

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	28KB (16K × 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 17x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18446-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Device Overview

This document contains device specific information for the following devices:

•	PIC16F18426	•	PIC16LF18426
•	PIC16F18446	•	PIC16LF18446

1.1 New Core Features

1.1.1 XLP Technology

All of the devices in the PIC16(L)F184XX family incorporate a range of features that can significantly reduce power consumption during operation. Key items include:

- Alternate Run Modes: By clocking the controller from the secondary oscillator or the internal oscillator block, power consumption during code execution can be reduced by as much as 90%.
- Multiple Idle Modes: The controller can also run with its CPU core disabled but the peripherals still
 active. In these states, power consumption can be reduced even further, to as little as 4% of normal
 operation requirements.
- On-the-fly Mode Switching: The power-managed modes are invoked by user code during
 operation, allowing the user to incorporate power-saving ideas into their application's software
 design.
- **Peripheral Module Disable:** Modules that are not being used in the code can be selectively disabled using the PMD module. This further reduces the power consumption.

1.1.2 Multiple Oscillator Options and Features

All of the devices in the PIC16(L)F184XX family offer several different oscillator options. The PIC16(L)F184XX family can be clocked from several different sources:

- HFINTOSC
 - 1-32 MHz precision digitally controlled internal oscillator
- LFINTOSC
 - 31 kHz internal oscillator
- EXTOSC
 - External clock (EC)
 - Low-power oscillator (LP)
 - Medium-power oscillator (XT)
 - High-power oscillator (HS)
- SOSC
 - Secondary oscillator circuit optimized for 32 kHz clock crystals
- A Phase Lock Loop (PLL) frequency multiplier (2x/4x) is available to the External Oscillator modes enabling clock speeds of up to 32 MHz
- Fail-Safe Clock Monitor: This option constantly monitors the main clock source against a reference signal provided by the LFINTOSC. If a clock failure occurs, the controller is switched to the internal oscillator block, allowing for continued operation or a safe application shutdown.

7.9 Register Summary: Shadow Registers

Offset	Name	Bit Pos.							
0x1FE4	STATUS_SHAD	7:0			TO	PD	Z	DC	С
0x1FE5	WREG_SHAD	7:0	WREG[7:0]						
0x1FE6	BSR_SHAD	7:0	BSR[5:0]						
0x1FE7	PCLATH_SHAD	7:0	PCLATH[6:0]						
	FSR0_SHAD	7:0	FSRL[7:0]						
UXIFEO		15:8			FSR	H[7:0]			
	FSR1_SHAD	7:0			FSRI	_[7:0]			
UXIFEA		15:8			FSR	H[7:0]			

7.10 Register Definitions: Shadow Registers

PIC16(L)F18426/46 (WWDT) Windowed Watchdog Timer

12.1 Independent Clock Source

The WWDT can derive its time base from either the 31 kHz LFINTOSC or 31.25 kHz MFINTOSC internal oscillators, depending on the value of WDTE Configuration bits.

If WDTE = 'blx, then the clock source will be enabled depending on the WDTCCS Configuration bits.

If WDTE = 'b01, the SEN bit should be set by software to enable WWDT, and the clock source is enabled by the WDTCS bits.

Time intervals in this chapter are based on a minimum nominal interval of 1 ms. See *"Electrical Specifications"* for LFINTOSC and MFINTOSC tolerances.

© 2017 Microchip Technology Inc.

21. (DAC) 5-Bit Digital-to-Analog Converter Module

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The positive input source (V_{SOURCE}+) of the DAC can be connected to:

- FVR Buffer
- External V_{REF}+ pin
- V_{DD} supply voltage

The negative input source (V_{SOURCE} -) of the DAC can be connected to:

- External V_{REF}- pin
- V_{SS}

The output of the DAC (DACx_output) can be selected as a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DACxOUT1 pin
- DACxOUT2 pin

The Digital-to-Analog Converter (DAC) can be enabled by setting the EN bit.

26.14.1 TxCON

Name:	TxCON
Address:	0x20E,0x214,0x21A

Timer Control Register

Bit	7	6	5	4	3	2	1	0
			CKPS[1:0]			SYNC	RD16	ON
Access			R/W	R/W		R/W	R/W	R/W
Reset			0	0		0	0	0

Bits 5:4 – CKPS[1:0] Timer Input Clock Prescale Select bits Reset States: POR/BOR = 00

All Other Resets = uu

Value	Description
11	1:8 Prescale value
10	1:4 Prescale value
01	1:2 Prescale value
00	1:1 Prescale value

Bit 2 – SYNC Timer External Clock Input Synchronization Control bit

Reset States: POR/BOR = 0

All Other Resets = u

Value	Condition	Description
Х	$CS = F_{OSC}/4$ or F_{OSC}	This bit is ignored. Timer uses the incoming clock as is.
1	Else	Do not synchronize external clock input
0	Else	Synchronize external clock input with system clock

Bit 1 – RD16 16-Bit Read/Write Mode Enable bit

Reset States: POR/BOR = 0

All Other Resets = u

Value	Description
1	Enables register read/write of Timer in one 16-bit operation
0	Enables register read/write of Timer in two 8-bit operations

Bit 0 – ON Timer On bit Reset States: POR/BOR = 0 All Other Resets = u

Value	Description
1	Enables Timer
0	Disables Timer

- Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
- Enable Timer2 by setting the T2ON bit of the T2CON register.
- 6. Enable PWM output pin and wait until Timer2 overflows, TMR2IF bit of the PIRx register is set.⁽²⁾
- 7. Enable the PWMx pin output driver(s) by clearing the associated TRIS bit(s) and setting the desired pin PPS control bits.
- 8. Configure the PWM module by loading the PWMxCON register with the appropriate values.

Note:

- 1. In order to send a complete duty cycle and period on the first PWM output, the above steps must be followed in the order given. If it is not critical to start with a complete PWM signal, then move Step 8 to replace Step 4.
- 2. For operation with other peripherals only, disable PWMx pin outputs.

30.9.1 PWMx Pin Configuration

All PWM outputs are multiplexed with the PORT data latch. The user must configure the pins as outputs by clearing the associated TRIS bits.

30.10 Setup for PWM Operation to Other Device Peripherals

The following steps should be taken when configuring the module for PWM operation to be used by other device peripherals:

- 1. Disable the PWMx pin output driver(s) by setting the associated TRIS bit(s).
- 2. Clear the PWMxCON register.
- 3. Load the T2PR register with the PWM period value.
- 4. Load the PWMxDCH register and bits <7:6> of the PWMxDCL register with the PWM duty cycle value.
- 5. Configure and start Timer2:
 - Clear the TMR2IF interrupt flag bit of the PIRx register.⁽¹⁾
 - Select the timer clock source to be as F_{OSC}/4 using the TxCLKCON register. This is required for correct operation of the PWM module.
 - Configure the T2CKPS bits of the T2CON register with the Timer2 prescale value.
 - Enable Timer2 by setting the T2ON bit of the T2CON register.
- 6. Wait until Timer2 overflows, TMR2IF bit of the PIRx register is set.⁽¹⁾
- 7. Configure the PWM module by loading the PWMxCON register with the appropriate values.

Note:

1. In order to send a complete duty cycle and period on the first PWM output, the above steps must be included in the setup sequence. If it is not critical to start with a complete PWM signal on the first output, then step 6 may be ignored.

- F_{OSC} (system clock)
- HFINTOSC

When the HFINTOSC is selected, the HFINTOSC will be kept running during Sleep. Therefore, CWG modes requiring dead band can operate in Sleep, provided that the CWG data input is also active during Sleep. The clock sources are selected using the CS bit. The system clock F_{OSC} , is disabled in Sleep and thus dead-band control cannot be used.

31.5 Selectable Input Sources

The CWG generates the output waveforms from the input sources which are selected with the ISM bits as shown below.

ISM	Data Source
1111	Reserved
1110	CLC4_out
1101	CLC3_out
1100	CLC2_out
1011	CLC1_out
1010	DSM1_out
1001	C2_out
1000	C1_out
0111	NCO1_out
0110	PWM7_out
0101	PWM6_out
0100	CCP4_out
0011	CCP3_out
0010	CCP2_out
0001	CCP1_out
0000	Pin selected by CWGxINPPS

Table 31-1. CWG Data Input Sources

31.6 Output Control

31.6.1 CWG Outputs

Each CWG output can be routed to a Peripheral Pin Select (PPS) output via the RxyPPS register.

Related Links

(PPS) Peripheral Pin Select Module

31.15.1 CWGxCON0

Name:	CWGxCON0
Address:	0x610,0x61A

CWG Control Register 0

Bit	7	6	5	4	3	2	1	0
	EN	LD					MODE[2:0]	
Access	R/W	R/W/HC				R/W	R/W	R/W
Reset	0	0				0	0	0

Bit 7 - EN CWG1 Enable bit

Value	Description
1	Module is enabled
0	Module is disabled

Bit 6 – LD CWG1 Load Buffers bit⁽¹⁾

Value	Description
1	Dead-band count buffers to be loaded on CWG data rising edge, following first falling edge after this bit is set
0	Buffers remain unchanged

Bits 2:0 – MODE[2:0] CWG1 Mode bits

Value	Description
111	Reserved
110	Reserved
101	CWG outputs operate in Push-Pull mode
100	CWG outputs operate in Half-Bridge mode
011	CWG outputs operate in Reverse Full-Bridge mode
010	CWG outputs operate in Forward Full-Bridge mode
001	CWG outputs operate in Synchronous Steering mode
000	CWG outputs operate in Asynchronous Steering mode

Note:

1. This bit can only be set after EN = 1; it cannot be set in the same cycle when EN is set.

32.12.2 MDxCON1

Name:	MDxCON1
Address:	0x0898

Modulation Control Register 1

Bit	7	6	5	4	3	2	1	0
			CHPOL	CHSYNC			CLPOL	CLSYNC
Access			R/W	R/W			R/W	R/W
Reset			0	0			0	0

Bit 5 – CHPOL Modulator High Carrier Polarity Select bit

Value	Description
1	Selected high carrier signal is inverted
0	Selected high carrier signal is not inverted

Bit 4 – CHSYNC Modulator High Carrier Synchronization Enable bit

Value	Description
1	Modulator waits for a falling edge on the high time carrier signal before allowing a switch to
	the low time carrier
0	Modulator output is not synchronized to the high time carrier signal

Bit 1 – CLPOL Modulator Low Carrier Polarity Select bit

Value	Description
1	Selected low carrier signal is inverted
0	Selected low carrier signal is not inverted

Bit 0 – CLSYNC Modulator Low Carrier Synchronization Enable bit

Value	Description
1	Modulator waits for a falling edge on the low time carrier signal before allowing a switch to
	the high time carrier
0	Modulator output is not synchronized to the low time carrier signal

Note:

1. Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

PIC16(L)F18426/46

© 2017 Microchip Technology Inc.

35.6.1 I²C Master Mode Operation

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the l^2C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/\overline{W} bit. In this case, the R/\overline{W} bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See Baud Rate Generator for more detail.

35.6.2 Clock Arbitration

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSPxADD and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device as shown in the following figure.

Figure 35-25. Baud Rate Generator Timing with Clock Arbitration

35.6.3 WCOL Status Flag

If the user writes the SSPxBUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSPxBUF was attempted while the module was not idle.

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPxBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPxCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPxIF bit will be set.

A write to the SSPxBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set, or the bus is Idle and the S and P bits are cleared.

Figure 35-32. Bus Collision Timing for Transmit and Acknowledge

35.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- 1. SDA or SCL are sampled low at the beginning of the Start condition (Figure 35-33).
- 2. SCL is sampled low before SDA is asserted low (Figure 35-34).

During a Start condition, both the SDA and the SCL pins are monitored.

If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- the BCLxIF flag is set and
- the MSSP module is reset to its Idle state (Figure 35-33).

PIC16(L)F18426/46

(EUSART) Enhanced Universal Synchronous Asyn...

	Actual Rate	% Error	SPBRG value (decimal)									
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD RATE	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—		
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—		
57.6k	55556	-3.55	8		—	—	57.60k	0.00	3	—	—	
115.2k			—			—	115.2k	0.00	1	—	—	

SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1

BAUD RATE	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287

- 6. If 9-bit reception is desired, set the RX9 bit.
- 7. Set the CREN bit to enable reception.
- 8. The RCxIF bit will be set when reception is complete. An interrupt will be generated if the RCxIE bit was set.
- 9. If 9-bit mode is enabled, retrieve the Most Significant bit from the RX9D bit of the RCxSTA register.
- 10. Retrieve the eight Least Significant bits from the receive FIFO by reading the RCxREG register.
- 11. If an overrun error occurs, clear the error by either clearing the CREN bit of the RCxSTA register or by clearing the SPEN bit which resets the EUSART.

36.4 EUSART Operation During Sleep

The EUSART will remain active during Sleep only in the Synchronous Slave mode. All other modes require the system clock and therefore cannot generate the necessary signals to run the Transmit or Receive Shift registers during Sleep.

Synchronous Slave mode uses an externally generated clock to run the Transmit and Receive Shift registers.

36.4.1 Synchronous Receive During Sleep

To receive during Sleep, all the following conditions must be met before entering Sleep mode:

- RCxSTA and TXxSTA Control registers must be configured for Synchronous Slave Reception (see Synchronous Slave Reception Setup:).
- If interrupts are desired, set the RCxIE bit of the PIEx register and the GIE and PEIE bits of the INTCON register.
- The RCxIF interrupt flag must be cleared by reading RCxREG to unload any pending characters in the receive buffer.

Upon entering Sleep mode, the device will be ready to accept data and clocks on the RXx/DTx and TXx/CKx pins, respectively. When the data word has been completely clocked in by the external device, the RCxIF interrupt flag bit of the PIRx register will be set. Thereby, waking the processor from Sleep.

Upon waking from Sleep, the instruction following the SLEEP instruction will be executed. If the Global Interrupt Enable (GIE) bit of the INTCON register is also set, then the Interrupt Service Routine at address 004h will be called.

36.4.2 Synchronous Transmit During Sleep

To transmit during Sleep, all the following conditions must be met before entering Sleep mode:

- The RCxSTA and TXxSTA Control registers must be configured for synchronous slave transmission (see Synchronous Slave Transmission Setup).
- The TXxIF interrupt flag must be cleared by writing the output data to the TXxREG, thereby filling the TSR and transmit buffer.
- Interrupt enable bits TXxIE of the PIEx register and PEIE of the INTCON register must set.
- If interrupts are desired, set the GIEx bit of the INTCON register.

Upon entering Sleep mode, the device will be ready to accept clocks on TXx/CKx pin and transmit data on the RXx/DTx pin. When the data word in the TSR has been completely clocked out by the external device, the pending byte in the TXxREG will transfer to the TSR and the TXxIF flag will be set. Thereby, waking the processor from Sleep. At this point, the TXxREG is available to accept another character for transmission. Writing TXxREG will clear the TXxIF flag.

37.3.9 SMTxCPW

Name:	SMTxCPW
Address:	0x0492

SMT Captured Pulse Width Register

Bit	23	22	21	20	19	18	17	16
				CPW	U[7:0]			
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	х	x	x	x	x	x	x	x
Bit	15	14	13	12	11	10	9	8
				CPW	H[7:0]			
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	х	x	x	x	x	x	x	x
Bit	7	6	5	4	3	2	1	0
				CPW	L[7:0]			
Access	RO	RO	RO	RO	RO	RO	RO	RO
Reset	x	х	x	х	х	х	х	х

Bits 23:16 – CPWU[7:0] Upper Byte of the captured pulse width register Reset States: POR/BOR = xxxxxxx All Other Resets = uuuuuuuu

Bits 15:8 – CPWH[7:0] High Byte of the captured pulse width register Reset States: POR/BOR = xxxxxxxx All Other Resets = uuuuuuuu

Bits 7:0 – CPWL[7:0] Lower Byte of the captured pulse width register Reset States: POR/BOR = xxxxxxxx All Other Resets = uuuuuuuu

PIC16(L)F18426/46

Register Summary

Offset	Name	Bit Pos.								
		15:8		FSRH[7:0]						
0x1088	BSR	7:0		BSR[5:0]						
0x1089	WREG	7:0				WRE	G[7:0]			
0x108A	PCLATH	7:0					PCLATH[6:0]			
0x108B	INTCON	7:0	GIE	PEIE						INTEDG
0x108C										
	Reserved									
0x10FF										
0x1100	INDF0	7:0			1	INDF	0[7:0]	1		
0x1101	INDF1	7:0		INDF1[7:0]						
0x1102	PCL	7:0				PCL	[7:0]			
0x1103	STATUS	7:0				TO	PD	Z	DC	С
0,410.4	ESD0	7:0		FSRL[7:0]						
0X1104	FSRU	15:8				FSRI	H[7:0]			
0,411.06	F0D4	7:0				FSRI	_[7:0]			
021100	FSKI	15:8				FSRI	H[7:0]			
0x1108	BSR	7:0	BSR[5:0]							
0x1109	WREG	7:0		WREG[7:0]						
0x110A	PCLATH	7:0					PCLATH[6:0]			
0x110B	INTCON	7:0	GIE	PEIE						INTEDG
0x110C										
	Reserved									
0x117F										
0x1180	INDF0	7:0				INDF	0[7:0]			
0x1181	INDF1	7:0				INDF	1[7:0]			
0x1182	PCL	7:0				PCL	[7:0]		-	
0x1183	STATUS	7:0				TO	PD	Z	DC	С
0x1184	ESRO	7:0				FSRI	_[7:0]			
0,1104		15:8				FSR	H[7:0]			
0x1186	ESR1	7:0				FSRI	_[7:0]			
		15:8				FSRI	H[7:0]			
0x1188	BSR	7:0					BSR	R[5:0]		
0x1189	WREG	7:0				WRE	G[7:0]			
0x118A	PCLATH	7:0				1	PCLATH[6:0]	i		
0x118B	INTCON	7:0	GIE	PEIE						INTEDG
0x118C										
	Reserved									
0x11FF										
0x1200	INDF0	7:0				INDF	0[7:0]			
0x1201	INDF1	7:0				INDF	1[7:0]			
0x1202	PCL	7:0				PCL	[7:0]	1	1	
0x1203	STATUS	7:0				TO	PD	Z	DC	С
0x1204	FSR0	7:0				FSRI	_[7:0]			
		15:8				FSRI	H[7:0]			
0x1206	FSR1	7:0				FSRI	_[7:0]			
		15:8		FSRH[7:0]						

PIC16(L)F18426/46

Instruction Set Summary

BRW	Relative Branch with W
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f
Syntax:	[<i>label</i>]BSF f, b
Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

BTFSC	Bit Test File, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f, b
Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BTFSS	Bit Test File, Skip if Set
Syntax:	[<i>label</i>] BTFSS f, b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

I/O and CLKOUT Timing Specifications

42.4.16 EUSART Synchronous Transmission Requirements Table 42-22.

Standard Operating Conditions (unless otherwise stated)						
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions
US120	T _{CK} H2 _{DT} V	SYNC XMIT (Master and Slave)		80	ns	3.0V≤V _{DD} ≤5.5V
		Clock high to data-out valid	_	100	ns	1.8V≤V _{DD} ≤5.5V
US121	T _{CKRF}	Clock out rise time and fall time		45	ns	$3.0V \le V_{DD} \le 5.5V$
		(Master mode)	_	50	ns	1.8V≤V _{DD} ≤5.5V
US122	T _{DTRF}	Data-out rise time and fall time		45	ns	3.0V≤V _{DD} ≤5.5V
				50	ns	1.8V≤V _{DD} ≤5.5V

Figure 42-15. EUSART Synchronous Transmission (Master/Slave) Timing

Note: Refer to Figure 42-4 for load conditions.

42.4.17 EUSART Synchronous Receive Requirements

Table 42-23.

Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Max.	Units	Conditions	
US125	$T_{DT}V2_{CKL}$	SYNC RCV (Master and Slave)	10		ns		
		Data-setup before CK \downarrow (DT hold time)					
US126	T _{CK} L2 _{DTL}	Data-hold after CK \downarrow (DT hold time)	15		ns		

Figure 42-16. EUSART Synchronous Receive (Master/Slave) Timing

Note: Refer to Figure 42-4 for load conditions.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

1/11-14/	~
VIEVV	C

	Units	MILLIMETERS			
Dimension Lim	nits	MIN	NOM	MAX	
Number of Pins	N		20		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	E	E 10.30 BSC			
Molded Package Width	E1	1 7.50 BSC			
Overall Length	D	12.80 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1		1.40 REF		
Lead Angle	Θ	0°	-	-	
Foot Angle	oot Angle			8°	
Lead Thickness	С	0.20 - 0.33			
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top α			-	15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Ν	/ILLIMETER	s	
Dimension	MIN	NOM	MAX	
Contact Pitch		1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width (X20)				0.60
Contact Pad Length (X20)	Y			1.95
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.45		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A