

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	14-TSSOP (0.173", 4.40mm Width)
Supplier Device Package	14-TSSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18426t-i-st

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Up to 80 bytes of General Purpose RAM (GPR)
- 16 bytes of common RAM

Figure 7-2. Banked Memory Partition

7.3.1 Bank Selection

The active bank is selected by writing the bank number into the Bank Select Register (BSR). All data memory can be accessed either directly (via instructions that use the file registers) or indirectly via the two File Select Registers (FSR). Data memory uses a 13-bit address. The upper six bits of the address define the Bank address and the lower seven bits select the registers/RAM in that bank.

Related Links

Indirect Addressing BSR

7.3.2 Core Registers

The core registers contain the registers that directly affect the basic operation. The core registers occupy the first 12 addresses of every data memory bank (addresses n00h/n80h through n0Bh/n8Bh). These registers are listed below.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

7.4.4 Branching

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 + the signed value of the operand of the BRA instruction.

7.5 Stack

All devices have a 16-level by 15-bit wide hardware stack. The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN configuration bit is programmed to '0'. This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Important: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

7.5.1 Accessing the Stack

The stack is accessible through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/ writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.

Important: Care should be taken when modifying the STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. STKPTR can be monitored to obtain to value of stack

10.7.18 PIR7

Name:PIR7Address:0x713

Peripheral Interrupt Request (Flag) Register 7

Bit	7	6	5	4	3	2	1	0
			NVMIF	NCO1IF			CWG2IF	CWG1IF
Access			R/W/HS	R/W/HS			R/W/HS	R/W/HS
Reset			0	0			0	0

Bit 5 – NVMIF NVM Interrupt Flag bit

Value	Description
1	The requested NVM operation has completed
0	NVM interrupt not asserted

Bit 4 – NCO1IF Numerically Controlled Oscillator (NCO) Interrupt Flag bit

Value	Description
1	The NCO has rolled over
0	No NCO interrupt event has occurred

Bit 1 – CWG2IF CWG2 Interrupt Flag bit

Value	Description
1	CWG2 has gone into shutdown
0	CWG2 is operating normally, or interrupt cleared

Bit 0 – CWG1IF CWG1 Interrupt Flag bit

Value	Description
1	CWG1 has gone into shutdown
0	CWG1 is operating normally, or interrupt cleared

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON appropriate interrupt flag bits are clear prior to enabling an interrupt.

- Current draw from pins with internal weak pull-ups
- Modules using any oscillator

I/O pins that are high-impedance inputs should be pulled to V_{DD} or V_{SS} externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules.

Related Links

Low-Power Sleep Mode STATUS (FVR) Fixed Voltage Reference (DAC) 5-Bit Digital-to-Analog Converter Module

11.2.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled.
- 2. BOR Reset, if enabled.
- 3. POR Reset.
- 4. Windowed Watchdog Timer, if enabled.
- 5. Any external interrupt.
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information).

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to the *"Memory Execution Violation"* section.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes-up from Sleep, regardless of the source of wake-up.

Related Links

Memory Execution Violation

11.2.2 Wake-up Using Interrupts

When global interrupts are disabled (GIE cleared) and any interrupt source, with the exception of the clock switch interrupt, has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs before the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set

12. (WWDT) Windowed Watchdog Timer

The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events. The Windowed Watchdog Timer (WWDT) differs in that CLRWDT instructions are only accepted when they are performed within a specific window during the time-out period.

The WWDT has the following features:

- Selectable clock source
- Multiple operating modes
 - WWDT is always on
 - WWDT is off when in Sleep
 - WWDT is controlled by software
 - WWDT is always off
- Configurable time-out period is from 1 ms to 256s (nominal)
- Configurable window size from 12.5% to 100% of the time-out period
- Multiple Reset conditions

14.6.19 SLRCONA

Name:	SLRCONA
Address:	0x1F3B

Slew Rate Control Register

Bit	7	6	5	4	3	2	1	0
			SLRA5	SLRA4		SLRA2	SLRA1	SLRA0
Access			R/W	R/W		R/W	R/W	R/W
Reset			1	1		1	1	1

Bits 4, 5 – SLRAn Slew Rate Control on RA Pins

Value	Description
1	Port pin slew rate is limited
0	Port pin slews at maximum rate

Bits 0, 1, 2 - SLRAn Slew Rate Control on RA Pins

Value	Description
1	Port pin slew rate is limited
0	Port pin slews at maximum rate

20.8.18 ADSTPT

Name:ADSTPTAddress:0x092

ADC Threshold Setpoint Register

Depending on the CALC bits, it may be used to determine ADERR. See ADC Error Calculation Mode for more details.

Bit	15	14	13	12	11	10	9	8
				STPT	H[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				STPT	Ľ[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 15:8 – STPTH[7:0]

ADC Threshold Setpoint Most Significant Byte.

Bits 7:0 - STPTL[7:0]

ADC Threshold Setpoint Least Significant Byte.

22.1.3 Adder

The NCO Adder is a full adder, which operates synchronously from the source clock. The addition of the previous result and the increment value replaces the accumulator value on the rising edge of each input clock.

22.1.4 Increment Registers

The increment value is stored in three registers making up a 20-bit incrementer. In order of LSB to MSB they are:

- NCOxINCL
- NCOxINCH
- NCOxINCU

When the NCO module is enabled, the NCOxINCU and NCOxINCH registers should be written first, then the NCOxINCL register. Writing to the NCOxINCL register initiates the increment buffer registers to be loaded simultaneously on the second rising edge of the NCO_clk signal.

The registers are readable and writable. The increment registers are double-buffered to allow value changes to be made without first disabling the NCO module.

When the NCO module is disabled, the increment buffers are loaded immediately after a write to the increment registers.

Important: The increment buffer registers are not user-accessible.

Related Links NCOxINC

22.2 Fixed Duty Cycle Mode

In Fixed Duty Cycle (FDC) mode, every time the accumulator overflows (NCO_overflow), the output is toggled at a frequency rate half of the $F_{OVERFLOW}$. This provides a 50% duty cycle, provided that the increment value remains constant. For more information, see the figure below.

The FDC mode is selected by clearing the PFM bit.

This will have a direct effect on the Sleep mode current.

27.9.1 TxTMR

Name:	TxTMR
Address:	0x28C,0x292,0x298

Timer Counter Register

Bit	7	6	5	4	3	2	1	0
	TxTMR[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - TxTMR[7:0] Timerx Counter bits

In other words, if the HFINTOSC is simultaneously selected as the system clock and as a CLC input source, when the CLC is enabled, the CPU will go idle during Sleep, but the CLC will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current.

33.6 CLC Setup Steps

The following steps should be followed when setting up the CLC:

- Disable CLC by clearing the EN bit.
- Select desired inputs using the CLCxSEL0 through CLCxSEL3 registers (See CLC Data Input Table).
- Clear any associated ANSEL bits.
- Set all TRIS bits associated with inputs.
- Enable the chosen inputs through the four gates using the CLCxGLS0 through CLCxGLS3 registers.
- Select the gate output polarities with the GyPOL bits
- Select the desired logic function with the MODE bits
- Select the desired polarity of the logic output with the POL bit. (This step may be combined with the previous gate output polarity step).
- If driving a device pin, set the desired pin PPS control register and also clear the TRIS bit corresponding to that output.
- Configure the interrupts (optional). See CLC Interrupts
- Enable the CLC by setting the EN bit.

33.8.9 CLCxGLS2

Name:	CLCxGLS2
Address:	0x1E18,0x1E22,0x1E2C,0x1E36

CLCx Gate3 Logic Select Register

Bit	7	6	5	4	3	2	1	0	
	G3D4T	G3D4N	G3D3T	G3D3N	G3D2T	G3D2N	G3D1T	G3D1N	
Access	R/W								
Reset	х	х	х	х	х	х	х	x	

Bits 1, 3, 5, 7 – G3DyT

dyT: Gate3 Data 'y' True (non-inverted) bit Reset States: Default = xxxx POR/BOR = x All Other Resets = u

Value	Description
1	dyT is gated into g3
0	dyT is not gated into g3

Bits 0, 2, 4, 6 – G3DyN

dyN: Gate3 Data 'y' Negated (inverted) bit Reset States: Default = xxxx POR/BOR = x All Other Resets = u

Value	Description
1	dyN is gated into g3
0	dyN is not gated into g3

33.8.10 CLCxGLS3

Name:	CLCxGLS3
Address:	0x1E19,0x1E23,0x1E2D,0x1E37

CLCx Gate4 Logic Select Register

Bit	7	6	5	4	3	2	1	0
	G4D4T	G4D4N	G4D3T	G4D3N	G4D2T	G4D2N	G4D1T	G4D1N
Access	R/W							
Reset	x	х	х	х	х	x	х	x

Bits 1, 3, 5, 7 – G4DyT

dyT: Gate4 Data 'y' True (non-inverted) bit Reset States: Default = xxxx POR/BOR = x All Other Resets = u

Value	Description
1	dyT is gated into g4
0	dyT is not gated into g4

Bits 0, 2, 4, 6 – G4DyN

dyN: Gate4 Data 'y' Negated (inverted) bit Reset States: Default = xxxx POR/BOR = x All Other Resets = u

Value	Description
1	dyN is gated into g4
0	dyN is not gated into g4

35.6.7.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPSR while the BF flag bit is already set from a previous reception.

35.6.7.3 WCOL Status Flag

If the user writes the SSPxBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

35.6.7.4 Typical Receive Sequence:

- 1. The user generates a Start condition by setting the SEN bit.
- 2. SSPxIF is set by hardware on completion of the Start.
- 3. SSPxIF is cleared by software.
- 4. User writes SSPxBUF with the slave address to transmit and the R/W bit set.
- 5. Address is shifted out the SDA pin until all eight bits are transmitted. Transmission begins as soon as SSPxBUF is written to.
- 6. The MSSP module shifts in the ACK bit from the slave device and writes its value into the ACKSTAT bit.
- 7. The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPxIF bit.
- 8. User sets the RCEN bit and the master clocks in a byte from the slave.
- 9. After the eighth falling edge of SCL, SSPxIF and BF are set.
- 10. Master clears SSPxIF and reads the received byte from SSPUF which clears BF.
- 11. Master sets the ACK value to be sent to slave in the ACKDT bit and initiates the ACK by setting the ACKEN bit.
- 12. Master's ACK is clocked out to the slave and SSPxIF is set.
- 13. User clears SSPxIF.
- 14. Steps 8-13 are repeated for each received byte from the slave.
- 15. Master sends a not \overline{ACK} or Stop to end communication.

PIC16(L)F18426/46

(SMT) Signal Measurement Timer

Figure 37-3. Gated Timer Mode, Repeat Acquisition Timing Diagram

Rev. 10-000 175A 12/19/201 3

37.1.6.3 Period and Duty Cycle Measurement Mode

In this mode, either the duty cycle or period (depending on polarity) of the input signal can be acquired relative to the SMT clock. The CPW register is updated on a falling edge of the signal, and the CPR register is updated on a rising edge of the signal, along with the SMTxTMR resetting to 0x000001. In addition, the SMTxGO bit is reset on a rising edge when the SMT is in single acquisition mode. See figures below.

37.3.5 SMTxWIN

Name:SMTxWINAddress:0x049D

SMT Window Input Select Register

Bit	7	6	5	4	3	2	1	0	
				WSEL[4:0]					
Access				R/W	R/W	R/W	R/W	R/W	
Reset				0	0	0	0	0	

Bits 4:0 – WSEL[4:0] SMT Window Selection bits Table 37-6. SMT Window Selection

WSEL<4:0>	SMT1 Window Source
11111-11000	Reserved
10111	NCO10UT
10110	Reserved
10101	CLKREFOUT
10100	CLC4OUT
10011	CLC3OUT
10010	CLC2OUT
10001	CLC10UT
10000	ZCDOUT
01111	C2OUT
01110	C1OUT
01101	PWM7OUT
01100	PWM6OUT
01011	CCP4OUT
01010	CCP3OUT
01001	CCP2OUT
01000	CCP1OUT
00111	TMR6_postscaled_out
00110	TMR4_postscaled_out
00101	TMR2_postscaled_out
00100	TMR0_overflow
00011	SOSC

PIC16(L)F18426/46

Electrical Specifications

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Device Characteristics	Min.	Тур.†	Max.	Units	Conditions	
Output High Voltage								
D370	V _{OH}	Standard I/O PORTS	V _{DD} -0.7			V	I_{OH} = 3.5 mA, V _{DD} = 5.0V I_{OH} = 3 mA, V _{DD} = 3.3V I_{OH} = 1 mA, V _{DD} = 1.8V	
D370A		High-Drive I/O PORTS	V _{DD} -0.7	 V _{DD} -0.7 V _{DD} -0.7		V V V	$I_{OH} = 10 \text{ mA}, V_{DD} = 2.3 \text{V}, \text{HIDCx} = 1$ $I_{OH} = 37 \text{ mA}, V_{DD} = 3.0 \text{V}, \text{HIDCx} = 1$ $I_{OH} = 54 \text{ mA}, V_{DD} = 5.0 \text{V}, \text{HIDCx} = 1$	
All I/O Pin	S					·		
D380	C _{IO}		_	5	50	pF		

† - Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note:

- 1. Negative current is defined as current sourced by the pin.
- 2. The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

42.3.5 Memory Programming Specifications

Table 42-5.

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Device Characteristics	Min.	Typ†	Max.	Units	Conditions	
High Voltage Entry Programming Mode Specifications								
MEM01	V _{IHH}	Voltage on MCLR/V _{PP} pin to enter programming mode	8		9	V	(Note 2, Note 3)	
MEM02	I _{PPGM}	Current on MCLR/V _{PP} pin during programming mode		1		mA	(Note 2)	
Programming Mode Specifications								
MEM10	V _{BE}	V_{DD} for Bulk Erase				V	(Note 4)	

PIC16(L)F18426/46

Electrical Specifications

Standard Operating Conditions (unless otherwise stated)							
V _{DD} = 3.0V, T _A = 25°C, T _{AD} = 1μs							
Param No. Sym. Characteristic Min. Typ. † Max. Units Conditions							
† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design							

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note:

- 1. Total Absolute Error is the sum of the offset, gain and integral non-linearity (INL) errors.
- 2. The ADC conversion result never decreases with an increase in the input and has no missing codes.

42.4.8 Analog-to-Digital Converter (ADC) Conversion Timing Specifications Table 42-14.

Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур. †	Max.	Units	Conditions	
AD20	T _{AD}	D ADC Clock Period	1		9	μs	Using F_{OSC} as the ADC clock source ADCS = 1	
AD21	~			2		μs	Using F_{RC} as the ADC clock source ADCS = 0	
AD22	T _{CNV}	Conversion Time ⁽¹⁾		13+3T _{CY}			Using F_{OSC} as the ADC clock source ADCS = 1	
				16+2T _{CY}			Using F_{RC} as the ADC clock source ADCS = 0	
AD23	T _{ACQ}	Acquisition Time	_	2		μs		
AD24	T _{HCD}	Sample and Hold Capacitor Disconnect Time		2T _{AD} +1T _{CY}			Using F_{OSC} as the ADC clock source ADCS = 1	
				3T _{AD} +2T _{CY}			Using F_{RC} as the ADC clock source ADCS = 0	

* - These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note:

1. Does not apply for the ADCRC oscillator.

Rev. 30-009000A 5/17/2017

> Rev. 30-009014A 09/21/2017

Rev. 30-009014B 09/21/2017

44. Packaging Information

Package Marking Information

Legend	: XXX Y YY WW NNN (e3) *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code b-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	In the eve be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

14-Lead TSSOP (4.4 mm)

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	Е		0.65 BSC	
Contact Pad Spacing	С		7.20	
Contact Pad Width (X20)	X1			0.45
Contact Pad Length (X20)	Y1			1.75
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2072B