
Microchip Technology - PIC16LF18446-I/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 17x12b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	14-DIP (0.300", 7.62mm)
Supplier Device Package	14-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf18446-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Configuration

Value	Description
11	WDT enabled regardless of Sleep; SEN is ignored
10	WDT enabled while Sleep = 0, suspended when Sleep = 1; SEN bit is ignored
01	WDT enabled/disabled by SEN bit
00	WDT disabled, SEN bit is ignored

Bits 4:0 - WDTCPS[4:0] WDT Period Select bits

		WDTCON0	[WDTI		
WDTCPS	VDTCPS Value Divider Ra		Ratio Typical Time Out (F _{IN} = 31 kHz)		Software Control of WDTPS?
11111	01011	1:65536	2 ¹⁶	2s	Yes
11110 10011	11110 10011	1:32	2 ⁵	1 ms	No
10010	10010	1:8388608	2 ²³	256s	
10001	10001	1:4194304	2 ²²	128s	
10000	10000	1:2097152	2 ²¹	64s	
01111	01111	1:1048576	2 ²⁰	32s	
01110	01110	1:524288	2 ¹⁹	16s	
01101	01101	1:262144	2 ¹⁸	8s	
01100	01100	1:131072	2 ¹⁷	4s	
01011	01011	1:65536	2 ¹⁶	2s	
01010	01010	1:32768	2 ¹⁵	1s	
01001	01001	1:16384	2 ¹⁴	512 ms	No
01000	01000	1:8192	2 ¹³	256 ms	
00111	00111	1:4096	2 ¹²	128 ms	
00110	00110	1:2048	2 ¹¹	64 ms	
00101	00101	1:1024	2 ¹⁰	32 ms	
00100	00100	1:512	2 ⁹	16 ms	
00011	00011	1:256	2 ⁸	8 ms	
00010	00010	1:128	2 ⁷	4 ms	
00001	00001	1:64	2 ⁶	2 ms	
00000	00000	1:32	2 ⁵	1 ms	

6. Device Configuration Information

The Device Configuration Information (DCI) is a dedicated region in the Program Flash Memory mapped from 8200h to 821Fh. The data stored in the DCI memory is hard-coded into the device during manufacturing. Refer to the table below for the complete DCI table address and description. The DCI holds information about the device which is useful for programming and bootloader applications. These locations are read-only and cannot be erased or modified.

ADDRESS	Name	DESCRIPTION	PIC16(L)F18426/46	UNITS
8200h	ERSIZ	Erase Row Size	32	Words
8201h	WLSIZ	Number of write latches	32	Latches
8202h	URSIZ	Number of User Rows	512	Rows
8203h	EESIZ	EE Data memory size	256	Bytes
8204h	PCNT	Pin Count	14, 16, 20	Pins

 Table 6-1. Device Configuration Information for Devices

6.1 DIA and DCI Access

The DIA and DCI data are read-only and cannot be erased or modified. See section *"NVMREG Access to Device Information Area, Device Configuration Area, User ID, Device ID, EEPROM, and Configuration Words"* for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the DIA and DCI regions, similar to the Device ID and Revision ID.

Related Links

NVMREG Access to Device Information Area, Device Configuration Area, User ID, Device ID, EEPROM, and Configuration Words

PIC16(L)F18426/46 Memory Organization

Rev. 10-000043A

memory left at any given time. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC value from the stack and then decrement the STKPTR.

Reference the following figures for examples of accessing the stack.

Figure 7-4. Accessing the Stack Example 1

			7/30/2013
	1		
TOSH:TOSL	0x0F		STKPTR = 0x1F (STVREN = 0)
	0x0E		
	0x0D		
	0x0C		
	0x0B		 Initial Stack Configuration:
	0x0A		
	0x09		After Reset, the stack is empty. The empty stack is initialized so the Stack
	0x08		Pointer is pointing at 0x1F. If the Stack
	0x07		Overflow/Underflow Reset is enabled, the TOSH/TOSL register will return '0'. If the
	0x06		Stack Overflow/Underflow Reset is
	0x05		disabled, the TOSH/TOSL register will return the contents of stack address
	0x04		0x0F.
	0x03		
	0x02		
	0x01		
	0x00		
TOSH:TOSL	0x1F	0x0000	STKPTR = 0x1F (STVREN = 1)
	\lor	L	$\square (31 \text{ VREN} - 1)$

7.8.9 PCLATH

 Name:
 PCLATH

 Address:
 0x0A + n*0x80 [n=0..63]

Program Counter Latches.

Write Buffer for the upper 7 bits of the Program Counter

Bit	7	6	5	4	3	2	1	0	
ĺ		PCLATH[6:0]							
Access		R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset		0	0	0	0	0	0	0	

Bits 6:0 – PCLATH[6:0] High PC Latch register Holding register for Program Counter bits <6:0> Related Links

Core Registers

9.2.2 Internal Clock Sources

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the RSTOSC bits in Configuration Words to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the NOSC bits to switch the system clock source to the internal oscillator during run-time.

In INTOSC mode, OSC1/CLKIN is available for general purpose I/O. OSC2/CLKOUT is available for general purpose I/O or CLKOUT.

The function of the OSC2/CLKOUT pin is determined by the CLKOUTEN bit in Configuration Words.

The internal oscillator block has two independent oscillators that can produce two internal system clock sources.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory-calibrated and operates up to 32 MHz. The frequency of HFINTOSC can be selected through the OSCFRQ Frequency Selection register, and fine-tuning can be done via the OSCTUNE register.
- 2. The LFINTOSC (Low-Frequency Internal Oscillator) is factory-calibrated and operates at 31 kHz.

Related Links

Clock Switching

9.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a precision digitally-controlled internal clock source that produces a stable clock up to 32 MHz. The HFINTOSC can be enabled through one of the following methods:

- Programming the RSTOSC bits in Configuration Word 1 to '110' (F_{OSC} = 1 MHz) or '000' (F_{OSC} = 32 MHz) to set the oscillator upon device Power-up or Reset.
- Write to the NOSC bits during run-time.

The HFINTOSC frequency can be selected by setting the HFFRQ bits.

The NDIV bits allow for division of the HFINTOSC output from a range between 1:1 and 1:512.

Related Links Clock Switching OSCCON1 OSCFRO

9.2.2.2 MFINTOSC

The module provides two (500 kHz and 31.25 kHz) constant clock outputs. These clocks are digital divisors of the HFINTOSC clock. Dynamic divider logic is used to provide constant MFINTOSC clock rates for all settings of HFINTOSC.

The MFINTOSC cannot be used to drive the system but it is used to clock certain modules such as the Timers and WWDT.

9.2.2.3 2x PLL

The oscillator module contains a PLL that can be used with the HFINTOSC clock source to provide a system clock source. The input frequency to the PLL is limited to 8, 12, or 16 MHz, which will yield a system clock source of 16, 24, or 32 MHz, respectively.

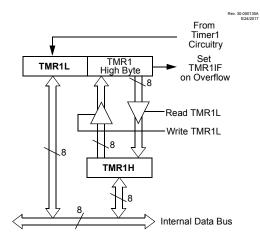
24.10 Register Summary: ZCD Control

Offset	Name	Bit Pos.						
0x091F	ZCDCON	7:0	SEN	OUT	POL		INTP	INTN

24.11 Register Definitions: ZCD Control

Long bit name prefixes for the ZCD peripherals are shown in the table below. Refer to the "Long Bit Names Section" for more information.

Table 24-1. ZCD Long Bit Name Prefixes


Peripheral	Bit Name Prefix			
ZCD	ZCD			

Related Links

Long Bit Names Long Bit Names When a write request of the TMRxL register is requested, the TMRxH buffer register is simultaneously updated with the contents of the TMRxH register. The value of TMRxH must be preloaded into the TMRxH buffer register prior to the write request for the TMRxL register. This provides the user with the ability to write all 16 bits to the TMRxL:TMRxH register pair at the same time.

Any requests to write to the TMRxH directly does not clear the Timer1 prescaler value. The prescaler value is only cleared through write requests to the TMRxL register.

Figure 26-3. Timer1 16-Bit Read/Write Mode Block Diagram

26.7 Timer1 Gate

Timer1 can be configured to count freely or the count can be enabled and disabled using Timer1 gate circuitry. This is also referred to as Timer1 gate enable.

Timer1 gate can also be driven by multiple selectable sources.

26.7.1 Timer1 Gate Enable

The Timer1 Gate Enable mode is enabled by setting the GE bit. The polarity of the Timer1 Gate Enable mode is configured using the GPOL bit.

When Timer1 Gate Enable mode is enabled, Timer1 will increment on the rising edge of the Timer1 clock source. When Timer1 Gate signal is inactive, the timer will not increment and hold the current count. Enable mode is disabled, no incrementing will occur and Timer1 will hold the current count. See figure below for timing details.

TMRxCLK	GPOL	TxG	Timer1 Operation
1	1	1	Counts
1	1	0	Holds Count
1	0	1	Holds Count
↑	0	0	Counts

Table 26-3. Timer1 Gate Enable Selections

Timer2 Module

	MODE	E<4:0>	Output			Timer Contro	ol		
Mode	<4:3>	<2:0>	Operation	Operation	Start	Reset	Stop		
		100		Rising edge start and Rising edge Reset (Figure 27-9)	ON = 1 and TMRx_ers ↑	TMRx_ers ↑			
		101	Edge Triggered Start and	Falling edge start and Falling edge Reset	ON = 1 and TMRx_ers ↓	TMRx_ers ↓			
		110	Hardware Reset (Note 1)	Rising edge start and Low level Reset (Figure 27-10)	ON = 1 and TMRx_ers ↑	TMRx_ers = 0			
		111		Falling edge start and High level Reset	ON = 1 and TMRx_ers ↓	TMRx_ers = 1			
		000			Reserved				
Mono-		001	Edge Triggered) Start	Rising edge start (Figure 27-11)	ON = 1 and TMRx_ers ↑		ON = 0 or		
stable		010		Falling edge start	ON = 1 and TMRx_ers ↓		Next clock after TMRx = PRx		
		011	(Note 1)	Any edge start	ON = 1 and TMRx_ers		(Note 3)		
Reserved	10	100			Reserved	·			
Reserved		101			Reserved				
One-shot		Level 110 Triggered Start	Triggered Start	High level start and Low level Reset (Figure 27-12)	ON = 1 and TMRx_ers = 1	TMRx_ers = 0	ON = 0 or Held in Reset		
		111	and Hardware Reset	Low level start & High level Reset	ON = 1 and TMRx_ers = 0	TMRx_ers = 1	(Note 2)		

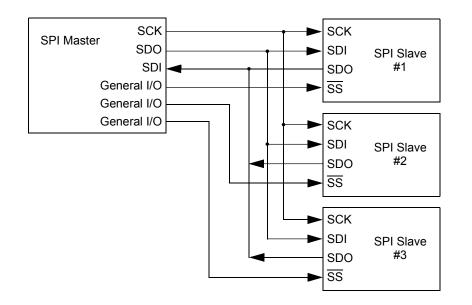
33.8.5 CLCxSEL2

Name:	CLCxSEL2
Address:	0x1E14,0x1E1E,0x1E28,0x1E32

Generic CLCx Data 1 Select Register

Bit	7	6	5	4	3	2	1	0		
			D3S[5:0]							
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			x	x	x	х	х	x		

Bits 5:0 - D3S[5:0]


CLCx Data3 Input Selection bits Reset States: POR/BOR = xxxxx All Other Resets = uuuuuu

Value	Description
n	Refer to CLC Input Sources for input selections

tev. 30-000012A 3/31/2017

(MSSP) Master Synchronous Serial Port Module

Figure 35-2. SPI Master and Multiple Slave Connection

35.1.1 SPI Mode Registers

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPxSTAT)
- MSSP Control register 1 (SSPxCON1)
- MSSP Control register 3 (SSPxCON3)
- MSSP Data Buffer register (SSPxBUF)
- MSSP Address register (SSPxADD)
- MSSP Shift register (SSPSR)
 (Not directly accessible)

SSPxCON1 and SSPxSTAT are the control and STATUS registers for SPI mode operation. The SSPxCON1 register is readable and writable. The lower six bits of the SSPxSTAT are read-only. The upper two bits of the SSPxSTAT are read/write.

One of the five SPI master modes uses the SSPxADD value to determine the Baud Rate Generator clock frequency. More information on the Baud Rate Generator is available in Baud Rate Generator.

SSPSR is the shift register used for shifting data in and out. SSPxBUF provides indirect access to the SSPSR register. SSPxBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPSR and SSPxBUF together create a buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPxBUF and the SSPxIF interrupt is set.

During transmission, the SSPxBUF is not buffered. A write to SSPxBUF will write to both SSPxBUF and SSPSR.

35.2 SPI Mode Operation

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant

(MSSP) Master Synchronous Serial Port Module

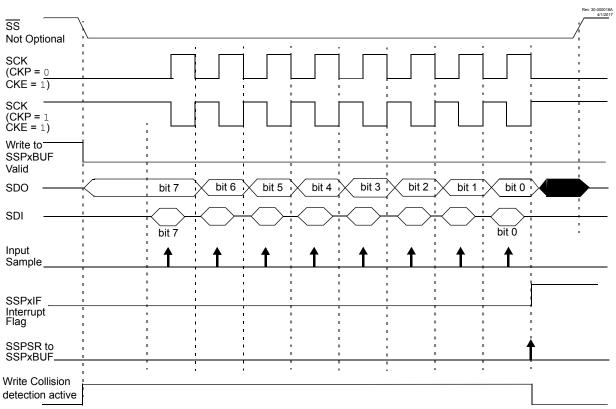


Figure 35-8. SPI Mode Waveform (Slave Mode with CKE = 1)

35.2.5 SPI Operation in Sleep Mode

In SPI Master mode, module clocks may be operating at a different speed than when in Full-Power mode; in the case of the Sleep mode, all clocks are halted.

Special care must be taken by the user when the MSSP clock is much faster than the system clock.

In Slave mode, when MSSP interrupts are enabled, after the master completes sending data, an MSSP interrupt will wake the controller from Sleep.

If an exit from Sleep mode is not desired, MSSP interrupts should be disabled.

In SPI Master mode, when the Sleep mode is selected, all module clocks are halted and the transmission/reception will remain in that state until the device wakes. After the device returns to Run mode, the module will resume transmitting and receiving data.

In SPI Slave mode, the SPI Transmit/Receive Shift register operates asynchronously to the device. This allows the device to be placed in Sleep mode and data to be shifted into the SPI Transmit/Receive Shift register. When all eight bits have been received, the MSSP interrupt flag bit will be set and if enabled, will wake the device.

35.3 I²C Mode Overview

The Inter-Integrated Circuit (I²C) bus is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A

35.4.2 Arbitration

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

35.4.3 Byte Format

All communication in I²C is done in 9-bit segments. A byte is sent from a master to a slave or vice-versa, followed by an Acknowledge bit sent back. After the eighth falling edge of the SCL line, the device outputting data on the SDA changes that pin to an input and reads in an acknowledge value on the next clock pulse.

The clock signal, SCL, is provided by the master. Data is valid to change while the SCL signal is low, and sampled on the rising edge of the clock. Changes on the SDA line while the SCL line is high define special conditions on the bus, explained below.

35.4.4 Definition of I²C Terminology

There is language and terminology in the description of I^2C communication that have definitions specific to I^2C . That word usage is defined below and may be used in the rest of this document without explanation. This table was adapted from the Philips I^2C specification.

TERM	Description
Transmitter	The device which shifts data out onto the bus.
Receiver	The device which shifts data in from the bus.
Master	The device that initiates a transfer, generates clock signals and terminates a transfer.

(EUSART) Enhanced Universal Synchronous Asyn...

	Actual Rate	% Error	SPBRG value (decimal)									
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

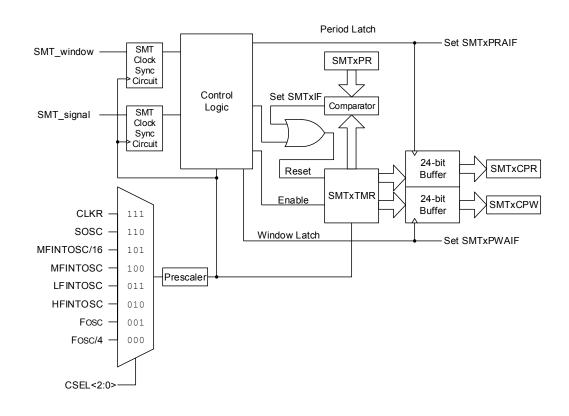
		SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207	
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23		—		
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11		—	—	
57.6k	55556	-3.55	8				57.60k	0.00	3				
115.2k						—	115.2k	0.00	1				

SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1

BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	26666	300.0	0.00	16665	300.0	0.00	15359	300.0	0.00	9215
1200	1200	0.00	6666	1200	-0.01	4166	1200	0.00	3839	1200	0.00	2303
2400	2400	0.01	3332	2400	0.02	2082	2400	0.00	1919	2400	0.00	1151
9600	9604	0.04	832	9597	-0.03	520	9600	0.00	479	9600	0.00	287

37. (SMT) Signal Measurement Timer

The SMT is a 24-bit counter with advanced clock and gating logic, which can be configured for measuring a variety of digital signal parameters such as pulse width, frequency and duty cycle, and the time difference between edges on two signals.


Features of the SMT include:

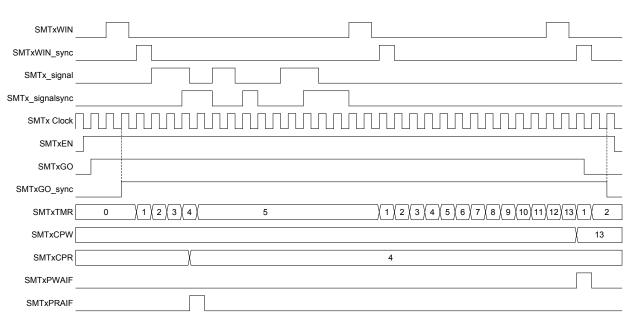
- 24-bit timer/counter
- Two 24-bit measurement capture registers
- One 24-bit period match register
- Multi-mode operation, including relative timing measurement
- Interrupt on period match and acquisition complete
- Multiple clock, signal and window sources

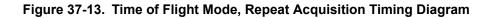
Below is the block diagram for the SMT module.

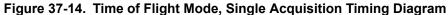
Figure 37-1. Signal Measurement Timer Block Diagram

Rev. 10-000161E 10/12/2016

37.1 SMT Operation


37.1.1 Clock Source Selection


The SMT clock source is selected by configuring the CSEL bits in the SMTxCLK register. The clock source can be prescaled using the PS bits of the SMTxCON0 register. The prescaled clock source is


Rev. 10-000186A 4/22/2016

Rev. 10-000185A 4/26/2016

(SMT) Signal Measurement Timer

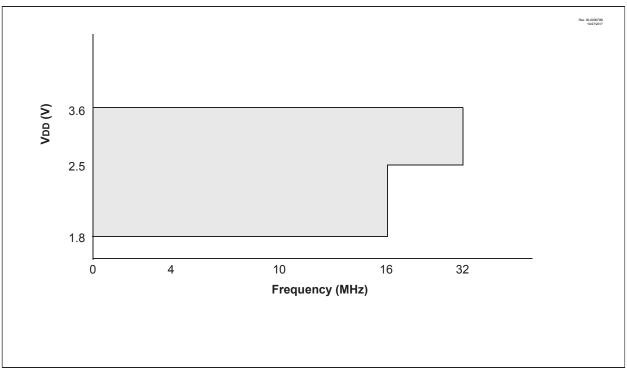
SMTxWIN				
SMTxWIN_sync				ΙΓ
SMTx_signal				
SMTx_signalsync				
SMTx Clock				
SMTxEN				
SMTxGO				
SMTxGO_sync				
SMTxTMR	0	1 2 3 4	5	
SMTxCPW				
SMTxCPR		X		4
SMTxPWAIF				
SMTxPRAIF				

37.1.6.8 Capture Mode

This mode captures the Timer value based on a rising or falling edge on the window input and triggers an interrupt. This mimics the capture feature of a CCP module. The timer begins incrementing upon the SMTxGO bit being set, and updates the value of the SMTxCPR register on each rising edge of window signal, and updates the value of the SMTxCPW register on each falling edge of the window signal. The timer is not reset by any hardware conditions in this mode and must be reset by software, if desired. See figures below.

Instruction Set Summary

BRW	Relative Branch with W
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.


BSF	Bit Set f
Syntax:	[<i>label</i>]BSF f, b
Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

BTFSC	Bit Test File, Skip if Clear
Syntax:	[<i>label</i>] BTFSC f, b
Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BTFSS	Bit Test File, Skip if Set
Syntax:	[<i>label</i>] BTFSS f, b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

Electrical Specifications

Note:

- 1. The shaded region indicates the permissible combinations of voltage and frequency.
- 2. Refer to External Clock/Oscillator Timing Requirements for each Oscillator mode's supported frequencies.

Related Links

Supply Voltage

42.3 DC Characteristics

42.3.1 Supply Voltage

Table 42-1.

PIC16LF1	PIC16LF18426/46 only												
Standard Operating Conditions (unless otherwise stated)													
Param. No. Sym. Characteristic Min. Typ.† Max. Units Conditions													
Supply Vo	oltage												
002	V		1.8		3.6	V	F _{OSC} ≤ 16 MHz						
D002	V _{DD}		2.5		3.6	V	F _{OSC} > 16 MHz						
RAM Data	RAM Data Retention ⁽¹⁾												

Electrical Specifications

PIC16F18	PIC16F18426/46 only												
Standard Operating Conditions (unless otherwise stated)													
Param.	Sum	Device	Min.	Тур.†	Max.	Units	Conc	litions					
No.	Sym.	Characteristics	IVIII.		IVIAA.	Units	V _{DD}	Note					
D102	I _{DDHFOPLL}	HFINTOSC = 32 MHz		3.7	5.6	mA	3.0V						
D103	I _{DD_{HSPLL32}}	HS+PLL = 32 MHz	_	3.7	5.7	mA	3.0V						
D104	I _{DD_{IDLE}}	IDLE mode, HFINTOSC = 16 MHz		1.8	2.1	mA	3.0V						
D105	I _{DD_{DOZE}⁽³⁾}	DOZE mode, HFINTOSC = 16 MHz, Doze Ratio = 16		1.6		mA	3.0V						

† - Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note:

The test conditions for all I_{DD} measurements in active operation mode are: OSC1 = external square wave, from

rail-to-rail; all I/O pins are outputs driven low; $\overline{MCLR} = V_{DD}$; WDT disabled.

- The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
- 3. $I_{DD_{DOZE}} = [I_{DD_{IDLE}}^{*}(N-1)/N] + I_{DD_{HFO}} 16/N$ where N = DOZE Ratio (see *CPUDOZE* register).
- 4. PMD bits are all in the default state, no modules are disabled.

Related Links

CPUDOZE

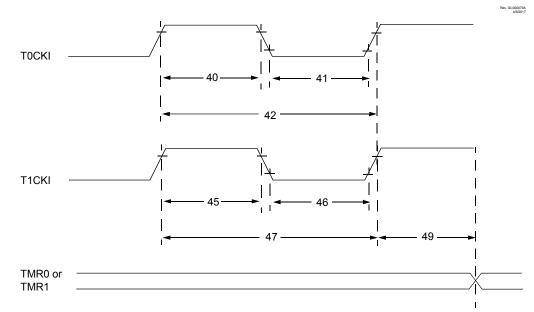
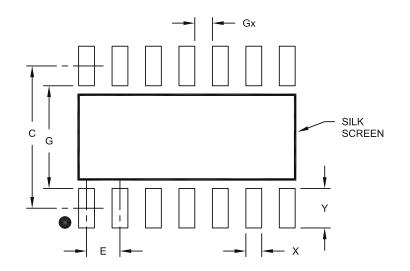

42.3.3 Power-Down Current (I_{PD})^(1,2)

Table 42-3.

PIC16LF	PIC16LF18426/46 only								
Standard Operating Conditions (unless otherwise stated)									
Param. No.	Sym.	Device Characteristics	Min.	Тур.†	Max. +85°C	Max. +125°C	Units	Conditions	
								V _{DD}	Note
D200	I _{PD}	I _{PD} Base	_	0.06	2	9	μA	3.0V	
D201	I _{PD_WDT}	Low-Frequency Internal Oscillator/WDT		0.8	4.0	11	μA	3.0V	

Electrical Specifications

42.4.14 Capture/Compare/PWM Requirements (CCP) Table 42-20.


Operating Temperature: -40°C≤T _A ≤+125°C									
Param No.	Sym. T _{CC} L	Characteristic		Min.	Тур. †	Max.	Units	Conditions	
CC01*		CCPx	No Prescaler	0.5T _{CY} +20	_	_	ns		
		Input Low Time	With Prescaler	20	_		ns		
CC02*	T _{CC} H	CCPx	No Prescaler	0.5T _{CY} +20			ns		
		Input High Time	With Prescaler	20	—	— — ns	ns		
CC03*	T _{CC} P	CCPx Input Period		(3T _{CY} +40)/N	_		ns	N = Prescale value	

* - These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

14-Lead Plastic Small Outline (SL) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	S		
Dimensio	n Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width	X			0.60
Contact Pad Length	Y			1.50
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	3.90		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2065A