

Welcome to E-XFL.COM

Embedded - FPGAs (Field Programmable Gate Array) with Microcontrollers: Enhancing Flexibility and Performance

Embedded - FPGAs (Field Programmable Gate

Arrays) with Microcontrollers represent a cutting-edge category of electronic components that combine the flexibility of FPGA technology with the processing power of integrated microcontrollers. This hybrid approach offers a versatile solution for designing and implementing complex digital systems that require both programmable logic and embedded processing capabilities.

What Are Embedded - FPGAs with Microcontrollers?

At their care EDCAR are comicanductor douices that can

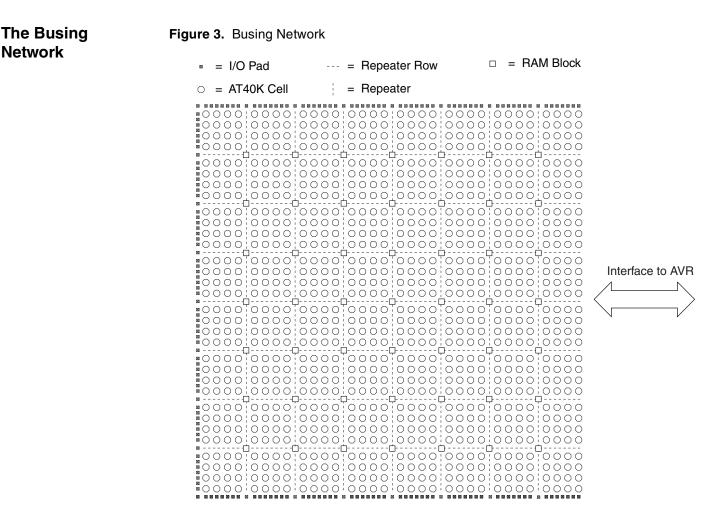
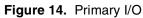
Details

E·XFI

Details	
Product Status	Active
Core Type	8-Bit AVR
Speed	25 MHz
Interface	I²C, UART
Program SRAM Bytes	4K-16K
FPGA SRAM	2kb
EEPROM Size	-
Data SRAM Bytes	4K ~ 16K
FPGA Core Cells	256
FPGA Gates	5К
FPGA Registers	436
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at94k05al-25bqu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

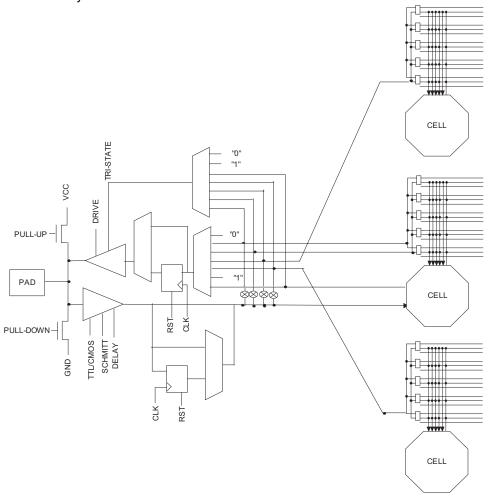

Figure 4 depicts one of five identical FPGA busing planes. Each plane has three bus resources: a local-bus resource (the middle bus) and two express-bus resources. Bus resources are connected via repeaters. Each repeater has connections to two adjacent local-bus segments and two express-bus segments. Each local-bus segment spans four cells and connects to consecutive repeaters. Each express-bus segment spans eight cells and bypasses a repeater. Repeaters regenerate signals and can connect any bus to any other bus (all pathways are legal) on the same plane. Although not shown, a local bus can bypass a repeater via a programmable pass gate, allowing long on-chip tri-state buses to be created. Local/local turns are implemented through pass gates in the cell-bus interface. Express/express turns are implemented through separate pass gates distributed throughout the array.

Table 4. Dual-function Buses

Function	Туре	Plane(s)	Direction	Comments
Cell Output Enable	Local	5	Horizontal and Vertical	
FreeRAM Output Enable	Express	2	Vertical	Bus full length at array edge bus in first column to left of RAM block
FreeRAM Write Enable	Express	1	Vertical	Bus full length at array edge bus in first column to left of RAM block
FreeRAM Address	Express	1 - 5	Vertical	Buses full length at array edge buses in second column to left of RAM block
FreeRAM Data In	Local	1	Horizontal	
FreeRAM Data Out	Local	2	Horizontal	
Clocking	Express	4	Vertical	Bus full length at array edge
Set/Reset	Express	5	Vertical	Bus full length at array edge

Address Range	SRAM	Comments
\$07FF – \$0000 \$0FFF – \$0800	00 01	AVR Data Read/Write AVR Data Read/Write
\$17FF – \$1000 \$1FFF – \$1800	02 03	CR41:40 = 11,10,01
\$27FF – \$2000 \$2FFF – \$2800	04 05	CR41:40 = 11,10
\$37FF – \$3000 \$3FFF – \$3800	06 07	CR41:40 = 11

Table 6. AVR Data Decode for SRAM 0:17 (16K8)

B Side

The B side is not partitioned; the FPGA (and AVR debug mode) views the memory space as 36 x 8 Kbytes.

- The B side is accessed by the FPGA/Configuration Logic.
- The B side is accessed by the AVR with ST and LD instructions in DBG mode for code self-modify.

To activate the debug mode and allow the AVR to access the program code space (with ST - see Figure 21 – and LD – see Figure 22 – instructions), the DBG bit (bit 1) of the SFTCR \$3A (\$5A) register has to be set. When this bit is set, SCR36 and SCR37 are ignored – you can overwrite anything in the AVR program memory.

The FPGA memory access interface should be disabled while in debug mode. This is to ensure that there is no contention between the FPGA address and data signals and the AVR-generated address and data signals. To ensure the AVR has control over the "B side" memory interface, the FMXOR bit (bit 3) of the SFTCR \$3A (\$5A) register should be used in conjunction with the SCR63 system control register bit.

The FMXOR bit is XORed with the System Control Register's Enable FPGA SRAM Interface bit (SCR63). The behavior when this bit is set to 1 is dependent on how the SCR was initialized. If the Enable FPGA SRAM Interface bit (SCR63) in the SCR is 0, the FMXOR bit enables the FPGA SRAM Interface when set to 1. If the Enable FPGA SRAM Interface bit in the SCR is 1, the FMXOR bit disables the FPGA SRAM Interface when set to 1. During AVR reset, the FMXOR bit is cleared by the hardware.

Even though the FPGA (and AVR debug mode) views the memory space as 36 x 8 Kbytes, an awareness of the 2K x 8 partitions (or SRAM labels) is required if Frame (and AVR debug mode) read/writes are to be meaningful to the AVR.

- AVR data to FPGA addressing is 1:1 mapping.
- AVR program to FPGA addressing requires 16-bit to 8-bit mapping and an understanding of the partitions in Table 7.

SRAM	FPGA and AVR DBG Address Range	AVR Data Address Range	AVR PC Address Range
00	\$0000 - \$07FF	\$0000 - \$07FF	
01	\$0800 - \$0FFF	\$0800 - \$0FFF	
02 ⁽¹⁾	\$1000 - \$17FF	\$1000 - \$17FF	\$3800 - \$3FFF (LS Byte)
03 ⁽¹⁾	\$1800 - \$1FFF	\$1800 - \$1FFF	\$3800 - \$3FFF (MS Byte)
04 ⁽¹⁾	\$2000 - \$27FF	\$2000 - \$27FF	\$3000 - \$37FF (LS Byte)

Table 7. Summary Table for AVR and FPGA SRAM Addressing

System Control

Configuration Modes The AT94K family has four configuration modes controlled by mode pins M0 and M2, see Table 10.

Table 10. Configuration Modes

M2	МО	Name
0	0	Mode 0 - Master Serial
0	1	Mode 1 - Slave Serial Cascade
1	0	Mode 2 - Reserved
1	1	Mode 3 - Reserved

Modes 2 and 3 are reserved and are used for factory test.

Modes 0 and 1 are pin-compatible with the appropriate AT40K counterpart. AVR I/O will be taken over by the configuration logic for the CHECK pin during both modes.

Refer to the "AT94K Series Configuration" application note for details on downloading bitstreams.

System Control Register – FPGA/AVR

The configuration control register in the FPSLIC consists of 8 bytes of data, which are loaded with the FPGA/Prog. Code at power-up from external nonvolatile memory. FPSLIC System Control Register values, see Table 11, can be set in the System Designer software. Recommended defaults are included in the software.

Table II. FPSLIC System Control Register	Table 11.	FPSLIC System Control Register
--	-----------	--------------------------------

Bit	Description
SCR0 - SCR1	Reserved
SCR2	0 = Enable Cascading 1 = Disable Cascading SCR2 controls the operation of the dual-function I/O CSOUT. When SCR2 is set, the CSOUT pin is not used by the configuration during downloads, set this bit for configurations where two or more devices are cascaded together. This applies for configuration to another FPSLIC device or to an FPGA.
SCR3	0 = Check Function Enabled 1 = Check Function Disabled SCR3 controls the operation of the CHECK pin and enables the Check Function. When SCR3 is set, the dual use AVR I/O/CHECK pin is not used by the configuration during downloads, and can be used as AVR I/O.
SCR4	0 = Memory Lockout Disabled 1 = Memory Lockout Enabled SCR4 is the Security Flag and controls the writing and checking of configuration memory during any subsequent configuration download. When SCR4 is set, any subsequent configuration download initiated by the user, whether a normal download or a CHECK function download, causes the INIT pin to immediately activate. CON is released, and no further configuration activity takes place. The download sequence during which SCR4 is set is NOT affected. The Control Register write is also prohibited, so bit SCR4 may only be cleared by a power-on reset or manual reset.
SCR5	Reserved

Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	#Clock
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Two's Complement Overflow	V ← 1	V	1
CLV		Clear Two's Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half-carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half-carry Flag in SREG	H ← 0	Н	1
NOP		No Operation		None	1
SLEEP		Sleep	(See specific description for Sleep)	None	1
WDR		Watchdog Reset	(See specific description for WDR)	None	1
BREAK		Break	For on-chip debug only	None	N/A

Pin Descriptions

V _{cc}	Supply voltage
GND	Ground
PortD (PD7PD0)	Port D is an 8-bit bi-directional I/O port with internal programmable pull-up resistors. The Port D output buffers can be programmed to sink/source either 6 or 20 mA (SCR54 – see "System Control Register – FPGA/AVR" on page 30). As inputs, Port D pins that are externally pulled Low will source current if the programmable pull-up resistors are activated.
	The Port D pins are input with pull-up when a reset condition becomes active, even if the clock is not running. On lower pin count packages Port D may not be available. Check the Pin List for details.
PortE (PE7PE0)	Port E is an 8-bit bi-directional I/O port with internal programmable pull-up resistors. The Port E output buffers can be programmed to sink/source either 6 or 20 mA (SCR55 – see "System Control Register – FPGA/AVR" on page 30). As inputs, Port E pins that are externally pulled Low will source current if the pull-up resistors are activated.
	Port E also serves the functions of various special features. See Table 47 on page 149.
	The Port E pins are input with pull-up when a reset condition becomes active, even if the clock is not running
RX0	Input (receive) to UART(0) – See SCR52
ТХО	Output (transmit) from UART(0) – See SCR52
RX1	Input (receive) to UART(1) – See SCR53
ТХ1	Output (transmit) from UART(1) – See SCR53
XTAL1	Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

Data Indirect

Operand address is the contents of the X-, Y- or the Z-register.

Data Indirect with Pre-decrement

The X-, Y- or the Z-register is decremented before the operation. Operand address is the decremented contents of the X, Y or the Z-register.

Data Indirect with Post-increment

The X-, Y- or the Z-register is incremented after the operation. The operand address is the content of the X-, Y- or the Z-register prior to incrementing.

Direct Program Address, JMP and CALL

Program execution continues at the address immediate in the instruction words.

Indirect Program Addressing, IJMP and ICALL

Program execution continues at address contained by the Z-register (i.e., the PC is loaded with the contents of the Z-register).

Relative Program Addressing, RJMP and RCALL

Program execution continues at address PC + k + 1. The relative address k is -2048 to 2047.

 Memory Access Times
 This section describes the general access timing concepts for instruction execution and internal memory access.

 Execution Timing
 The AVE OBLIGATION is and internal memory access.

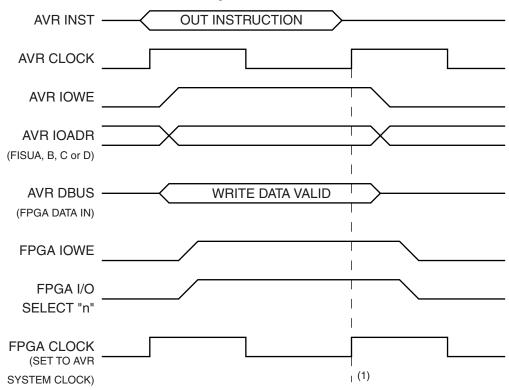

The AVR CPU is driven by the XTAL1 input directly generated from the external clock crystal for the chip. No internal clock division is used.

Figure 29 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access register file concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks and functions per power-unit.

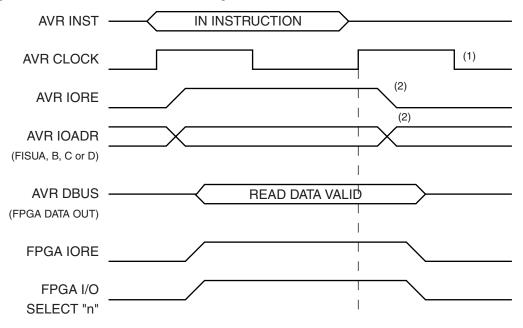


Figure 33. Out Instruction - AVR Writing to the FPGA

Note: 1. AVR expects Write to be captured by the FPGA upon posedge of the AVR clock.

Figure 34. In Instruction – AVR Reading FPGA

- Notes: 1. AVR captures read data upon posedge of the AVR clock.
 - At the end of an FPGA read cycle, there is a chance for the AVR data bus contention between the FPGA and another peripheral to start to drive (active IORE at new address versus FPGAIORE + Select "n"), but since the AVR clock would have already captured the data from AVR DBUS (= FPGA Data Out), this is a "don't care" situation.

FPGA I/O Interrupt Control by AVR

This is an alternate memory space for the FPGA I/O Select addresses. If the FIADR bit in the FISCR register is set to logic 1, the four I/O addresses, FISUA - FISUD, are mapped to physical registers and provide memory space for FPGA interrupt masking and interrupt flag status. If the FIADR bit in the FISCR register is cleared to a logic 0, the I/O register addresses will be decoded into FPGA select lines.

All FPGA interrupt lines into the AVR are negative edge triggered. See page 58 for interrupt priority.

Bit	7	6	5	4	3	2	1	0	_
\$14 (\$34)	FIF3	FIF2	FIF1	FIF0	FINT3	FINT2	FINT1	FINT0	FISUA
\$15 (\$35)	FIF7	FIF6	FIF5	FIF4	FINT7	FINT6	FINT5	FINT4	FSUB
\$16 (\$36)	FIF11	FIF10	FIF9	FIF8	FINT11	FINT10	FINT9	FINT8	FISUC
\$17 (\$37)	FIF15	FIF14	FIF13	FIF12	FINT15	FINT14	FINT13	FINT12	FISUD
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Interrupt Control Registers – FISUA..D

• Bits 7..4 - FIF3 - 0: FPGA Interrupt Flags 3 - 0

The 16 FPGA interrupt flag bits all work the same. Each is set (one) by a valid negative edge transition on its associated interrupt line from the FPGA. Valid transitions are defined as any change in state preceded by at least two cycles of the old state and succeeded by at least two cycles of the new state. Therefore, it is required that interrupt lines transition from 1 to 0 at least two cycles after the line is stable High; the line must then remain stable Low for at least two cycles following the transition. Each bit is cleared by the hardware when executing the corresponding interrupt handling vector. Alternatively, each bit will be cleared by writing a logic 1 to it. When the I-bit in the Status Register, the corresponding FPGA interrupt mask bit and the given FPGA interrupt flag bit are set (one), the associated interrupt is executed.

• Bits 7..4 - FIF7 - 4: FPGA Interrupt Flags 7 - 4

See Bits 7..4 - FIF3 - 0: FPGA Interrupt Flags 3 - 0.

• Bits 7..4 - FIF11 - 8: FPGA Interrupt Flags 11 - 8

See Bits 7..4 - FIF3 - 0: FPGA Interrupt Flags 3 - 0. Not available on the AT94K05.

• Bits 7..4 - FIF15 - 12: FPGA Interrupt Flags 15 - 12

See Bits 7..4 - FIF3 - 0: FPGA Interrupt Flags 3 - 0. Not available on the AT94K05.

• Bits 3..0 - FINT3 - 0: FPGA Interrupt Masks 3 - 0⁽¹⁾

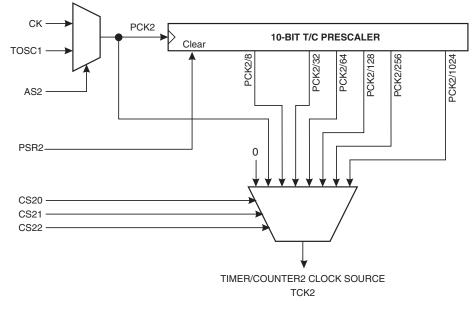
The 16 FPGA interrupt mask bits all work the same. When a mask bit is set (one) and the I-bit in the Status Register is set (one), the given FPGA interrupt is enabled. The corresponding interrupt handling vector is executed when the given FPGA interrupt flag bit is set (one) by a negative edge transition on the associated interrupt line from the FPGA.

- Note: 1. FPGA interrupts 3 0 will cause a wake-up from the AVR Sleep modes. These interrupts are treated as low-level triggered in the Power-down and Power-save modes, see "Sleep Modes" on page 66.
- Bits 3..0 FINT7 4: FPGA Interrupt Masks 7 4

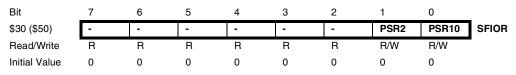
See Bits 3..0 - FINT3 - 0: FPGA Interrupt Masks 3 - 0.

• Bits 3..0 - FINT11 - 8: FPGA Interrupt Masks 11 - 8


See Bits 3..0 - FINT3 - 0: FPGA Interrupt Masks 3 - 0. Not available on the AT94K05.


• Bits 3..0 - FINT15 - 12: FPGA Interrupt Masks 15 -12

See Bits 3..0 - FINT3 - 0: FPGA Interrupt Masks 3 - 0. Not available on the AT94K05.



Special Function I/O Register – SFIOR

• Bits 7..2 - Res: Reserved Bits

These bits are reserved bits in the FPSLIC and are always read as zero.

• Bit 1 - PSR2: Prescaler Reset Timer/Counter2

When this bit is set (one) the Timer/Counter2 prescaler will be reset. The bit will be cleared by the hardware after the operation is performed. Writing a zero to this bit will have no effect. This bit will always be read as zero if Timer/Counter2 is clocked by the internal CPU clock. If this bit is written when Timer/Counter2 is operating in asynchronous mode; however, the bit will remain as one until the prescaler has been reset. See "Asynchronous Operation of Timer/Counter2" on page 94 for a detailed description of asynchronous operation.

Bit 0 - PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0

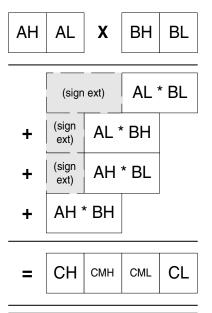
When this bit is set (one) the Timer/Counter1 and Timer/Counter0 prescaler will be reset. The bit will be cleared by the hardware after the operation is performed. Writing a zero to this bit will have no effect. Note that Timer/Counter1 and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both timers. This bit will always be read as zero.

Figure 50 shows the block diagram for Timer/Counter0. Figure 51 shows the block diagram for Timer/Counter2.

8-bit Timers/Counters T/C0 and T/C2

Example 3 – Multiplyaccumulate Operation The final example of 8-bit multiplication shows a multiply-accumulate operation. The general formula can be written as:

```
c(n) = a(n) × b + c(n-1)
    ; r17:r16 = r18 * r19 + r17:r16
in r18,PINB ; Get the current pin value on port B
ldi r19,b ; Load constant b into r19
muls r19,r18 ; r1:r0 = variable A * variable B
add r16,r0 ; r17:r16 += r1:r0
adc r17,r1
```


Typical applications for the multiply-accumulate operation are FIR (Finite Impulse Response) and IIR (Infinite Impulse Response) filters, PID regulators and FFT (Fast Fourier Transform). For these applications the FMULS instruction is particularly useful. The main advantage of using the FMULS instruction instead of the MULS instruction is that the 16-bit result of the FMULS operation always may be approximated to a (well-defined) 8-bit format, see "Using Fractional Numbers" on page 111.

16-bit Multiplication The new multiply instructions are specifically designed to improve 16-bit multiplication. This section presents solutions for using the hardware multiplier to do multiplication with 16-bit operands.

Figure 60 schematically illustrates the general algorithm for multiplying two 16-bit numbers with a 32-bit result ($C = A \cdot B$). AH denotes the high byte and AL the low byte of the A operand. CMH denotes the middle high byte and CML the middle low byte of the result C. Equal notations are used for the remaining bytes.

The algorithm is basic for all multiplication. All of the partial 16-bit results are shifted and added together. The sign extension is necessary for signed numbers only, but note that the carry propagation must still be done for unsigned numbers.

Figure 60. 16-bit Multiplication, General Algorithm

Bit Number	Unsigned Integer Bit Significance	Unsigned Fractional Number Bit Significance
7	2 ⁷ = 128	2 ⁰ = 1
6	$2^6 = 64$	2 ⁻¹ = 0.5
5	2 ⁵ = 32	2 ⁻² = 0.25
4	2 ⁴ = 16	2 ⁻³ = 0.125
3	$2^3 = 8$	$2^{-4} = 0.0625$
2	$2^2 = 4$	2 ⁻⁵ = 0.3125
1	2 ¹ = 2	2 ⁻⁶ = 0.015625
0	2 ⁰ = 1	2 ⁻⁷ = 0.0078125

Table 35. Comparison of Integer and Fractional Formats

Using the FMUL, FMULS and FMULSU instructions should not be more complex than the MUL, MULS and MULSU instructions. However, one potential problem is to assign fractional variables right values in a simple way. The fraction 0.75 (= 0.5 + 0.25) will, for example, be "0110 0000" if 8 bits are used.

To convert a positive fractional number in the range [0, 2> (for example 1.8125) to the format used in the AVR, the following algorithm, illustrated by an example, should be used:

Is there a "1" in the number?

Yes, 1.8125 is higher than or equal to 1.

Byte is now "1xxx xxxx"

Is there a "0.5" in the rest?

0.8125 / 0.5 = 1.625

Yes, 1.625 is higher than or equal to 1.

Byte is now "11xx xxxx"

Is there a "0.25" in the rest?

0.625 / 0.5 = 1.25

Yes, 1.25 is higher than or equal to 1.

Byte is now "111x xxxx"

Is there a "0.125" in the rest?

0.25 / 0.5 = 0.5

No, 0.5 is lower than 1.

Byte is now "1110 xxxx"

Is there a "0.0625" in the rest?

0.5 / 0.5 = 1

Yes, 1 is higher than or equal to 1.

Byte is now "1110 1xxx"

Since we do not have a rest, the remaining three bits will be zero, and the final result is "1110 1000", which is 1 + 0.5 + 0.25 + 0.0625 = 1.8125.

```
fmuls16x16_32
```

```
Description
```

Signed fractional multiply of two 16-bit numbers with a 32-bit result.

```
Usage
```

```
R19:R18:R17:R16 = (R23:R22 • R21:R20) << 1
```

Statistics

Cycles: 20 + ret Words: 16 + ret

Register usage: R0 to R2 and R16 to R23 (11 registers)⁽¹⁾

Note: 1. The routine is non-destructive to the operands.

```
fmuls16x16_32:
  clr r2
  fmuls r23, r21
                            ; ( (signed)ah * (signed)bh ) << 1
  movw r19:r18, r1:r0
  fmul r22, r20
                            ; ( al * bl ) << 1
  adc r18, r2
  movw r17:r16, r1:r0
  fmulsu r23, r20
                            ; ( (signed)ah * bl ) << 1
                            ; Sign extend
  sbc r19, r2
  add r17, r0
       r18, r1
  adc
  adc r19, r2
  fmulsu r21, r22
                            ; ( (signed)bh * al ) << 1
  sbc r19, r2
                            ; Sign extend
  add
       r17, r0
  adc r18, r1
       r19, r2
  adc
```

fmac16x16_32

Description

ret

Signed fractional multiply-accumulate of two 16-bit numbers with a 32-bit result.

Usage

R19:R18:R17:R16 += (R23:R22 • R21:R20) << 1

Statistics

Cycles: 25 + ret Words: 21 + ret Register usage: R0 to R2 and R16 to R23 (11 registers)

```
fmac16x16_32: ; Register usage optimized
  clr r2
  fmuls r23, r21 ; ( (signed)ah * (signed)bh ) << 1
  add r18, r0
  adc r19, r1
  fmul r22, r20 ; ( al * bl ) << 1
  adc r18, r2
  adc r19, r2
  add r16, r0
```



```
adc
        r17, r1
   adc
        r18, r2
   adc
        r19, r2
   fmulsu
          r23, r20
                              ; ( (signed)ah * bl ) << 1
   sbc
        r19, r2
        r17, r0
   add
   adc
        r18, r1
        r19, r2
   adc
   fmulsu r21, r22
                              ; ( (signed)bh * al ) << 1
   sbc
        r19, r2
   add
        r17, r0
   adc
        r18, r1
        r19, r2
   adc
  ret
fmac16x16_32_method_B
                              ; uses two temporary registers (r4,r5), speed/Size
                              optimized
                              ; but reduces cycles/words by 2
   clr
       r2
   fmuls r23, r21
                              ; ( (signed)ah * (signed)bh ) << 1
  movw r5:r4,r1:r0
   fmul r22, r20
                              ; ( al * bl ) << 1
  adc
        r4, r2
add r16, r0
   adc
        r17, r1
   adc
        r18, r4
   adc
        r19, r5
                              ; ( (signed)ah * bl ) << 1
fmulsu
        r23, r20
        r19, r2
  sbc
   add
        r17, r0
  adc
        r18, r1
   adc
        r19, r2
   fmulsu r21, r22
                              ; ( (signed)bh * al ) << 1
   sbc
        r19, r2
  add
        r17, r0
   adc
        r18, r1
   adc
        r19, r2
   ret
```

Comment on Implementations All 16-bit x 16-bit = 32-bit functions implemented here start by clearing the R2 register, which is just used as a "dummy" register with the "add with carry" (ADC) and "subtract with carry" (SBC) operations. These operations do not alter the contents of the R2 register. If the R2 register is not used elsewhere in the code, it is not necessary to clear the R2 register each time these functions are called, but only once prior to the first call to one of the functions.

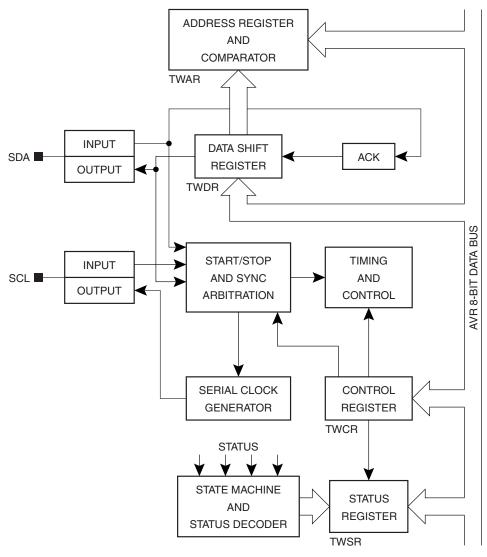


Figure 70. Block diagram of the 2-wire Serial Bus Interface

The CPU interfaces with the 2-wire Serial Interface via the following five I/O registers: the 2wire Serial Bit-rate Register (TWBR), the 2-wire Serial Control Register (TWCR), the 2-wire Serial Status Register (TWSR), the 2-wire Serial Data Register (TWDR), and the 2-wire Serial Address Register (TWAR, used in Slave mode).

The 2-wire Serial Bit-rate Register – TWBR

Bit	7	6	5	4	3	2	1	0	
\$1C (\$3C)	TWBR7	TWBR6	TWBR5	TWBR4	TWBR3	TWBR2	TWBR1	TWBR0	TWBR
Read/Write	R/W	-							
Initial Value	0	0	0	0	0	0	0	0	



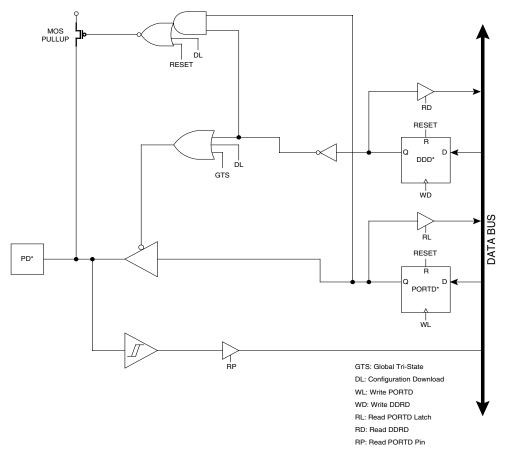


Table 46. DDDn⁽¹⁾ Bits on PortD Pins

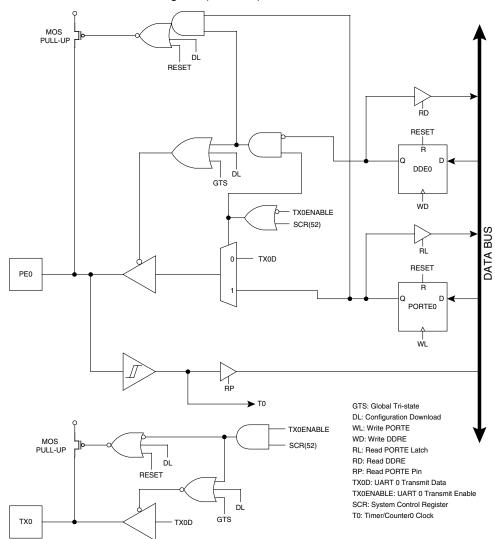
DDDn ⁽¹⁾	PORTDn ⁽¹⁾	I/O	Pull-up	Comment
0	0	Input	No	Tri-state (High-Z)
0	1	Input	Yes	PDn will source current if external pulled low (default)
1	0	Output	No	Push-pull zero output
1	1	Output	No	Push-pull one output

Note: 1. n: 7,6...0, pin number

PortE

PortE is an 8-bit bi-directional I/O port with internal pull-up resistors.

Three I/O memory address locations are allocated for the PortE, one each for the Data Register – PORTE, \$07(\$27), Data Direction Register – DDRE, \$06(\$26) and the PortE Input Pins – PINE, \$05(\$25). The PortE Input Pins address is read only, while the Data Register and the Data Direction Register are read/write.


The PortE output buffers can sink 20 mA. As inputs, PortE pins that are externally pulled Low will source current if the pull-up resistors are activated.

All PortE pins have alternate functions as shown in Table 47.

AT94KAL Series FPSLIC

Alternate I/O Functions of PortE PortE may also be used for various Timer/Counter functions, such as External Input Clocks (TC0 and TC1), Input Capture (TC1), Pulse Width Modulation (TC0, TC1 and TC2), and toggling upon an Output Compare (TC0, TC1 and TC2). For a detailed pinout description, consult Table 47 on page 149. For more information on the function of each pin, See "Timer/Counters" on page 85.

PortE Schematics Note that all port pins are synchronized. The synchronization latches are, however, not shown in the figures.

Figure 76. PortE Schematic Diagram (Pin PE0)

AT94KAL Series FPSLIC

AC & DC Timing Characteristics

Absolute Maximum Ratings*⁽¹⁾

Operating Temperature55°C to +125°C
Storage Temperature65 °C to +150°C
Voltage ⁽²⁾ on Any Pin with Respect to Ground0.5V to +5.0V
Supply Voltage (V _{CC})0.5V to +5.0V
Maximum Soldering Temp. (10 sec. @ 1/16 in.)250°C
ESD (R _{ZAP} = 1.5K, C _{ZAP} = 100 pF) 2000V

*NOTICE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those listed under operating conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability.

Notes: 1. For AL parts only

2. Minimum voltage of -0.5V DC which may undershoot to -2.0V for pulses of less than 20 ns.

DC and AC Operating Range – 3.3V Operation

		AT94K Commercial	AT94K Industrial
Operating Temperature (Case)		0°C - 70°C	-40°C - 85°C
V _{CC} Power Supply		3.3V ± 0.3V	3.3V ± 0.3V
	High (V _{IHC})	70% - 100% V _{CC}	70% - 100% V _{CC}
Input Voltage Level (CMOS)	Low (V _{ILC})	0 - 30% V _{CC}	0 - 30% V _{CC}

Table 56. AT94K Pin List (Continued)

AT94K05	AT94K10	AT94K40	Packages			
96 FPGA I/O	192 FPGA I/O	384 FPGA I/O	PC84	TQ100	PQ144	PQ208
I/O100	I/O148	I/O292			114	164
		I/O293				
		I/O294				
		GND				
		I/O295				
		I/O296				
I/O101 (CS1 , A2)	I/O149 (CS1 , A2)	I/O297 (CS1 , A2)	79	80	115	165
I/O102 (A3)	I/O150 (A3)	I/O298 (A3)	80	81	116	166
		I/O299				
		I/O300				
		VCC ⁽¹⁾				
		GND				
I/O104	I/O151	I/O301	Shorted to Testclock	Shorted to Testclock	Shorted to Testclock	Shorted to Testclock
	I/O152	I/O302				
I/O103	I/O153	I/O303			117	167
	I/O154	I/O304				168
		I/O305				
		I/O306				
		GND				
		I/O307				
		I/O308				
	I/O155	I/O309				169
	I/O156	I/O310				170
		I/O311				
		I/O312				
GND	GND	GND			118	171
I/O105	I/O157	I/O313			119	172
I/O106	I/O158	I/O314			120	173
	I/O159	I/O315				
	I/O160	I/O316				
	VCC ⁽¹⁾	VCC ⁽¹⁾				
		I/O317				
		I/O318				
AT9 2. VD	C is I/O high voltag 94KAL and AT94S D is core high volt AT94KAL and AT9	AL Devices" appli age. Please refer	cation note. to the "Desig	ning in Split		

3. Unbonded pins are No Connects.

Table 56. AT94K Pin List (Continued)

AT94K05	AT94K10	AT94K40	Packages			
96 FPGA I/O	192 FPGA I/O	384 FPGA I/O	PC84	TQ100	PQ144	PQ208
	I/O173	I/O345				188
	I/O174	I/O346				189
I/O117 (A10)	I/O175 (A10)	I/O347 (A10)	5	94	133	190
I/O118 (A11)	I/O176 (A11)	I/O348 (A11)	6	95	134	191
		VCC ⁽¹⁾				
		GND				
		I/O349				
		I/O350				
		I/O351				
		I/O352				
		I/O353				
		I/O354				
		GND				
		I/O355				
		I/O356				
	VDD ⁽²⁾	VDD ⁽²⁾				
	I/O177	I/O357				
	I/O178	I/O358				
I/O119	I/O179	I/O359			135	192
I/O120	I/O180	I/O360			136	193
GND	GND	GND			137	194
		I/O361				
		I/O362				
	I/O181	I/O363				195
	I/O182	I/O364				196
		I/O365				
		I/O366				
		GND				
		I/O367				
		I/O368				
I/O121	I/O183	I/O369				197
I/O122	I/O184	I/O370				198
I/O123 (A12)	I/O185 (A12)	I/O371 (A12)	7	96	138	199
I/O124 (A13)	I/O186 (A13)	I/O372 (A13)	8	97	139	200
otes: 1. VC ATS 2. VD	C is I/O high voltage 94KAL and AT94S D is core high volt	ge. Please refer to AL Devices" applic age. Please refer 94SAL Devices" ap	the "Designi ation note. to the "Desig	ng in Split Po gning in Split	ower Supply	Support fo

3. Unbonded pins are No Connects.

Ordering Information

Usable Gates	Speed Grade	Ordering Code	Package	Operation Range
5,000	-25 MHz	AT94K05AL-25AJC AT94K05AL-25AQC	84J 100A	Commercial (0°C - 70°C)
		AT94K05AL-25BQC AT94K05AL-25DQC	144L1 208Q1	
		AT94K05AL-25AJI AT94K05AL-25AQI AT94K05AL-25BQI AT94K05AL-25DQI	84J 100A 144L1 208Q1	Industrial (-40°C - 85°C)
10,000	-25 MHz	AT94K10AL-25AJC AT94K10AL-25AQC AT94K10AL-25BQC AT94K10AL-25DQC	84J 100A 144L1 208Q1	Commercial (0°C - 70°C)
		AT94K10AL-25AJI AT94K10AL-25AQI AT94K10AL-25BQI AT94K10AL-25DQI	84J 100A 144L1 208Q1	Industrial (-40°C - 85°C)
40,000	-25 MHz	AT94K40AL-25BQC AT94K40AL-25DQC	144L1 208Q1	Commercial (0°C - 70°C)
		AT94K40AL-25BQI AT94K40AL-25DQI	144L1 208Q1	Industrial (-40°C - 85°C)

	Package Type			
84J	84-lead, Plastic J-leaded Chip Carrier (PLCC)			
100A	100-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)			
144L1	144-lead, Low Profile Plastic Gull Wing Quad Flat Package (LQFP)			
208Q1	208-lead, Plastic Gull Wing Quad Flat Package (PQFP)			