Microchip Technology - PIC16LF18446-E/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18446-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

1 14/16-Pin Diagrams

Figure 1. 14-Pin PDIP, SOIC, TSSOP

Figure 2. 16-Pin UQFN (4x4)

Rev. 00-000016A 6/21/2017

Note: It is recommended that the exposed bottom pad be connected to V_{SS}.

Related Links

14/16-Pin Allocation Table

2 20-Pin Diagrams

Figure 3. 20-Pin PDIP, SOIC, SSOP

			Rev. 00-000020A 6/21/2017
VDD	1 U	20 Vss	
RA5	2	19 RA0/ICSPDAT	
RA4	3	18 RA1/ICSPCLK	
MCLR/VPP/RA3	4	17]RA2	
RC5	5	16]RC0	
RC4	6	15]RC1	
RC3	7	14]RC2	
RC6	8	13]RB4	
RC7	9	12]RB5	
RB7	10	11 RB6	

2 20-Pin Allocation Table

O/I	20-pin PDIP/SOIC/TSSOP	20-pin UQFN	ADC	Reference	Comparator	NCO	DAC	DSM	Timers	ccb	MMd	CWG	MSSP	ZCD	EUSART	CLC	CLKR	Interrupts	Pull-up	Basic
RA0	19	16	ANA0	_	C1IN0+	_	DAC1OUT1	_	_	-	_	-	_	_	-	-	_	IOCA0	Y	ICDDAT/
RA1	18	15	ANA1	ADCVREF +	C1IN0- C2IN0-	_	DAC1VREF +	MDSRC(1)	_	_	_	_	<u>552</u> (1)	_	_	_	_	IOCA1	Y	ICDCLK/
RA2	17	14	ANA2	ADCVREF-	_	_	DAC1VREF-	_	T0CKI (1)	_	_	CWG1IN(1) CWG2IN(1)	_	ZCD1	_	CLCINO(1)	_	IOCA2	Y	_{INT} (1)
RA3	4	1	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	IOCA3	Y	MCLR VPP
RA4	3	20	ANA4	_	_	_	_	_	_{T1G} (1) SMT1WIN ⁽¹⁾	CCP4IN(1)	_	_	_	_	_	_	_	IOCA4	Y	CLKOUT SOSCO OSC2
RA5	2	19	ANA5	_	_	_	_	_	T1CKI(1) T2IN(1) SMT1SIG(1)	_	_	_	-	_	_	_	_	IOCA5	Y	CLKIN SOSCI OSC1
RB4	13	10	ANB4	_	_	_	_	_	_{T5G} (1)	_	_	_	_{SDI1} (1) _{SDA1} (1,3,4)	_	_	CLCIN2(1)	_	IOCB4	Y	_
RB5	12	9	ANB5	_	_	_	-	_	_	CCP3IN(1)	_	_	SCK2(1,5) SCL2(1,3,4,5)	_	_{RX1} (1) _{DT1} (1,3)	CLCIN3(1)	_	IOCB5	Y	_
RB6	11	8	ANB6	_	_		_	_	_	_	_	_	_{SCK1} (1) _{SCL1} (1,3,4)	_	_	_	_	IOCB6	Y	_
RB7	10	7	ANB7	_	_	_	_	_	_{T6IN} (1)	_	_	_	SDI2(1,5) SDA2(1,3,4,5)	_	_{CK1} (1,3)	_	_	IOCB7	Y	_
RC0	16	13	ANC0	_	C2IN0+	_	_	_	_{T3CKI} (1) _{T3G} (1)	_	_	_	_	_	-	_	_	10000	Y	_
RC1	15	12	ANC1	_	C1IN1- C2IN1-	_	_	_	_	_	_	_	_	_	_	_	_	IOCC1	Y	_
RC2	14	11	ANC2	_	C1IN2-	_	-	MDCARL(1)	T5CKI(1)	_	_	-	_	_	-	_	-	IOCC2	Y	_

Device Overview

Features	PIC16(L)F18426	PIC16(L)F18446
	16-levels hardware stack	16-levels hardware stack
Operating Frequency	DC – 32 MHz	DC – 32 MHz

Figure 1-1. PIC16(L)F18426/46 Device Block Diagram

Note:

- 1. See applicable chapters for more information on peripherals.
- 2. PORTB available only on 20-pin or higher pin-count devices.

1.4 Register and Bit naming conventions

1.4.1 Register Names

When there are multiple instances of the same peripheral in a device, the peripheral control registers will be depicted as the concatenation of a peripheral identifier, peripheral instance, and control identifier. The control registers section will show just one instance of all the register names with an 'x' in the place of the peripheral instance number. This naming convention may also be applied to peripherals when there is only one instance of that peripheral in the device to maintain compatibility with other devices in the family that contain more than one.

1.4.2 Bit Names

There are two variants for bit names:

- Short name: Bit function abbreviation
- Long name: Peripheral abbreviation + short name

4.7.1 CONFIG1

Name: CONFIG1 Address: 0x8007

Configuration word 1

Oscillators

Bit	15	14	13	12	11	10	9	8
			FCMEN		CSWEN			CLKOUTEN
Access			R/P	U	R/P	U	U	R/P
Reset			1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
			RSTOSC[2:0]				FEXTOSC[2:0]	
Access	U	R/P	R/P	R/P	U	R/P	R/P	R/P
Reset	1	1	1	1	1	1	1	1

Bit 13 – FCMEN Fail-Safe Clock Monitor Enable bit

Value	Description
1	FSCM timer enabled
0	FSCM timer disabled

Bit 11 – CSWEN Clock Switch Enable bit

Value	Description
1	Writing to NOSC and NDIV is allowed
0	The NOSC and NDIV bits cannot be changed by user software

Bit 8 – CLKOUTEN Clock Out Enable bit

Value	Condition	Description
1	If FEXTOSC = EC (high, mid or low) or Not	CLKOUT function is disabled; I/O or oscillator
	Enabled	function on OSC2
0	If FEXTOSC = EC (high, mid or low) or Not	CLKOUT function is enabled; F _{OSC} /4 clock
	Enabled	appears at OSC2
	Otherwise	This bit is ignored.

Bits 6:4 – RSTOSC[2:0] Power-up Default Value for COSC bits

This value is the Reset default value for COSC and selects the oscillator first used by user software. Refer to COSC operation.

Value	Description
111	EXTOSC operating per FEXTOSC bits
110	HFINTOSC (1 MHz), with OSCFRQ = '010' (4 MHz) and CDIV = '0010' (4:1)
101	LFINTOSC
100	SOSC
011	Reserved
010	EXTOSC with 4x PLL, with EXTOSC operating per FEXTOSC bits

PIC16(L)F18426/46 Memory Organization

Rev. 10-000043A

memory left at any given time. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC value from the stack and then decrement the STKPTR.

Reference the following figures for examples of accessing the stack.

Figure 7-4. Accessing the Stack Example 1

			7/30/2013
	1		
TOSH:TOSL	0x0F		STKPTR = 0x1F (STVREN = 0)
	0x0E		
	0x0D		
	0x0C		
	0x0B		Initial Stack Configuration:
	0x0A		
	0x09		After Reset, the stack is empty. The
	0x08		Pointer is pointing at 0x1F. If the Stack
	0x07		Overflow/Underflow Reset is enabled, the
	0x06		Stack Overflow/Underflow Reset is
	0x05		disabled, the TOSH/TOSL register will
	0x04		0x0F.
	0x03		
	0x02		
	0x01		
	0x00		
TOSH:TOSL	0x1F	0x0000	STKPTR = 0x1F (STV/PEN = 1)
	\lor	L	$\square (31 \text{ VREN} - 1)$

9.2.2 Internal Clock Sources

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the RSTOSC bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the NOSC bits to switch the system clock source to the internal oscillator during run-time.

In INTOSC mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators that can produce two internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory-calibrated and operates up to 32 MHz. The frequency of HFINTOSC can be selected through the OSCFRQ Frequency Selection register, and fine-tuning can be done via the OSCTUNE register.
- 2. The LFINTOSC (Low-Frequency Internal Oscillator) is factory-calibrated and operates at 31 kHz.

Related Links

Clock Switching

9.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a precision digitally-controlled internal clock source that produces a stable clock up to 32 MHz. The HFINTOSC can be enabled through one of the following methods:

- Programming the RSTOSC bits in Configuration Word 1 to '110' (F_{OSC} = 1 MHz) or '000' (F_{OSC} = 32 MHz) to set the oscillator upon device Power-up or Reset.
- Write to the NOSC bits during run-time.

The HFINTOSC frequency can be selected by setting the HFFRQ bits.

The NDIV bits allow for division of the HFINTOSC output from a range between 1:1 and 1:512.

Related Links Clock Switching OSCCON1 OSCFRO

9.2.2.2 MFINTOSC

The module provides two (500 kHz and 31.25 kHz) constant clock outputs. These clocks are digital divisors of the HFINTOSC clock. Dynamic divider logic is used to provide constant MFINTOSC clock rates for all settings of HFINTOSC.

The MFINTOSC cannot be used to drive the system but it is used to clock certain modules such as the Timers and WWDT.

9.2.2.3 2x PLL

The oscillator module contains a PLL that can be used with the HFINTOSC clock source to provide a system clock source. The input frequency to the PLL is limited to 8, 12, or 16 MHz, which will yield a system clock source of 16, 24, or 32 MHz, respectively.

10.7.18 PIR7

Name:PIR7Address:0x713

Peripheral Interrupt Request (Flag) Register 7

Bit	7	6	5	4	3	2	1	0
			NVMIF	NCO1IF			CWG2IF	CWG1IF
Access			R/W/HS	R/W/HS			R/W/HS	R/W/HS
Reset			0	0			0	0

Bit 5 – NVMIF NVM Interrupt Flag bit

Value	Description
1	The requested NVM operation has completed
0	NVM interrupt not asserted

Bit 4 – NCO1IF Numerically Controlled Oscillator (NCO) Interrupt Flag bit

Value	Description
1	The NCO has rolled over
0	No NCO interrupt event has occurred

Bit 1 – CWG2IF CWG2 Interrupt Flag bit

Value	Description
1	CWG2 has gone into shutdown
0	CWG2 is operating normally, or interrupt cleared

Bit 0 – CWG1IF CWG1 Interrupt Flag bit

Value	Description
1	CWG1 has gone into shutdown
0	CWG1 is operating normally, or interrupt cleared

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON appropriate interrupt flag bits are clear prior to enabling an interrupt.

10.7.19 PIR8

Name:PIR8Address:0x714

Peripheral Interrupt Request (Flag) Register 8

Bit	7	6	5	4	3	2	1	0
						SMT1PWAIF	SMT1PRAIF	SMT1IF
Access						R/W/HS	R/W/HS	R/W/HS
Reset						0	0	0

Bit 2 - SMT1PWAIF SMT1 Pulse-Width Acquisition Interrupt Flag bit

Value	Description
1	Interrupt has occurred (must be cleared by software)
0	Interrupt event has not occurred

Bit 1 – SMT1PRAIF SMT1 Period Acquisition Interrupt Flag bit

Value	Description
1	Interrupt has occurred (must be cleared by software)
0	Interrupt event has not occurred

Bit 0 – SMT1IF SMT1 Interrupt Flag bit

Value	Description
1	Interrupt has occurred (must be cleared by software)
0	Interrupt event has not occurred

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON appropriate interrupt flag bits are clear prior to enabling an interrupt.

(PPS) Peripheral Pin Select Module

Output Signal Name	RxyPPS Register Value
TMR0OUT	0x17
Note:	

1. CK1 and DT1 are bidirectional signals used in EUSART synchronous mode.

15.3 Bidirectional Pins

PPS selections for peripherals with bidirectional signals on a single pin must be made so that the PPS input and PPS output select the same pin. Peripherals that have bidirectional signals include:

- EUSART (DT/RXxPPS and TX/CKxPPS pins for synchronous operation)
- MSSP (I²C SDA/SSPxDATPPS and SCL/SSPxCLKPPS)

Important: The I²C default inputs, and a limited number of other alternate pins, are I²C and SMBus compatible. Clock and data signals can be routed to any pin, however pins without I²C compatibility will operate at standard TTL/ST logic levels as selected by the INLVL register. See the INLVL register for each port to determine which pins are I²C and SMBus compatible.

15.4 PPS Lock

The PPS includes a mode in which all input and output selections can be locked to prevent inadvertent changes. PPS selections are locked by setting the PPSLOCKED bit of the PPSLOCK register. Setting and clearing this bit requires a special sequence as an extra precaution against inadvertent changes. Examples of setting and clearing the PPSLOCKED bit are shown in the following examples.

PPS Lock Sequence

```
; suspend interrupts
    BCF INTCON,GIE
    BANKSEL PPSLOCK ; set bank
; required sequence, next 5 instructions
    MOVLW 0x55
    MOVWF PPSLOCK
    MOVWF PPSLOCK
; Set PPSLOCKED bit to disable writes or
    BSF PPSLOCK,PPSLOCKED
; restore interrupts
    BSF INTCON,GIE
```

PPS Unlock Sequence

```
; suspend interrupts
    BCF INTCON,GIE
    BANKSEL PPSLOCK ; set bank
; required sequence, next 5 instructions
    MOVLW 0x55
    MOVWF PPSLOCK
    MOVUW 0xAA
    MOVWF PPSLOCK
; Clear PPSLOCKED bit to enable writes
```

20.8.1 ADCON0

Name:	ADCON0			
Address:	0x111			

ADC Control Register 0

Bit	7	6	5	4	3	2	1	0
	ON	CONT		CS		FRM		GO
Access	R/W	R/W		R/W		R/W		R/W/HC
Reset	0	0		0		0		0

Bit 7 – ON ADC Enable bit

Value	Description
1	ADC is enabled
0	ADC is disabled

Bit 6 – CONT ADC Continuous Operation Enable bit

Value	Description
1	GO is retriggered upon completion of each conversion trigger until TIF is set (if SOI is set) or
	until GO is cleared (regardless of the value of SOI)
0	GO is cleared upon completion of each conversion trigger

Bit 4 – CS ADC Clock Selection bit

Value	Description
1	Clock supplied from FRC dedicated oscillator
0	Clock supplied by F _{OSC} , divided according to ADCLK register

Bit 2 - FRM ADC results Format/alignment Selection

Value	Description
1	ADRES and ADPREV data are right-justified
0	ADRES and ADPREV data are left-justified, zero-filled

Bit 0 – GO ADC Conversion Status bit^(1,2)

Value	Description
1	ADC conversion cycle in progress. Setting this bit starts an ADC conversion cycle. The bit is
	cleared by hardware as determined by the CONT bit
0	ADC conversion completed/not in progress

Note:

- 1. This bit requires ON bit to be set.
- 2. If cleared by software while a conversion is in progress, the results of the conversion up to this point will be transferred to ADRES and the state machine will be reset, but the ADIF interrupt flag bit will not be set; filter and threshold operations will not be performed.

slave device is controlled through addressing. The following two diagrams show block diagrams of the I²C Master and Slave modes, respectively.

Note 1: SDA pin selections must be the same for input and output

2: SCL pin selections must be the same for input and output

Rev. 30-000020/ 4/3/2017

(MSSP) Master Synchronous Serial Port Module

Figure 35-10. MSSP Block Diagram (I²C Slave mode)

Note 1: SDA pin selections must be the same for input and output2: SCL pin selections must be the same for input and output

The I²C bus specifies two signal connections:

- Serial Clock (SCL)
- Serial Data (SDA)

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

The following diagram shows a typical connection between two processors configured as master and slave devices.

Figure 35-11. I²C Master/ Slave Connection

The I²C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:

the SDA and SCL pins, the S bit will be set. The SSPxIF bit will not be set until the Baud Rate Generator has timed out.

Important:

- 1. If RSEN is programmed while any other event is in progress, it will not take effect.
- 2. A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Figure 35-27. Repeated Start Condition Waveform

35.6.6 I²C Master Mode Transmission

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSPxBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (T_{BRG}). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for T_{BRG} . The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an \overline{ACK} bit during the ninth bit time if an address match occurred, or if data was received properly. The status of \overline{ACK} is written into the ACKSTAT bit on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPxIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPxBUF, leaving SCL low and SDA unchanged (Figure 35-28).

After the write to the SSPxBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/\overline{W} bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the \overline{ACK} bit is loaded into the ACKSTAT Status bit of the SSPxCON2 register. Following the falling edge of the ninth clock transmission of the address, the SSPxIF is set, the BF flag is cleared and

35.9.4 SSPxCON3

Name:	SSPxCON3
Address:	0x192,0x19C

MSSP Control Register 3

Bit	7	6	5	4	3	2	1	0
	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
Access	R/HS/HC	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 – ACKTIM Acknowledge Time Status bit

Unused in Master mode.

Value	Mode	Description
Х	SPI or I ² C Master	This bit is not used.
1	I ² C Slave and AHEN = 1 or DHEN = 1	8^{th} falling edge of SCL has occurred and the $\overline{\text{ACK}}$ /NACK state is active.
0	I ² C Slave	ACK/NACK state is not active. Transitions low on on 9 th rising edge of SCL.

Bit 6 – PCIE

Stop Condition Interrupt Enable bit⁽¹⁾

Value	Mode	Description
Х	SPI or SSPM = 1111 or 0111	Don't care.
1	SSPM ≠ 1111 and SSPM ≠ 0111	Enable interrupt on detection of Stop condition
0	SSPM ≠ 1111 and SSPM ≠ 0111	Stop detection interrupts are disabled

Bit 5 – SCIE Start Condition Interrupt Enable bit

Value	Mode	Description
Х	SPI or SSPM = 1111 or 0111	Don't care.
1	SSPM ≠ 1111 and SSPM ≠ 0111	Enable interrupt on detection of Start condition
0	SSPM ≠ 1111 and SSPM ≠ 0111	Start detection interrupts are disabled

Bit 4 – BOEN

Buffer Overwrite Enable bit⁽²⁾

Value	Mode	Description
1	SPI	SSPxBUF is updated every time a new data byte is available, ignoring the BF bit
0	SPI	If a new byte is receive with BF set then SSPOV is set and SSPxBUF is not updated
1	I ² C	SSPxBUF is updated every time a new data byte is available, ignoring the SSPOV effect on updating the buffer
0	I ² C	SSPxBUF is only updated when SSPOV is clear

Bit 3 – SDAHT SDA Hold Time Selection bit

36.6.6 TXxREG

Name:TXxREGAddress:0x011A

Transmit Data Register

Bit	7	6	5	4	3	2	1	0
				TXRE	G[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:0 - TXREG[7:0] Transmit Data

Register Summary

Offset	Name	Bit Pos.								
0x0581	INDF1	7:0	INDF1[7:0]							
0x0582	PCL	7:0	PCL[7:0]							
0x0583	STATUS	7:0				TO	PD	Z	DC	С
0.0504	5050	7:0	FSRL[7:0]							
0x0564	FSRU	15:8				FSRH	H[7:0]			
0.0596	F0D1	7:0				FSRL	_[7:0]			
000000	FORT	15:8				FSRH	H[7:0]			
0x0588	BSR	7:0					BSR	[5:0]		
0x0589	WREG	7:0				WRE	G[7:0]			
0x058A	PCLATH	7:0					PCLATH[6:0]			
0x058B	INTCON	7:0	GIE	PEIE						INTEDG
		7:0				ACCI	_[7:0]			
0x058C	NCO1ACC	15:8				ACCH	H[7:0]			
		23:16						ACC	J[3:0]	
		7:0				INCL	[7:0]			
0x058F	NCO1INC	15:8				INCH	I [7:0]			
		23:16						INCL	J[3:0]	
0x0592	NCO1CON	7:0	EN		OUT	POL				PFM
0x0593	NCO1CLK	7:0		PWS[2:0]				CKS	[3:0]	
0x0594										
	Reserved									
0x059B										
0x059C	TMR0L	7:0				TMR0	L[7:0]			
0x059D	TMR0H	7:0				TMR0	H[7:0]			
0x059E	T0CON0	7:0	T0EN		TOOUT	T016BIT		T0OUT	PS[3:0]	
0x059F	T0CON1	7:0		T0CS[2:0]		TOASYNC		TOCK	PS[3:0]	
0x05A0										
	Reserved									
0x05FF										
0x0600	INDF0	7:0				INDF	0[7:0]			
0x0601	INDF1	7:0				INDF	1[7:0]			
0x0602	PCL	7:0				PCL	[7:0]			
0x0603	STATUS	7:0				TO	PD	Z	DC	С
0x0604	FSR0	7:0				FSRL	_[7:0]			
		15:8				FSRH	H[7:0]			
0x0606	FSR1	7:0				FSRL	_[7:0]			
		15:8				FSRF	H[7:0]			
0x0608	BSR	7:0					BSR	[5:0]		
0x0609	WREG	7:0				WRE	G[7:0]			
0x060A	PCLATH	7:0					PCLATH[6:0]			
0x060B	INTCON	7:0	GIE	PEIE						INTEDG
0x060C	CWG1CLK	7:0								CS
0x060D	CWG1ISM	7:0						ISM	[3:0]	
0x060E	CWG1DBR	7:0					DBR	8[5:0]		
0x060F	CWG1DBF	7:0					DBF	[5:0]		
0x0610	CWG1CON0	7:0	EN	LD					MODE[2:0]	

Instruction Set Summary

RLF	Rotate Left f through Carry								
	$(C) \rightarrow dest < 0 >$								
Status Affected:	С								
Encoding:	0011	01da	ffff	ffff					
Description:	The contents of register 'f' are rotated one bit to the left through the CARRY flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f' (default).								
Words:	1								
Cycles:	1								
Example:		RLF	REG1, 0						
Before Instruction REG1 = 1110 0110 C = 0									

REG = 1110 0110

W = 1100 1100

C = 1

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f, d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(f < n >) \rightarrow dest < n - 1 >,$ $(f < 0 >) \rightarrow C,$ $(C) \rightarrow dest < 7 >$
Status Affected:	C
Description:	The contents of register 'f' are rotated one bit to the right through the CARRY flag. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default).

Instruction Set Summary

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \mbox{ prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The Power-down Status bit (\overline{PD}) is cleared. The Time-out Status bit (\overline{TO}) is set. Watchdog Timer and its prescaler are cleared.

SUBLW	Subtract W from literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	0 ≤ k ≤ 255
Operation:	$k-(W)\to(W)$
Status Affected:	C, DC, Z
Description	The W register is subtracted (2's complement method) from the 8-bit literal 'k'. The result is placed in the W register.
	C =0, W > k
	$C = 1, W \le k$
	DC = 0, W[3:0] > k[3:0]
	$DC = 1, W[3:0] \le k[3:0]$

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f, d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	(f) - (W) \rightarrow (dest)
Status Affected:	C, DC, Z
Description	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f. C = 0, W > f

Electrical Specifications

 $\mathsf{T}_{\mathsf{A}_\mathsf{MIN}} \leq \mathsf{T}_\mathsf{A} \leq \mathsf{T}_{\mathsf{A}_\mathsf{MAX}}$

Operating	Temperature:	

Parameter		Ratings	
V _{DD} — Operating Supply Voltage ⁽¹)		
	V _{DDMIN} (F _{OSC} ≤ 16 MHz)	+1.8V	
PIC16LF18426/46	V _{DDMIN} (F _{OSC} ≤32 MHz)	+2.5V	
	V _{DDMAX}	+3.6V	
	V _{DDMIN} (F _{OSC} ≤ 16 MHz)	+2.3V	
PIC16F18426/46	V _{DDMIN} (F _{OSC} ≤ 32 MHz)	+2.5V	
	V _{DDMAX}	+5.5V	
T _A — Operating Ambient Temperature Range			
Industrial Tamparatura	T _{A_MIN}	-40°C	
industrial temperature	T _{A_MAX}	+85°C	
Extended Terranerature	T _{A_MIN}	-40°C	
Extended remperature	T _{A_MAX}	+125°C	
Note:			
1. See Parameter D002, DC Cha	racteristics: Supply Voltage.		

Figure 42-1. Voltage Frequency Graph, -40°C $\leq T_A \leq$ +125°C, for PIC16F18426/46 only

Note:

- 1. The shaded region indicates the permissible combinations of voltage and frequency.
- 2. Refer to External Clock/Oscillator Timing Requirements for each Oscillator mode's supported frequencies.

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-255A Sheet 1 of 2