

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18426-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 1. R1 ≤ 10 k Ω is recommended. A suggested starting value is 10 k Ω . Ensure that the MCLR pin V_{IH} and V_{IL} specifications are met.
- R2 ≤ 470Ω will limit any current flowing into MCLR from the extended capacitor, C1, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS). Ensure that the MCLR pin V_{IH} and V_{IL} specifications are met.

2.4 In-Circuit Serial Programming[™] ICSP[™] Pins

The ICSPCLK and ICSPDAT pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the ICSPCLK and ICSPDAT pins are not recommended as they can interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (V_{IH}) and input low (V_{IL}) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., ICSPCLK/ICSPDAT pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/ emulator tool.

For more information on available Microchip development tools connection requirements, refer to the *"Development Support"* section.

Related Links

Development Support

2.5 External Oscillator Pins

Many microcontrollers have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator.

The oscillator circuit should be placed on the same side of the board as the device. Place the oscillator circuit close to the respective oscillator pins with no more than 0.5 inch (12 mm) between the circuit components and the pins. The load capacitors should be placed next to the oscillator itself, on the same side of the board.

Use a grounded copper pour around the oscillator circuit to isolate it from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed.

Layout suggestions are shown in the following figure. In-line packages may be handled with a singlesided layout that completely encompasses the oscillator pins. With fine-pitch packages, it is not always possible to completely surround the pins and components. A suitable solution is to tie the broken guard sections to a mirrored ground layer. In all cases, the guard trace(s) must be returned to ground.

5.3 Analog-to-Digital Conversion Data of the Temperature Sensor

The purpose of the temperature indicator module is to provide a temperature-dependent voltage that can be measured by an analog module. The *"Temperature Indicator Module"* chapter explains the operation of the Temperature Indicator module and defines terms such as the low range and high range settings of the sensor. The DIA table contains the internal ADC measurement values of the temperature sensor for low and high range at fixed points of reference. The values are measured during test and are unique to each device. The right-justified ADC readings are stored in the DIA memory region. The calibration data can be used to plot the approximate sensor output voltage, V_{TSENSE} vs. Temperature curve.

- TSLR: Address 8112h to 8114h store the measurements for the low range setting of the temperature sensor at V_{DD} = 3V.
- TSHR: Address 8115h to 8117h store the measurements for the high range setting of the temperature sensor at V_{DD} = 3V.

The stored measurements are made by the device ADC using the internal V_{REF} = 2.048V.

Related Links

Temperature Indicator Module

5.4 Fixed Voltage Reference Data

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of V_{DD} , with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- ADC positive reference
- Comparator positive input
- Digital-to-Analog Converter

For more information on the FVR, refer to the *"Fixed Voltage Reference (FVR)"* chapter (see related links).

The DIA stores measured FVR voltages for this device in mV for the different buffer settings of 1x, 2x or 4x at program memory locations 8118h to 811Dh.

- FVRA1X stores the value of ADC FVR1 Output voltage for 1x setting (in mV)
- FVRA2X stores the value of ADC FVR1 Output Voltage for 2x setting (in mV)
- FVRA4X stores the value of ADC FVR1 Output Voltage for 4x setting (in mV)
- FVRC1X stores the value of Comparator FVR2 output voltage for 1x setting (in mV)
- FVRC2X stores the value of Comparator FVR2 output voltage for 2x setting (in mV)
- FVRC4X stores the value of Comparator FVR2 output voltage for 4x setting (in mV)

Related Links

(FVR) Fixed Voltage Reference

9.2.1.4 4x PLL

The oscillator module contains a 4x PLL that can be used with the external clock sources to provide a system clock source. The input frequency for the PLL must fall within specifications.

The PLL can be enabled for use by one of two methods:

- 1. Program the RSTOSC bits in the Configuration Word 1 to '010' (enable EXTOSC with 4x PLL).
- 2. Write the NOSC bits to '010' (enable EXTOSC with 4x PLL).

Related Links

OSCCON1

PLL Specifications

9.2.1.5 Secondary Oscillator

The secondary oscillator is a separate oscillator block that can be used as an alternate system clock source. The secondary oscillator is optimized for 32.768 kHz, and can be used with an external crystal oscillator connected to the SOSCI and SOSCO device pins, or an external clock source connected to the SOSCIN pin. The secondary oscillator can be selected during run-time using clock switching.

Figure 9-5. Quartz Crystal Operation (Secondary Oscillator)

Note:

- 1. Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
- 2. Always verify oscillator performance over the V_{DD} and temperature range that is expected for the application.
- 3. For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for PIC[®] and PIC[®] Devices" (DS00826)
 - AN849, *"Basic PIC[®] Oscillator Design"* (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

Related Links

Clock Switching

10.7.7 PIE5

Name: PIE5 Address: 0x71B

Peripheral Interrupt Enable Register 5

Bit	7	6	5	4	3	2	1	0
	CLC4IE	CLC3IE	CLC2IE	CLC1IE		TMR5GIE	TMR3GIE	TMR1GIE
Access	R/W	R/W	R/W	R/W		R/W	R/W	R/W
Reset	0	0	0	0		0	0	0

Bit 7 – CLC4IE CLC4 Interrupt Enable bit

Value	Description
1	Enabled
0	Disabled

Bit 6 - CLC3IE CLC3 Interrupt Enable bit

Value	Description
1	Enabled
0	Disabled

Bit 5 - CLC2IE CLC2 Interrupt Enable bit

Value	Description
1	Enabled
0	Disabled

Bit 4 – CLC1IE CLC1 Interrupt Enable bit

Value	Description
1	Enabled
0	Disabled

Bit 2 – TMR5GIE TMR5 Gate Interrupt Enable bit

Value	Description
1	Enabled
0	Disabled

Bit 1 – TMR3GIE TMR3 Gate Interrupt Enable bit

Value	Description
1	Enabled
0	Disabled

Bit 0 – TMR1GIE TMR1 Gate Interrupt Enable bit

Interrupts

Value	Description
1	The Timer1 Gate has gone inactive (the acquisition is complete)
0	The Timer1 Gate has not gone inactive

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON appropriate interrupt flag bits are clear prior to enabling an interrupt.

17.6.9 IOCCF

Name:IOCCFAddress:0x1F55

PORTC Interrupt-on-Change Flag Register

Bit	7	6	5	4	3	2	1	0
	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0
Access	R/W/HS							
Reset	0	0	0	0	0	0	0	0

Bits 0, 1, 2, 3, 4, 5, 6, 7 – IOCCFn Interrupt-on-Change Flag bits

Value	Condition	Description
1	IOCCP[n]=1	A positive edge was detected on the RC[n] pin
1	IOCCN[n]=1	A negative edge was detected on the RC[n] pin
0	IOCCP[n]=x and	No change was detected, or the user cleared the detected change
	IOCCN[n]=x	

Note: IOCCF6 and IOCCF7 are available on 20-pin or higher pin-count devices only.

18. (FVR) Fixed Voltage Reference

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of V_{DD} , with the following selectable output levels:

- 1.024V
- 2.048V
- 4.096V

The output of the FVR can be configured to supply a reference voltage to the following:

- ADC input channel
- ADC positive reference
- Comparator input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

Important: Fixed Voltage Reference output cannot exceed V_{DD}.

Related Links

FVRCON

18.1 Independent Gain Amplifiers

The output of the FVR, which is connected to the ADC, Comparators, and DAC, is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference the ADC chapter for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module.

Related Links

(ADC2) Analog-to-Digital Converter with Computation Module(CMP) Comparator Module(DAC) 5-Bit Digital-to-Analog Converter Module

18.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set.

FVRRDY is an indicator of the reference being ready.

20.4 ADC Charge Pump

The ADC module has a dedicated charge pump which can be controlled through the ADCPCON0 register. The primary purpose of the charge pump is to supply a constant voltage to the gates of transistor devices in the A/D converter, signal and reference input pass-gates, to prevent degradation of transistor performance at low operating voltage.

The charge pump can be enabled by setting the CPON bit. Once enabled, the pump will undergo a startup time to stabilize the charge pump output. Once the output stabilizes and is ready for use, the CPRDY bit will be set.

Related Links ADCPCON0

20.5 Capacitive Voltage Divider (CVD) Features

The ADC module contains several features that allow the user to perform a relative capacitance measurement on any ADC channel using the internal ADC sample and hold capacitance as a reference. This relative capacitance measurement can be used to implement capacitive touch or proximity sensing applications. The following figure shows the basic block diagram of the CVD portion of the ADC module.

Figure 20-7. Hardware Capacitive Voltage Divider Block Diagram

20.5.1 CVD Operation

A CVD operation begins with the ADC's internal sample and hold capacitor (C_{HOLD}) being disconnected from the path which connects it to the external capacitive sensor node. While disconnected, C_{HOLD} is precharged to V_{DD} or V_{SS} the sensor node is also charged to V_{SS} or V_{DD} respectively to the level opposite that of C_{HOLD} . When the precharge phase is complete, the V_{DD}/V_{SS} bias paths for the two nodes are shut off and the paths between C_{HOLD} and the external sensor node is re-connected, at which time the acquisition phase of the CVD operation begins. During acquisition, a capacitive voltage divider is formed between the precharged C_{HOLD} and sensor nodes, which results in a final voltage level setting on

20.6 Computation Operation

The ADC module hardware is equipped with post conversion computation features. These features provide data post-processing functions that can be applied to the ADC conversion result, including digital filtering/averaging and threshold comparison functions.

Figure 20-10. Computational Features Simplified Block Diagram

The operation of the ADC computational features is controlled by MD bits.

The module can be operated in one of five modes:

- **Basic**: This is a legacy mode. In this mode, ADC conversion occurs on single (DSEN = 0) or double (DSEN = 1) samples. ADIF is set after all the conversions are complete.
- **Accumulate**: With each trigger, the ADC conversion result is added to accumulator and ADCNT increments. ADIF is set after each conversion. ADTIF is set according to the calculation mode.
- Average: With each trigger, the ADC conversion result is added to the accumulator. When the ADRPT number of samples have been accumulated, a threshold test is performed. Upon the next trigger, the accumulator is cleared. For the subsequent tests, additional ADRPT samples are required to be accumulated.
- **Burst Average**: At the trigger, the accumulator is cleared. The ADC conversion results are then collected repetitively until ADRPT samples are accumulated and finally the threshold is tested.
- **Low-Pass Filter (LPF)**: With each trigger, the ADC conversion result is sent through a filter. When ADRPT samples have occurred, a threshold test is performed. Every trigger after that, the ADC conversion result is sent through the filter and another threshold test is performed.

The five modes are summarized in following table.

20.7 Register Summary - ADC Control

Offset	Name	Bit Pos.								
0.49.0		7:0				LTHL	.[7:0]			
UXOC	ADLIH	15:8				LTHF	I [7:0]			
005		7:0				UTHL	_[7:0]			
UX8E	JX6E ADOTH			UTHH[7:0]						
0.00	40500	7:0				ADER	RL[7:0]			
0x90	ADERR	15:8		ERRH[7:0]						
	ADOTOT	7:0		STPTL[7:0]						
0x92	ADSTPT	15:8				STPT	H[7:0]			
		7:0		FLTRL[7:0]						
0x94	ADFLIR	15:8				FLTRI	H[7:0]			
		7:0				ACCL	_[7:0]			
0x96	ADACC	15:8				ACCH	H[7:0]			
		23:16							ACC	J[1:0]
0x99	ADCNT	7:0				CNT	[7:0]			
0x9A	ADRPT	7:0				RPT	[7:0]			
		7:0				PREV	'L[7:0]			
0x9B	ADPREV	15:8				PREV	H[7:0]			
		7:0				RESL	_[7:0]			
0x9D	ADRES	15:8				RESH	H[7:0]			
0x9F	ADPCH	7:0					PCH	I[5:0]		
0xA0										
	Reserved									
0x010B										
0.0100	45400	7:0		1		ACQI	_[7:0]			
0x010C	ADACQ	15:8						ACQH[4:0]		
0x010E	ADCAP	7:0						CAP[4:0]		
0.0405		7:0				PREL	_[7:0]			
0x010F	ADPRE	15:8						PREH[4:0]		
0x0111	ADCON0	7:0	ON	CONT		CS		FRM		GO
0x0112	ADCON1	7:0	PPOL	IPEN	GPOL					DSEN
0x0113	ADCON2	7:0	PSIS		CRS[2:0]		ACLR		MD[2:0]	
0x0114	ADCON3	7:0			CALC[2:0]		SOI		MD[2:0]	
0x0115	ADSTAT	7:0	OV	UTHR	LTHR	MATH			STAT[2:0]	
0x0116	ADREF	7:0				NREF			PRE	F[1:0]
0x0117	ADACT	7:0						ACT[4:0]	1	
0x0118	ADCLK	7:0	CS[5:0]							
0x0119										
	Reserved									
0x029E										
0x029F	ADCPCON0	7:0	CPON							CPRDY

20.8.23 ADCPCON0

Name:ADCPCON0Address:0x29F

ADC Charge Pump Control Register 0

Bit 7 – CPON Charge Pump On Control bit

Value	Description
1	Charge Pump On when requested by the ADC
0	Charge Pump Off

Bit 0 - CPRDY Charge Pump Ready Status bit

Value	Description
1	Charge Pump is ready
0	Charge Pump is not ready (or never started)

22.9.3 NCOxACC

Name: NCOxACC Address: 0x058C

NCO Accumulator Register

Bit	23	22	21	20	19	18	17	16
						ACC	J[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
				ACC	H[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				ACC	L[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 19:16 – ACCU[3:0] NCO Accumulator – Upper Byte⁽¹⁾

Bits 15:8 – ACCH[7:0] NCO Accumulator – High Byte

Bits 7:0 – ACCL[7:0] NCO Accumulator – Low Byte

Note:

1. The accumulator spans registers NCOxACCU:NCOxACCH: NCOxACCL. The 24 bits are reserved but not all are used. This register updates in real-time, asynchronously to the CPU; there is no provision to ensure atomic access to this 24-bit space using an 8-bit bus. Writing to this register while the module is operating will produce undefined results.

Timer2 Module

Modo	MODE	<4:0>	Output		Timer Control			
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop	
Reserved	11	ххх	Reserved					

Note:

- 1. If ON = 0 then an edge is required to restart the timer after ON = 1.
- 2. When T2TMR = T2PR then the next clock clears ON and stops T2TMR at 00h.
- 3. When T2TMR = T2PR then the next clock stops T2TMR at 00h but does not clear ON.

27.6 Operation Examples

Unless otherwise specified, the following notes apply to the following timing diagrams:

- Both the prescaler and postscaler are set to 1:1 (both the CKPS and OUTPS bits in the T2CON register are cleared).
- The diagrams illustrate any clock except F_{OSC}/4 and show clock-sync delays of at least two full cycles for both ON and Timer2_ers. When using F_{OSC}/4, the clock-sync delay is at least one instruction period for Timer2_ers; ON applies in the next instruction period.
- ON and Timer2_ers are somewhat generalized, and clock-sync delays may produce results that are slightly different than illustrated.
- The PWM Duty Cycle and PWM output are illustrated assuming that the timer is used for the PWM function of the CCP module as described in the "*PWM Overview*" section. The signals are not a part of the Timer2 module.

Related Links

PWM Overview (PWM) Pulse-Width Modulation

27.6.1 Software Gate Mode

This mode corresponds to legacy Timer2 operation. The timer increments with each clock input when ON = 1 and does not increment when ON = 0. When the TMRx count equals the PRx period count the timer resets on the next clock and continues counting from 0. Operation with the ON bit software controlled is illustrated in Figure 27-3. With PRx = 5, the counter advances until TMRx = 5, and goes to zero with the next clock.

- 12. Set the EN bit to enable the module.
- 13. Clear the TRIS bits that correspond to the CWG outputs to set them as outputs.

If auto-restart is to be used, set the REN bit and the SHUTDOWN bit will be cleared automatically. Otherwise, clear the SHUTDOWN bit in software to start the CWG.

35.4.10 Start/Stop Condition Interrupt Masking

The SCIE and PCIE bits can enable the generation of an interrupt in Slave modes that do not typically support this function. These bits will have no effect in slave modes where interrupt on Start and Stop detect are already enabled.

35.4.11 Acknowledge Sequence

The ninth SCL pulse for any transferred byte in I²C is dedicated as an Acknowledge. It allows receiving devices to respond back to the transmitter by pulling the SDA line low. The transmitter must release control of the line during this time to shift in the response. The Acknowledge (\overline{ACK}) is an active-low signal, pulling the SDA line low indicates to the transmitter that the device has received the transmitted data and is ready to receive more.

The result of an \overline{ACK} is placed in the ACKSTAT bit.

Slave software, when the AHEN and DHEN bits are set, allow the user to set the ACK value sent back to the transmitter. The ACKDT bit is set/cleared to determine the response.

Slave hardware will generate an ACK response if both the AHEN and DHEN bits are clear. However, tf the BF bit or the SSPOVSSPOV bit are set when a byte is received then the ACK will not be sent by the slave.

When the module is addressed, after the eighth falling edge of SCL on the bus, the ACKTIM bit is set. The ACKTIM bit indicates the acknowledge time of the active bus. The ACKTIM Status bit is only active when either the AHEN bit or DHEN bit is enabled.

35.5 I²C Slave Mode Operation

The MSSP Slave mode operates in one of four modes selected by the SSPM bits. The modes can be divided into 7-bit and 10-bit Addressing mode. 10-bit Addressing modes operate the same as 7-bit with some additional overhead for handling the larger addresses.

Modes with Start and Stop bit interrupts operate the same as the other modes with SSPxIF additionally getting set upon detection of a Start, Restart, or Stop condition.

35.5.1 Slave Mode Addresses

The SSPxADD register contains the Slave mode address. The first byte received after a Start or Restart condition is compared against the value stored in this register. If the byte matches, the value is loaded into the SSPxBUF register and an interrupt is generated. If the value does not match, the module goes idle and no indication is given to the software that anything happened.

The SSPxMSK register affects the address matching process. See SSP Mask Register for more information.

35.5.1.1 I²C Slave 7-bit Addressing Mode

In 7-bit Addressing mode, the LSb of the received data byte is ignored when determining if there is an address match.

35.5.1.2 I²C Slave 10-bit Addressing Mode

In 10-bit Addressing mode, the first received byte is compared to the binary value of '1 1 1 1 0 A9 A8 0'. A9 and A8 are the two MSb's of the 10-bit address and stored in bits 2 and 1 of the SSPxADD register.

After the acknowledge of the high byte the UA bit is set and SCL is held low until the user updates SSPxADD with the low address. The low address byte is clocked in and all eight bits are compared to the low address value in SSPxADD. Even if there is not an address match; SSPxIF and UA are set, and SCL

35.9.7 SSPxMSK

Name:	SSPxMSK
Address:	0x18E,0x198

MSSP Address Mask Register

Bit	7	6	5	4	3	2	1	0
				MSK[6:0]				MSK0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 7:1 - MSK[6:0] Mask bits

Value	Mode	Description
1	I ² C Slave	The received address bit n is compared to SSPxADD bit n to detect I ² C address
		match
0	I ² C Slave	The received address bit n is not used to detect I ² C address match

Bit 0 – MSK0

Mask bit for I²C 10-bit Slave mode

Value	Mode	Description
1	I ² C 10-bit Slave	The received address bit 0 is compared to SSPxADD bit 0 to detect I ² C
		address match
0	I ² C 10-bit Slave	The received address bit 0 is not used to detect I ² C address match
Х	SPI or I ² C 7-bit	Don't care

Register Summary

Offset	Name	Bit Pos.							
0x1EB8	MDCARLPPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1EB9	MDCARHPPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1EBA	MDSRCPPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1EBB	CLCIN1PPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1EBC	CLCIN2PPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1EBD	CLCIN3PPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1EBE	CLCIN4PPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1EBF									
	Reserved								
0x1EC2									
0x1EC3	ADACTPPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1EC4	Reserved								
0x1EC5	SSP1CLKPPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1EC6	SSP1DATPPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1EC7	SSP1SSPPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1EC8	SSP2CLKPPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1EC9	SSP2DATPPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1ECA	SSP2SSPPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1ECB	RX1PPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1ECC	CK1PPS	7:0			POR	T[1:0]		PIN[2:0]	
0x1ECD									
	Reserved								
0x1EFF									
0x1F00	INDF0	7:0			 INDF	0[7:0]			
0x1F01	INDF1	7:0			 INDF	1[7:0]			
0x1F02	PCL	7:0			 PCL	[7:0]			
0x1F03	STATUS	7:0			TO	PD	Z	DC	С
0x1F04	FSR0	7:0			FSRI	_[7:0]			
		15:8			FSR	H[7:0]			
0x1F06	FSR1	7:0			FSRI	_[7:0]			
	_	15:8			FSR	H[7:0]			
0x1F08	BSR	7:0				BSF	R[5:0]		
0x1F09	WREG	7:0			WRE	G[7:0]			
0x1F0A	PCLATH	7:0				PCLATH[6:0]			
0x1F0B	INTCON	7:0	GIE	PEIE					INTEDG
0x1F0C									
	Reserved								
0x1F0F									
Ux1F10	RAUPPS	7:0				PPS	0[5:0]		
Ux1F11	RA1PPS	7:0				PPS	0[5:0]		
0x1F12	RA2PPS	7:0				PPS	[5:0]		
0x1F13	Reserved	7.0							
0x1F14	RA4PPS	/:0				PPS	6[5:0]		
0x1F15	RA5PPS	7:0				PPS	[5:0]		
0x1F16	Reserved								

Instruction Set Summary

ΜΟνιω	Move INDFn to W								
	Z								
	MODE	SYNTAX	mm						
Status	Preincrement	++FSRn	00						
Affected:	Predecrement	FSRn	01						
	Postincrement	FSRn++	10						
	Postdecrement	FSRn	11						
Description:	This instruction is used to move data between W and one of the indirect registers (INDFn). Before/after this move, the pointer (FSRn) is updated by pre/post incrementing/ decrementing it. The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn. FSRn is limited to the range 0000h - FFFFh. Incrementing/decrementing it beyond these bounds will cause it to wrap-around.								

MOVLB	Move literal to BSR
Syntax:	[<i>label</i>] MOVLB k
Operands:	0 ≤ k ≤ 127
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 6-bit literal 'k' is loaded into the Bank Select Register (BSR).

MOVLP	Move literal to PCLATH
Syntax:	[<i>label</i>] MOVLP k
Operands:	$0 \le k \le 127$
Operation:	$k \rightarrow PCLATH$
Status Affected:	None
Description:	The 7-bit literal 'k' is loaded into the PCLATH register.

MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	0 ≤ k ≤ 255
Operation:	$k \rightarrow (W)$
Status Affected:	None

Electrical Specifications

Standard Operating Conditions (unless otherwise stated)									
Param No.	Sym.	Characteristic	Min.	Тур. †	Max.	Units	Conditions		
OS56	T _{LFOSCST}	LFINTOSC Wake- up from Sleep Start-up Time	_	0.2	_	ms			

† - Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note:

- 1. To ensure these oscillator frequency tolerances, V_{DD} and V_{SS} must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.
- 2. See the figure below.

Figure 42-6. Precision Calibrated HFINTOSC Frequency Accuracy Over Device V_{DD} and Temperature

20-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Ν	ntes.	

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

E1

D

L

с

b1

b

eВ

.240

.980

.115

.008

.045

.014

_

.250

1.030

.130

.010

.060

.018

_

.280

1.060

.150

.015

.070

.022

.430

4. Dimensioning and tolerancing per ASME Y14.5M.

Molded Package Width

Tip to Seating Plane

Overall Length

Lead Thickness

Upper Lead Width

Lower Lead Width

Overall Row Spacing §

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B