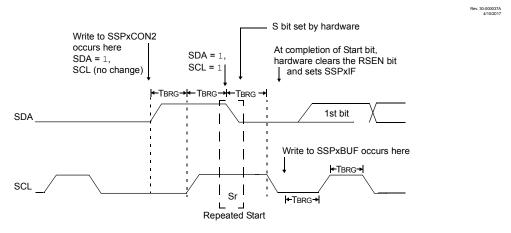

Value	Description
1	Modulator waits for a falling edge on the low time carrier signal before allowing a switch to
	the high time carrier
0	Modulator output is not synchronized to the low time carrier signal

Note:

1. Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

PIC16(L)F18426/46 (MSSP) Master Synchronous Serial Port Module

© 2017 Microchip Technology Inc.


the SDA and SCL pins, the S bit will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

Important:

- 1. If RSEN is programmed while any other event is in progress, it will not take effect.
- 2. A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Figure 35-27. Repeated Start Condition Waveform

35.6.6 I²C Master Mode Transmission

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (T_{BRG}). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for T_{BRG} . The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an \overline{ACK} bit during the ninth bit time if an address match occurred, or if data was received properly. The status of \overline{ACK} is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCL low and SDA unchanged (Figure 35-28).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/\overline{W} bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the \overline{ACK} bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and

35.9.3 SSPxCON2

Name:	SSPxCON2			
Address:	0x191,0x19B			

Control Register for I²C Operation Only

MSSP Control Register 2

Bit	7	6	5	4	3	2	1	0
ĺ	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
Access	R/W	R/W/HC	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 – GCEN

General Call Enable bit (Slave mode only)

Value	Mode	Description
Х	Master mode	Don't care
1	Slave mode	General call is enabled
0	Slave mode	General call is not enabled

Bit 6 – ACKSTAT Acknowledge Status bit (Master Transmit mode only)

Value	Description
1	Acknowledge was not received from slave
0	Acknowledge was received from slave

Bit 5 – ACKDT

Acknowledge Data bit (Master Receive mode only)⁽¹⁾

Value	Description
1	Not Acknowledge
0	Acknowledge

Bit 4 – ACKEN

Acknowledge Sequence Enable bit⁽²⁾

Value	Description
1	Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit;
	automatically cleared by hardware
0	Acknowledge sequence is Idle

Bit 3 – RCEN

Receive Enable bit (Master Receive mode only)⁽²⁾

Value	Description
1	Enables Receive mode for I ² C
0	Receive is Idle

Bit 2 – PEN

Stop Condition Enable bit (Master mode only)⁽²⁾

PIC16(L)F18426/46 (SMT) Signal Measurement Timer

37.3.7 SMTxTMR

Name:	SMTxTMR
Address:	0x048C

SMT Timer Register

23	22	21	20	19	18	17	16
			TMR	J[7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
TMRH[7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
TMRL[7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
	R/W 0 15 R/W 0 7 R/W	R/W R/W 0 0 15 14 R/W R/W 0 0 7 6 R/W R/W	R/W R/W R/W 0 0 0 15 14 13 R/W R/W R/W 0 0 0 7 6 5 R/W R/W R/W	R/W R/W R/W R/W R/W O <th< td=""><td>TMRU[7:0] R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 TMRH[7:0] R/W R/W R/W R/W 0 0 0 0 0 R/W R/W R/W R/W R/W 0 0 0 0 0 7 6 5 4 3 TMRL[7:0] R/W R/W R/W R/W</td><td>TMRU[7:0] R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 10 TMRH[7:0] R/W R/W R/W 0 0 0 0 0 TMRH[7:0] R/W R/W R/W R/W 0 0 0 0 0 7 6 5 4 3 2 TMRL[7:0] TMRL[7:0] R/W R/W R/W R/W R/W</td><td>TMRU[7:0] R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 15 14 13 12 11 10 9 TMRH[7:0] TMRH[7:0] R/W R/W R/W R/W R/W 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 7 6 5 4 3 2 1 TMRL[7:0] R/W R/W R/W R/W R/W</td></th<>	TMRU[7:0] R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 TMRH[7:0] R/W R/W R/W R/W 0 0 0 0 0 R/W R/W R/W R/W R/W 0 0 0 0 0 7 6 5 4 3 TMRL[7:0] R/W R/W R/W R/W	TMRU[7:0] R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 10 TMRH[7:0] R/W R/W R/W 0 0 0 0 0 TMRH[7:0] R/W R/W R/W R/W 0 0 0 0 0 7 6 5 4 3 2 TMRL[7:0] TMRL[7:0] R/W R/W R/W R/W R/W	TMRU[7:0] R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 15 14 13 12 11 10 9 TMRH[7:0] TMRH[7:0] R/W R/W R/W R/W R/W 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 7 6 5 4 3 2 1 TMRL[7:0] R/W R/W R/W R/W R/W

Bits 23:16 - TMRU[7:0] Upper byte of the SMT timer register

Bits 15:8 – TMRH[7:0] High byte of the SMT timer register

Bits 7:0 - TMRL[7:0] Lower byte of the SMT timer register

Instruction Set Summary

ASRF	Arithmetic Right Shift
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.
	Register $f \rightarrow C$

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f, b
Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	$0 \rightarrow f \le b >$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BRA	Relative Branch
Syntax:	[<i>label</i>] BRA label [<i>label</i>] BRA \$+k
Operands:	-256 ≤ label - PC + ≤ 255 -256 ≤ k ≤ 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.

BRW	Relative Branch with W
Syntax:	[label] BRW
Operands:	None
Operation:	$(PC) + (W) \rightarrow PC$

Electrical Specifications

PIC16F18426/46 only										
Standard Operating Conditions (unless otherwise stated)										
Param.	Sum	Device	Min.	Turn 1	Max.	Units	Conditions			
No.	Sym.	Characteristics	IVIII.	Typ.†		Units	V _{DD}	Note		
D102	I _{DDHFOPLL}	HFINTOSC = 32 MHz		3.7	5.6	mA	3.0V			
D103	I _{DD_{HSPLL32}}	HS+PLL = 32 MHz	_	3.7	5.7	mA	3.0V			
D104	I _{DD_{IDLE}}	IDLE mode, HFINTOSC = 16 MHz		1.8	2.1	mA	3.0V			
D105	I _{DD_{DOZE}⁽³⁾}	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16		1.6		mA	3.0V			

† - Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note:

The test conditions for all I_{DD} measurements in active operation mode are: OSC1 = external square wave, from

rail-to-rail; all I/O pins are outputs driven low; $\overline{MCLR} = V_{DD}$; WDT disabled.

- The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
- 3. $I_{DD_{DOZE}} = [I_{DD_{IDLE}}^{*}(N-1)/N] + I_{DD_{HFO}} 16/N$ where N = DOZE Ratio (see *CPUDOZE* register).
- 4. PMD bits are all in the default state, no modules are disabled.

Related Links

CPUDOZE

42.3.3 Power-Down Current (I_{PD})^(1,2)

Table 42-3.

PIC16LF	PIC16LF18426/46 only									
Standard Operating Conditions (unless otherwise stated)										
Param. No.	Sym.	Device Characteristics	Min.	Тур.†	Max. +85°C	Max. +125°C	Units	Conditions		
								V _{DD}	Note	
D200	I _{PD}	I _{PD} Base	_	0.06	2	9	μA	3.0V		
D201	I _{PD_WDT}	Low-Frequency Internal Oscillator/WDT		0.8	4.0	11	μA	3.0V		

Electrical Specifications

PIC16LF18426/46 only										
Standard Operating Conditions (unless otherwise stated)										
Param.	Sym.	Device	Min. Typ.†	Typ +	Max.	Max.	Units	Conditions		
No.	Synn.	Characteristics		+85°C	+125°C	Units	V _{DD}	Note		
D202	I _{PD_SOSC}	Secondary Oscillator (S _{OSC})	_	0.6	5	11	μA	3.0V		
D203	I _{PD_FVR}	FVR		33	74	76	μA	3.0V		
D204	I _{PD_BOR}	Brown-out Reset (BOR)	_	10	17	19	μA	3.0V		
D205	I _{PD_LPBOR}	Low-Power Brown-out Reset (LPBOR)		0.5	3.0	10	μA	3.0V		
D207	I _{PD_ADCA}	ADC - Non- converting		0.06	2	9	μA	3.0V	ADC not converting (4)	
D208	I _{PD_CMP}	Comparator		30	48	56	μA	3.0V		

† - Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note:

- 1. The peripheral current is the sum of the base I_{DD} and the additional current consumed when this peripheral is enabled. The peripheral Δ current can be determined by subtracting the base I_{DD} or I_{PD} current from this limit. Max. values should be used when calculating total current consumption.
- The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode with all I/O pins in high-impedance state and tied to V_{SS}.
- 3. All peripheral currents listed are on a per-peripheral basis if more than one instance of a peripheral is available.
- 4. ADC clock source is FRC.

PIC16F18426/46 only										
Standard Operating Conditions (unless otherwise stated), VREGPM = 1										
Param.	Sum	ym. Device Characteristics	Min.	Typ.†	Max. +85°C	Max. +125°C	Units	Conditions		
No.	D. Sym.							V _{DD}	Note	
D200				0.4	4	12	μA	3.0V		
D200A	I _{PD}	I _{PD} Base		18	22	27	μA	3.0V	VREGPM =	
D201	I _{PD_WDT}	Low-Frequency Internal Oscillator/WDT		0.9	6	14	μA	3.0V		