

Welcome to E-XFL.COM

Embedded - FPGAs (Field Programmable Gate Array) with Microcontrollers: Enhancing Flexibility and Performance

Embedded - FPGAs (Field Programmable Gate

Arrays) with Microcontrollers represent a cutting-edge category of electronic components that combine the flexibility of FPGA technology with the processing power of integrated microcontrollers. This hybrid approach offers a versatile solution for designing and implementing complex digital systems that require both programmable logic and embedded processing capabilities.

What Are Embedded - FPGAs with Microcontrollers?

At their care EDCAs are comicanductor devices that can

Details

Product Status	Obsolete
Core Type	8-Bit AVR
Speed	25 MHz
Interface	I ² C, UART
Program SRAM Bytes	20K-32K
FPGA SRAM	4kb
EEPROM Size	-
Data SRAM Bytes	4K ~ 16K
FPGA Core Cells	576
FPGA Gates	10К
FPGA Registers	846
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C
Package / Case	84-LCC (J-Lead)
Supplier Device Package	84-PLCC (29.31x29.31)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at94k10al-25aji

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FPGA Core	
	The AT40K core can be used for high-performance designs, by implementing a variety of com- pute-intensive arithmetic functions. These include adaptive finite impulse response (FIR) filters, fast Fourier transforms (FFT), convolvers, interpolators, and discrete-cosine transforms (DCT) that are required for video compression and decompression, encryption, convolution and other multimedia applications.
Fast, Flexible and Efficient SRAM	The AT40K core offers a patented distributed 10 ns SRAM capability where the RAM can be used without losing logic resources. Multiple independent, synchronous or asynchronous, dual-port or single-port RAM functions (FIFO, scratch pad, etc.) can be created using Atmel's macro generator tool.
Fast, Efficient Array and Vector Multipliers	The AT40K cores patented 8-sided core cell with direct horizontal, vertical and diagonal cell- to-cell connections implements ultra-fast array multipliers without using any busing resources. The AT40K core's Cache Logic capability enables a large number of design coefficients and variables to be implemented in a very small amount of silicon, enabling vast improvement in system speed.
Cache Logic Design	The AT40K FPGA core is capable of implementing Cache Logic (dynamic full/partial logic reconfiguration, without loss of data, on-the-fly) for building adaptive logic and systems. As new logic functions are required, they can be loaded into the logic cache without losing the data already there or disrupting the operation of the rest of the chip; replacing or complementing the active logic. The AT40K FPGA core can act as a reconfigurable resource within the FPSLIC environment.
Automatic Component Generators	The AT40K is capable of implementing user-defined, automatically generated, macros; speed and functionality are unaffected by the macro orientation or density of the target device. This enables the fastest, most predictable and efficient FPGA design approach and minimizes design risk by reusing already proven functions. The Automatic Component Generators work seamlessly with industry-standard schematic and synthesis tools to create fast, efficient designs.
	The patented AT40K architecture employs a symmetrical grid of small yet powerful cells con- nected to a flexible busing network. Independently controlled clocks and resets govern every column of four cells. The FPSLIC device is surrounded on three sides by programmable I/Os.
	Core usable gate counts range from 5,000 to 40,000 gates and 436 to 2,864 registers. Pin locations are consistent throughout the FPSLIC family for easy design migration in the same package footprint.
	The Atmel AT40K FPGA core architecture was developed to provide the highest levels of per- formance, functional density and design flexibility. The cells in the FPGA core array are small, efficient and can implement any pair of Boolean functions of (the same) three inputs or any single Boolean function of four inputs. The cell's small size leads to arrays with large numbers of cells. A simple, high-speed busing network provides fast, efficient communication over medium and long distances.
The Symmetrical Array	At the heart of the Atmel FPSLIC architecture is a symmetrical array of identical cells. The array is continuous from one edge to the other, except for bus repeaters spaced every four cells, see Figure 3. At the intersection of each repeater row and column is a 32 x 4 RAM block accessible by adjacent buses. The RAM can be configured as either a single-ported or dual-ported RAM, with either synchronous or asynchronous operation.

most RAM blocks, RAddr is on the left and WAddr is on the right. For the right-most RAM blocks, WAddr is on the left and RAddr is tied off. For single-ported RAM, WAddr is the READ/WRITE address port and Din is the (bi-directional) data port. The right-most RAM blocks can be used only for single-ported memories. WE and \overline{OE} connect to the vertical express buses in the same column on Plane V₁ and V₂, respectively. WAddr, RAddr, WE and \overline{OE} connect to express buses that are full length at array edge.

Reading and writing the 32 x 4 dual-port RAM are independent of each other. Reading the 32 x 4 dual-port RAM is completely asynchronous. Latches are transparent; when Load is logic 1, data flows through; when Load is logic 0, data is latched. Each bit in the 32 x 4 dual-port RAM is also a transparent latch. The front-end latch and the memory latch together and form an edge-triggered flip-flop. When a bit nibble is (Write) addressed and LOAD is logic 1 and \overline{WE} is logic 0, DATA flows through the bit. When a nibble is not (Write) addressed or LOAD is logic 0 or \overline{WE} is logic 1, DATA is latched in the nibble. The two CLOCK muxes are controlled together; they both select CLOCK or they both select "1". CLOCK is obtained from the clock for the sector-column immediately to the left and immediately above the RAM block. Writing any value to the RAM Clear Byte during configuration clears the RAM, see Figure 5 and Figure 6.

Figure 8. FPGA RAM Connections (One RAM Block)

Table 4. Dual-function Buses

Function	Туре	Plane(s)	Direction	Comments
Cell Output Enable	Local	5	Horizontal and Vertical	
FreeRAM Output Enable	Express	2	Vertical	Bus full length at array edge bus in first column to left of RAM block
FreeRAM Write Enable	Express	1	Vertical	Bus full length at array edge bus in first column to left of RAM block
FreeRAM Address	Express	1 - 5	Vertical	Buses full length at array edge buses in second column to left of RAM block
FreeRAM Data In	Local	1	Horizontal	
FreeRAM Data Out	Local	2	Horizontal	
Clocking	Express	4	Vertical	Bus full length at array edge
Set/Reset	Express	5	Vertical	Bus full length at array edge

Figure 17. Corner I/Os

Memory-mapped I/O

The I/O space definition of the embedded AVR core is shown in the following table:

AT94K Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reference Page
\$3F (\$5F)	SREG	I	т	н	S	v	N	z	С	51
\$3E (\$5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	57
\$3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	51
\$3C (\$5C)	Reserved									
\$3B (\$5B)	EIMF	INTF3	INTF2	INTF1	INTF0	INT3	INT2	INT1	INT0	62
\$3A (\$5A)	SFTCR					FMXOR	WDTS	DBG	SRST	51
\$39 (\$59)	TIMSK	TOIE1	OCIE1A	OCIE1B	TOIE2	TICIE1	OCIE2	TOIE0	OCIE0	62
\$38 (\$58)	TIFR	TOV1	OCF1A	OCF1B	TOV2	ICF1	OCF2	TOV0	OCF0	63
\$37 (\$57)	Reserved									
\$36 (\$56)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN		TWIE	110
\$35 (\$55)	MCUR	JTRF	JTD	SE	SM1	SM0	PORF	WDRF	EXTRF	51
\$34 (\$54)	Reserved									
\$33 (\$53)	TCCR0	FOC0	PWM0	COM01	COM00	CTC0	CS02	CS01	CS00	69
\$32 (\$52)	TCNT0	Timer/Counter	0 (8-bit)							70
\$31 (\$51)	OCR0	Timer/Counter	0 Output Compare	e Register				-		71
\$30 (\$50)	SFIOR							PSR2	PSR10	66
\$2F (\$4F)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	FOC1A	FOC1B	PWM11	PWM10	76
\$2E (\$4E)	TCCR1B	ICNC1	ICES1	ICPE		CTC1	CS12	CS11	CS10	77
\$2D (\$4D)	TCNT1H	Timer/Counter	1 - Counter Regis	ter High Byte						78
\$2C (\$4C)	TCNT1L	Timer/Counter	1 - Counter Regis	ter Low Byte						78
\$2B (\$4B)	OCR1AH	Timer/Counter	1 - Output Compa	re Register A High	n Byte					79
\$2A (\$4A)	OCR1AL	Timer/Counter	1 - Output Compa	re Register A Low	Byte					79
\$29 (\$49)	OCR1BH	Timer/Counter	1 - Output Compa	re Register B High	n Byte					79
\$28 (\$48)	OCR1BL	Timer/Counter	1 - Output Compa	re Register B Low	Byte					79
\$27 (\$47)	TCCR2	FOC2	PWM2	COM21	COM20	CTC2	CS22	CS21	CS20	69
\$26 (\$46)	ASSR					AS2	TCN20B	OCR2UB	TCR2UB	73
\$25 (\$45)	ICR1H	Timer/Counter	1 - Input Capture	Register High Byte	•					80
\$24 (\$44)	ICR1L	Timer/Counter	1 - Input Capture	Register Low Byte						80
\$23 (\$43)	TCNT2	Timer/Counter	2 (8-bit)							70
\$22 (\$42)	OCR2	Timer/Counter	2 Output Compar	e Register						71
\$21 (\$41)	WDTCR				WDTOE	WDE	WDP2	WDP1	WDP0	83
\$20 (\$40)	UBRRHI	UART1 Baud I	Rate High Nibble [118]		UART0 Baud R	ate Low Nibble [1	18]		105
\$1F (\$3F)	TWDR	2-wire Serial D	ata Register							111
\$1E (\$3E)	TWAR	2-wire Serial A	ddress Register							112
\$1D (\$3D)	TWSR	2-wire Serial S	tatus Register							112
\$1C (\$3C)	TWBR	2-wire Serial E	it Rate Register							109
\$1B (\$3B)	FPGAD	FPGA Cache	Data Register (D7	- D0)						52
\$1A (\$3A)	FPGAZ	FPGA Cache	Z Address Registe	er (T3 - T0) (Z3 - Z	0)					53
\$19 (\$39)	FPGAY	FPGA Cache	Y Address Registe	er (Y7 - Y0)						53
\$18 (\$38)	FPGAX	FPGA Cache	X Address Registe	er (X7 - X0)						53
\$17 (\$37)	FISUD	FPGA I/O Sele	ect, Interrupt Mask	/Flag Register D (Reserved on AT94	4K05)				54, 56

Reset Sources

The embedded AVR core has five sources of reset:

- External Reset. The MCU is reset immediately when a low-level is present on the RESET or AVR RESET pin.
- Power-on Reset. The MCU is reset upon chip power-up and remains in reset until the FPGA configuration has entered Idle mode.
- Watchdog Reset. The MCU is reset when the Watchdog Timer period expires and the watchdog is enabled.
- Software Reset. The MCU is reset when the SRST bit in the Software Control register is set (one).
- JTAG AVR Reset. The MCU is reset as long as there is a logic one in the Reset Register, one of the scan chains of the JTAG system. See "IEEE 1149.1 (JTAG) Boundary-scan" on page 73.

During reset, all I/O registers except the MCU Status register are then set to their Initial Values, and the program starts execution from address \$0000. The instruction placed in address \$0000 must be a JMP – absolute jump instruction to the reset handling routine. If the program never enables an interrupt source, the interrupt vectors are not used, and regular program code can be placed at these locations. The circuit diagram in Figure 35 shows the reset logic. Table 16 defines the timing and electrical parameters of the reset circuitry.

• Bit 2 - OCIE2: Timer/Counter2 Output Compare Interrupt Enable

When the OCIE2 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter2 Compare Match interrupt is enabled. The corresponding interrupt is executed if a Compare match in Timer/Counter2 occurs, i.e., when the OCF2 bit is set in the Timer/Counter interrupt flag register – TIFR.

• Bit 1 - TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter Interrupt Flag Register – TIFR.

• Bit 0 - OCIE0: Timer/Counter0 Output Compare Interrupt Enable

When the OCIE0 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter0 Compare Match interrupt is enabled. The corresponding interrupt is executed if a Compare match in Timer/Counter0 occurs, i.e., when the OCF0 bit is set in the Timer/Counter Interrupt Flag Register – TIFR.

Timer/Counter Interrupt Flag Register – TIFR

Bit	7	6	5	4	3	2	1	0	_
\$38 (\$58)	TOV1	OCF1A	OCF1B	TOV2	ICF1	OCF2	TOV0	OCF0	TIFR
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7 - TOV1: Timer/Counter1 Overflow Flag

The TOV1 is set (one) when an overflow occurs in Timer/Counter1. TOV1 is cleared by the hardware when executing the corresponding interrupt handling vector. Alternatively, TOV1 is cleared by writing a logic 1 to the flag. When the I-bit in SREG, and TOIE1 (Timer/Counter1 Overflow Interrupt Enable), and TOV1 are set (one), the Timer/Counter1 Overflow Interrupt is executed. In PWM mode, this bit is set when Timer/Counter1 advances from \$0000.

• Bit 6 - OCF1A: Output Compare Flag 1A

The OCF1A bit is set (one) when compare match occurs between the Timer/Counter1 and the data in OCR1A – Output Compare Register 1A. OCF1A is cleared by the hardware when executing the corresponding interrupt handling vector. Alternatively, OCF1A is cleared by writing a logic 1 to the flag. When the I-bit in SREG, and OCIE1A (Timer/Counter1 Compare Interrupt Enable), and the OCF1A are set (one), the Timer/Counter1 Compare A match Interrupt is executed.

• Bit 5 - OCF1B: Output Compare Flag 1B

The OCF1B bit is set (one) when compare match occurs between the Timer/Counter1 and the data in OCR1B – Output Compare Register 1B. OCF1B is cleared by the hardware when executing the corresponding interrupt handling vector. Alternatively, OCF1B is cleared by writing a logic 1 to the flag. When the I-bit in SREG, and OCIE1B (Timer/Counter1 Compare match Interrupt Enable), and the OCF1B are set (one), the Timer/Counter1 Compare B match Interrupt is executed.

• Bit 4 - TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by the hardware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared by writing a logic 1 to the flag. When the I-bit in SREG, and TOIE2 (Timer/Counter1 Overflow Interrupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow Interrupt is executed. In PWM mode, this bit is set when Timer/Counter2 advances from \$00.

external p external p the JTAG TAG interfaction freque ers are se Specific J perations a ster fication Re egister ry-Scan Ch ster consist between T te. The By evices are the structu ormat of th MSB 31 28 Version	ons during normation of programmed Test Access Polace for Boundary oncy is possible. elected by the Jace for Boundary oncy is possible. elected by the Jace for Boundary oncy is possible. elected by the Jace for Boundary on the State for Boundary on the Jace for Bounda	and the JT rt. /-Scan, usi The chip cl TAG instr ns" on pag hift-register e register is n be used Identification cation Reg	D bit in the I/0 ng a JTAG T(lock is not red uction regist e 75. The da er stage. Whe s reset to 0 w to shorten the on register. ister	D register M CK clock free juired to run ers describ ata registers then the Bypa then leaving e scan chair	CUR must be quency higher ed in section s relevant for s relevant for the Capture- n on a system			
external p external p the JTAG TAG interfi- chip freque ers are se Specific J perations a ster fication Re egister ry-Scan Ch ster consis between T te. The By evices are the structu ormat of th	ons during normation of programmed Test Access Polace for Boundary oncy is possible. TAG Instruction are: gister bain sts of a single s DI and TDO, the pass register can to be tested. re of the Device e Device Identifi	and the JT rt. /-Scan, usi The chip cl TAG instr ns" on pag hift-register e register is n be used Identification cation Reg	D bit in the I/0 ng a JTAG T(lock is not red uction regist e 75. The da er stage. Whe s reset to 0 w to shorten the on register. ister	D register M CK clock free juired to run ers describ ata registers then the Bypa then leaving e scan chair	CUR must be quency higher ed in section s relevant for s relevant for the Capture- n on a system			
external p external p the JTAG TAG interfi- chip freque ers are se Specific J perations a ster fication Re egister ry-Scan Ch ster consis between T te. The By evices are the structu	ons during normation of programmed Test Access Polace for Boundary ancy is possible. elected by the J TAG Instruction are: gister hain sts of a single s "DI and TDO, the pass register ca to be tested. re of the Device e Device Identifi	and the JT rt. /-Scan, usi The chip cl TAG instr ns" on pag hift-register e register is n be used Identification cation Reg	D bit in the I/(ng a JTAG T(lock is not red uction regist e 75. The da er stage. Whe s reset to 0 w to shorten the on register.	D register M DK clock free juired to run ers describ ta registers than the Bypa when leaving e scan chair	CUR must be quency higher ed in section s relevant for ss register is the Capture- n on a system			
external p external p the JTAG TAG interfi- chip freque ers are se Specific J perations a ster fication Re egister ry-Scan Ch ster consis between T te. The By evices are the structu	ons during normation of programmed Test Access Po- ace for Boundary oncy is possible. elected by the J TAG Instruction are: gister hain sts of a single s "DI and TDO, the pass register ca to be tested. re of the Device e Device Identifi	and the JT rt. -Scan, usi The chip cl TAG instr ns" on pag hift-register e register is n be used Identification	D bit in the I/0 ng a JTAG T(lock is not regist uction regist te 75. The da er stage. Whe s reset to 0 w to shorten the on register. ister	D register M DK clock free juired to run ers describ ta registers then the Bypa when leaving e scan chair	CUR must be quency higher ed in section s relevant for s relevant for the Capture- n on a system			
external p e bit must l the JTAG TAG interfactor interfactor ers are set Specific J perations a ster fication Re egister ry-Scan Ch ster consis between T te. The By evices are	ons during normation of programmed Test Access Po ace for Boundary oncy is possible. elected by the J TAG Instruction are: gister hain sts of a single s "DI and TDO, the pass register ca to be tested.	and the JT rt. /-Scan, usi The chip cl TAG instr ns" on pag hift-register e register is n be used	D bit in the I/(ng a JTAG T(lock is not red uction regist e 75. The da er stage. Whe s reset to 0 w to shorten the	D register M DK clock free juired to run ers describ ta registers tha registers the leaving e scan chair	CUR must be quency higher ed in section s relevant for s relevant for s the Capture- n on a system			
external p e bit must l the JTAG TAG interfaction freque ers are se Specific J perations a ster fication Re egister ry-Scan Ch	ons during normation to programmed Test Access Po ace for Boundary ency is possible. elected by the J TAG Instruction are: gister	and the JT rt. /-Scan, usi The chip cl TAG instr ns" on pag	D bit in the I/(ock is not rec uction regist 75. The da	D register M CK clock free juired to run ers describ ata registers	CUR must be quency higher ed in section s relevant for			
external p e bit must l the JTAG TAG interfaction freque ers are se Specific J perations a ster	ons during normation Test Access Po ace for Boundary ency is possible. elected by the J TAG Instruction are:	and the JT rt. /-Scan, usi The chip cl ITAG instr ns" on pag	D bit in the I/(ock is not rec uction regist e 75. The da	D register M DK clock free juired to run ers describ ita registers	CUR must be quency higher ed in section s relevant for			
external p e bit must l the JTAG TAG interf chip freque ers are se Specific J perations a	ons during normation of programmed Test Access Po ace for Boundary ency is possible. elected by the J TAG Instruction are:	and the JT rt. /-Scan, usi The chip cl ITAG instr ns" on pag	D bit in the I/(ng a JTAG T(lock is not req uction regist le 75. The da	D register M CK clock free juired to run ers describ ita registers	CUR must be quency higher ed in section s relevant for			
external p e bit must l the JTAG TAG interfactoring chip freque ers are se Specific J perations a	ons during normation Test Access Po ace for Boundary ency is possible. elected by the J TAG Instruction are:	and the JT rt. /-Scan, usi The chip cl ITAG instr ns" on pag	D bit in the I/(ng a JTAG T(lock is not rec uction regist le 75. The da	D register M DK clock free juired to run ers describ tta registers	CUR must be quency higher ed in section s relevant for			
external p bit must I the JTAG TAG interfichip freque	ons during normation of programmed Test Access Po ace for Boundary ency is possible.	and the JT rt. /-Scan, usi The chip cl	D bit in the I/(ng a JTAG T(lock is not rec	D register M CK clock free juired to run	CUR must be quency higher			
external p bit must l the JTAG	oins during norma pe programmed Test Access Po	and the JT rt.	D bit in the I/	O register M	CUR must be			
external p	oins during norma	ai operatior	i oi illo pull.					
The EXTEST instruction is used for sampling external pins and loading output pins with data. The data from the output latch will be driven out on the pins as soon as the EXTEST instruc- tion is loaded into the JTAG IR-register. Therefore, the SAMPLE/PRELOAD should also be used for setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snap- shot of the AVR's external pins during normal operation of the part.								
undetermined state when exiting the test mode. If needed, the BYPASS instruction can be issued to make the shortest possible scan chain through the device. The AVR can be set in the reset state either by pulling the external AVR RESET pin Low, or issuing the AVR_RESET instruction with appropriate setting of the Reset Data Register.								
	ate when e ne shortes her by pull propriate ruction is n o output la o the JTAC	ate when exiting the test me be shortest possible scan her by pulling the external popropriate setting of the Re ruction is used for samplin e output latch will be driver to the JTAG IR-register. Th	ate when exiting the test mode. If ne be shortest possible scan chain throu her by pulling the external AVR RESE opropriate setting of the Reset Data R ruction is used for sampling external e output latch will be driven out on the of the JTAG IR-register. Therefore, th	ate when exiting the test mode. If needed, the BY he shortest possible scan chain through the device her by pulling the external AVR RESET pin Low, or opropriate setting of the Reset Data Register. ruction is used for sampling external pins and load e output latch will be driven out on the pins as soon of the JTAG IR-register. Therefore, the SAMPLE/P	ate when exiting the test mode. If needed, the BYPASS instru- be shortest possible scan chain through the device. The AVR her by pulling the external AVR RESET pin Low, or issuing the opropriate setting of the Reset Data Register. ruction is used for sampling external pins and loading output p e output latch will be driven out on the pins as soon as the EX to the JTAG IR-register. Therefore, the SAMPLE/PRELOAD s			

Version

Version is a 4-bit number identifying the revision of the component. The relevant version numbers are shown in Table 18.

Table 18. JTAG Part Version

Device	Version (Binary Digits)
AT94K05	-
AT94K10	0010
AT94K40	-

When no alternate port function is present, the Input Data - ID corresponds to the PINn register value, Output Data corresponds to the PORTn register, Output Control corresponds to the Data Direction (DDn) register, and the PuLL-up Disable (PLD) corresponds to logic expression (DDn OR NOT(PORTBn)).

Digital alternate port functions are connected outside the dashed box in Figure 44 to make the scan chain read the actual pin value.

Scanning AVR RESET Multiple sources contribute to the internal AVR reset; therefore, the AVR reset pin is not observed. Instead, the internal AVR reset signal output from the Reset Control Unit is observed, see Figure 45. The scanned signal is active High if AVRResetn is Low and enabled or the device is in general reset (Resetn or power-on) or configuration download.

Figure 45. Observe-only Cell

Special Function I/O Register – SFIOR

• Bits 7..2 - Res: Reserved Bits

These bits are reserved bits in the FPSLIC and are always read as zero.

• Bit 1 - PSR2: Prescaler Reset Timer/Counter2

When this bit is set (one) the Timer/Counter2 prescaler will be reset. The bit will be cleared by the hardware after the operation is performed. Writing a zero to this bit will have no effect. This bit will always be read as zero if Timer/Counter2 is clocked by the internal CPU clock. If this bit is written when Timer/Counter2 is operating in asynchronous mode; however, the bit will remain as one until the prescaler has been reset. See "Asynchronous Operation of Timer/Counter2" on page 94 for a detailed description of asynchronous operation.

Bit 0 - PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0

When this bit is set (one) the Timer/Counter1 and Timer/Counter0 prescaler will be reset. The bit will be cleared by the hardware after the operation is performed. Writing a zero to this bit will have no effect. Note that Timer/Counter1 and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both timers. This bit will always be read as zero.

8-bit Timers/Counters T/C0 and T/C2

Figure 50 shows the block diagram for Timer/Counter0. Figure 51 shows the block diagram for Timer/Counter2.

• Bits 5,4 - COM01, COM00/COM21, COM20: Compare Output Mode, Bits 1 and 0

The COMn1 and COMn0 control bits determine any output pin action following a compare match in Timer/Counter0 or Timer/Counter2. Output pin actions affect pins PE1(OC0) or PE3(OC2). This is an alternative function to an I/O port, and the corresponding direction control bit must be set (one) to control an output pin. The control configuration is shown in Table 22.

COMn1	COMn0	Description
0	0	Timer/Counter disconnected from output pin OCn ⁽²⁾
0	1	Toggles the OCn ⁽²⁾ output line.
1	0	Clears the OCn ⁽²⁾ output line (to zero).
1	1	Sets the OCn ⁽²⁾ output line (to one).

 Table 22.
 Compare Output Mode Select⁽¹⁾

Notes: 1. In PWM mode, these bits have a different function. Refer to Table 25 for a detailed description.

2. n = 0 or 2

• Bit 3 - CTC0/CTC2: Clear Timer/Counter on Compare Match

When the CTC0 or CTC2 control bit is set (one), Timer/Counter0 or Timer/Counter2 is reset to \$00 in the CPU clock-cycle after a compare match. If the control bit is cleared, Timer/Counter continues counting and is unaffected by a compare match. When a prescaling of 1 is used, and the compare register is set to C, the timer will count as follows if CTC0/CTC2 is set:

... | C-1 | C | 0 | 1 | ...

When the prescaler is set to divide by 8, the timer will count like this:

... | C-1, C-1, C-1, C-1, C-1, C-1, C-1, C-1 | C, C, C, C, C, C, C, C, C | 0, 0, 0, 0, 0, 0, 0, 0 | 1, 1, 1, ...

In PWM mode, this bit has a different function. If the CTC0 or CTC2 bit is cleared in PWM mode, the Timer/Counter acts as an up/down counter. If the CTC0 or CTC2 bit is set (one), the Timer/Counter wraps when it reaches \$FF. Refer to page 91 for a detailed description.

• Bits 2,1,0 - CS02, CS01, CS00/ CS22, CS21, CS20: Clock Select Bits 2,1 and 0

The Clock Select bits 2,1 and 0 define the prescaling source of Timer/Counter0 and Timer/Counter2, see Table 23 and Table 24.

CS02	CS01	CS00	Description
0	0	0	Stop, the Timer/Counter0 is stopped
0	0	1	СК
0	1	0	СК/8
0	1	1	СК/64
1	0	0	CK/256
1	0	1	CK/1024
1	1	0	External pin PE0(T0), falling edge
1	1	1	External pin PE0(T0), rising edge

The 16-bit Timer/Counter1 can select the clock source from CK, prescaled CK, or an external pin. In addition it can be stopped as described in section "Timer/Counter1 Control Register B – TCCR1B" on page 98. The different status flags (overflow, compare match and capture event) are found in the Timer/Counter Interrupt Flag Register – TIFR. Control signals are found in the Timer/Counter1 Control Registers – TCCR1A and TCCR1B. The interrupt enable/disable settings for Timer/Counter1 are found in the Timer/Counter Interrupt Mask Register – TIMSK.

When Timer/Counter1 is externally clocked, the external signal is synchronized with the oscillator frequency of the CPU. To assure proper sampling of the external clock, the minimum time between two external clock transitions must be at least one internal CPU clock period. The external clock signal is sampled on the rising edge of the internal CPU clock.

The 16-bit Timer/Counter1 features both a high-resolution and a high-accuracy usage with the lower prescaling opportunities. Similarly, the high-prescaling opportunities makes the Timer/Counter1 useful for lower speed functions or exact-timing functions with infrequent actions.

The Timer/Counter1 supports two Output Compare functions using the Output Compare Register 1 A and B – OCR1A and OCR1B as the data sources to be compared to the Timer/Counter1 contents. The Output Compare functions include optional clearing of the counter on compareA match, and actions on the Output Compare pins on both compare matches.

Timer/Counter1 can also be used as a 8-, 9- or 10-bit Pulse Width Modulator. In this mode, the counter and the OCR1A/OCR1B registers serve as a dual-glitch-free stand-alone PWM with centered pulses. Alternatively, the Timer/Counter1 can be configured to operate at twice the speed in PWM mode, but without centered pulses. Refer to page 101 for a detailed description on this function.

The Input Capture function of Timer/Counter1 provides a capture of the Timer/Counter1 contents to the Input Capture Register – ICR1, triggered by an external event on the Input Capture Pin – PE7(ICP). The actual capture event settings are defined by the Timer/Counter1 Control Register – TCCR1B.

Figure 55. ICP Pin Schematic Diagram

ICPE: Input Capture Pin Enable

If the noise canceler function is enabled, the actual trigger condition for the capture event is monitored over four samples, and all four must be equal to activate the capture flag.

Figure 56. Effects on Unsynchronized OCR1 Latching

Note: 1. X = A or B

Note: 1. X = A or B

During the time between the write and the latch operation, a read from OCR1A or OCR1B will read the contents of the temporary location. This means that the most recently written value always will read out of OCR1A/B.

When the OCR1X contains \$0000 or TOP, and the up/down PWM mode is selected, the output OC1A/OC1B is updated to Low or High on the next compare match according to the settings of COM1A1/COM1A0 or COM1B1/COM1B0. This is shown in Table 32. In overflow PWM mode, the output OC1A/OC1B is held Low or High only when the Output Compare Register contains TOP.

Figure 70. Block diagram of the 2-wire Serial Bus Interface

The CPU interfaces with the 2-wire Serial Interface via the following five I/O registers: the 2wire Serial Bit-rate Register (TWBR), the 2-wire Serial Control Register (TWCR), the 2-wire Serial Status Register (TWSR), the 2-wire Serial Data Register (TWDR), and the 2-wire Serial Address Register (TWAR, used in Slave mode).

The 2-wire Serial Bit-rate Register – TWBR

Bit	7	6	5	4	3	2	1	0	
\$1C (\$3C)	TWBR7	TWBR6	TWBR5	TWBR4	TWBR3	TWBR2	TWBR1	TWBR0	TWBR
Read/Write	R/W								
Initial Value	0	0	0	0	0	0	0	0	

detailed in Table 41. The data must be loaded when TWINT is High only. If not, the access will be discarded, and the Write Collision bit, TWWC, will be set in the TWCR register. This scheme is repeated until a STOP condition is transmitted by writing a logic 1 to the TWSTO bit in the TWCR register.

After a repeated START condition (state \$10) the 2-wire Serial Interface may switch to the Master Receiver mode by loading TWDR with SLA+R.

Master Receiver Mode In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter, see Figure 72. The transfer is initialized as in the Master Transmitter mode. When the START condition has been transmitted, the TWINT flag is set by the hardware. The software must then load TWDR with the 7-bit Slave address and the data direction bit (SLA+R). The 2-wire Serial Interrupt flag must then be cleared by software before the 2-wire Serial Transfer can continue.

When the Slave address and the direction bit have been transmitted and an acknowledgment bit has been received, TWINT is set again and a number of status codes in TWSR are possible. Status codes \$40, \$48, or \$38 apply to Master mode, and status codes \$68, \$78, or \$B0 apply to Slave mode. The appropriate action to be taken for each of these status codes is detailed in Table 42. Received data can be read from the TWDR register when the TWINT flag is set High by the hardware. This scheme is repeated until a STOP condition is transmitted by writing a logic 1 to the TWSTO bit in the TWCR register.

After a repeated START condition (state \$10), the 2-wire Serial Interface may switch to the Master Transmitter mode by loading TWDR with SLA+W.

Slave Receiver Mode In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter, see Figure 73. To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

Table 39. TWAR: Slave Receiver Mode Initialization

TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE
value	Device's ow	n Slave addr	ess					

The upper 7 bits are the address to which the 2-wire Serial Interface will respond when addressed by a Master. If the LSB is set, the 2-wire Serial Interface will respond to the general call address (\$00), otherwise it will ignore the general call address.

Table 40. TWCR: Slave Receiver Mode Initialization

TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE
value	0	1	0	0	0	1	0	Х

TWEN must be set to enable the 2-wire Serial Interface. The TWEA bit must be set to enable the acknowledgment of the device's own Slave address or the general call address. TWSTA and TWSTO must be cleared.

When TWAR and TWCR have been initialized, the 2-wire Serial Interface waits until it is addressed by its own Slave address (or the general call address if enabled) followed by the data direction bit which must be "0" (write) for the 2-wire Serial Interface to operate in the Slave Receiver mode. After its own Slave address and the write bit have been received, the 2-wire Serial Interrupt flag is set and a valid status code can be read from TWSR. The status code is used to determine the appropriate software action. The appropriate action to be taken for each status code is detailed in Table 43. The Slave Receiver mode may also be entered if arbitration is lost while the 2-wire Serial Interface is in the Master mode (see states \$68 and \$78).

DC Characteristics – 3.3V Operation – Commercial/Industrial (Preliminary)

 T_{A} = -40°C to 85°C, V_{CC} = 2.7V to 3.6V (unless otherwise noted^{(1)})

Symbol	Parameter	Conditions	Minimum ⁽³⁾	Typical	Maximum ⁽²⁾	Units
V _{IH}	High-level Input Voltage	CMOS	0.7 V _{CC}	-	5.5	V
V _{IH1}	Input High-voltage	XTAL	$0.7 \ V_{CC}^{(3)}$	-	V _{CC} + 0.5	v
V _{IH2}	Input High-voltage	RESET	$0.85 V_{CC}^{(3)}$	-	V _{CC} + 0.5	v
V _{IL}	Low-level Input Voltage	CMOS	-0.3	-	30% V _{CC}	V
V _{IL1}	Input Low-voltage	XTAL	-0.5	-	0.1 ⁽²⁾	V
		$I_{OH} = 4 \text{ mA}$ $V_{CC} = V_{CC}$ Minimum	2.1	_	_	v
V _{OH}	High-level Output Voltage	$I_{OH} = 12 \text{ mA}$ $V_{CC} = 3.0 \text{V}$	2.1	-	_	v
		$I_{OH} = 16 \text{ mA}$ $V_{CC} = 3.0 \text{V}$	2.1	_	_	v
		$I_{OL} = -4 \text{ mA}$ $V_{CC} = 3.0 \text{V}$	_	_	0.4	v
V _{OL}	Low-level Output Voltage	$I_{OL} = -12 \text{ mA}$ $V_{CC} = 3.0 \text{V}$	_	_	0.4	v
		$I_{OL} = -16 \text{ mA}$ $V_{CC} = 3.0 \text{V}$	_	_	0.4	v
RRST	Reset Pull-up		100	-	500	kΩ
R _{I/O}	I/O Pin Pull-up		35	-	120	kΩ
	High lovel Input Current	V _{IN} = V _{CC} Maximum	_	-	10	μA
'IH		With Pull-down, $V_{IN} = V_{CC}$	75	150	300	μA
	Low-level Input Current	V _{IN} = V _{SS}	-10	_	_	μΑ
'IL		With Pull-up, $V_{IN} = V_{SS}$	-300	-150	-75	μΑ
1	High-level Tri-state Output	Without Pull-down, $V_{IN} = V_{CC}$ Maximum			10	μA
'OZH	Leakage Current	With Pull-down, $V_{IN} = V_{CC}$ Maximum	75	150	300	μA
	Low-level Tri-state Output	Without Pull-up, $V_{IN} = V_{SS}$	-10			μΑ
'OZL	Leakage Current	With Pull-up, $V_{IN} = V_{SS}$	-300	-150	-75	μA
	Standby Current Consumption	Standby, Unprogrammed	_	0.6	0.5	mA
I _{cc}		Active, $V_{CC} = 3V^{(1)}$ 25 MHz	_	80 ⁽⁴⁾	_	mA
		Idle, $V_{CC} = 3V^{(1)}$	_	_	1.0	mA
	Power Supply Current	Power-down, $V_{CC} = 3V^{(1)}$ WDT Enable	_	60	500	μA
		Power-down, $V_{CC} = 3V^{(1)}$ WDT Disable	_	30	200	μA
		Power-save, V _{CC} = 3V ⁽¹⁾ WDT Disable	_	50	400	μA
	FPGA Core Current Consumption		_	2	_	mA/MHz
C _{IN}	Input Capacitance	All Pins	_	_	10	pF

Notes: 1. Complete FPSLIC device with static FPGA core (no clock in FPGA active).

2. "Maximum" is the highest value where the pin is guaranteed to be read as Low.

3. "Minimum" is the lowest value where the pin is guaranteed to be read as High.

4. 54 mA for AT94K05 devices.

160 AT94KAL Series FPSLIC

AC Timing Characteristics – 3.3V Operation

Delays are based on fixed loads and are described in the notes. Maximum times based on worst case: $V_{CC} = 3.0V$, temperature = 70°C Minimum times based on best case: $V_{CC} = 3.6V$, temperature = 0°C Maximum delays are the average of t_{PDLH} and t_{PDHL} .

All input IO characteristics measured from a V_{IH} of 50% of V_{DD} at the pad (CMOS threshold) to the internal V_{IH} of 50% of V_{DD}. All output IO characteristics are measured as the average of t_{PDLH} and t_{PDHL} to the pad V_{IH} of 50% of V_{DD}.

Cell Function	Parameter	Path	-25	Units	Notes		
Repeaters							
Repeater	t _{PD} (Maximum)	L -> E	2.2	ns	1 Unit Load		
Repeater	t _{PD} (Maximum)	E -> E	2.2	ns	1 Unit Load		
Repeater	t _{PD} (Maximum)	L->L	2.2	ns	1 Unit Load		
Repeater	t _{PD} (Maximum)	E -> L	2.2	ns	1 Unit Load		
Repeater	t _{PD} (Maximum)	E -> 10	1.4	ns	1 Unit Load		
Repeater	t _{PD} (Maximum)	L -> 10	1.4	ns	1 Unit Load		

All input IO characteristics measured from a V_{IH} of 50% of V_{DD} at the pad (CMOS threshold) to the internal V_{IH} of 50% of V_{DD} . All output IO characteristics are measured as the average of t_{PDLH} and t_{PDHL} to the pad V_{IH} of 50% of V_{DD} .

Cell Function	Parameter	Path	-25	Units	Notes			
ΙΟ								
Input	t _{PD} (Maximum)	pad -> x/y	1.9	ns	No Extra Delay			
Input	t _{PD} (Maximum)	pad -> x/y	5.8	ns	1 Extra Delay			
Input	t _{PD} (Maximum)	pad -> x/y	11.5	ns	2 Extra Delays			
Input	t _{PD} (Maximum)	pad -> x/y	17.4	ns	3 Extra Delays			
Output, Slow	t _{PD} (Maximum)	x/y/E/L -> pad	9.1	ns	50 pf Load			
Output, Medium	t _{PD} (Maximum)	x/y/E/L -> pad	7.6	ns	50 pf Load			
Output, Fast	t _{PD} (Maximum)	x/y/E/L -> pad	6.2	ns	50 pf Load			
Output, Slow	t _{PZX} (Maximum)	oe -> pad	9.5	ns	50 pf Load			
Output, Slow	t _{PXZ} (Maximum)	oe -> pad	2.1	ns	50 pf Load			
Output, Medium	t _{PZX} (Maximum)	oe -> pad	7.4	ns	50 pf Load			
Output, Medium	t _{PXZ} (Maximum)	oe -> pad	2.7	ns	50 pf Load			
Output, Fast	t _{PZX} (Maximum)	oe -> pad	5.9	ns	50 pf Load			
Output, Fast	t _{PXZ} (Maximum)	oe -> pad	2.4	ns	50 pf Load			

Table 56. AT94K Pin List (Continued)

AT94K05	AT94K10	AT94K40 384 FPGA I/O	Packages				
96 FPGA I/O	192 FPGA I/O		PC84	TQ100	PQ144	PQ208	
		VCC ⁽¹⁾					
		I/O37					
		I/O38					
		I/O39					
		I/O40					
	I/O19	I/O41				19	
	I/O20	I/O42				20	
		GND					
I/O13	I/O21	I/O43			13	21	
I/O14	I/O22	I/O44		8	14	22	
		I/O45					
		I/O46					
I/O15 (A22)	I/O23 (A22)	I/O47 (A22)	19	9	15	23	
I/O16 (A23)	I/O24 (A23)	I/O48 (A23)	20	10	16	24	
GND	GND	GND	21	11	17	25	
VDD ⁽²⁾	VDD ⁽²⁾	VDD ⁽²⁾	22	12	18	26	
I/O17 (A24)	I/O25 (A24)	I/O49 (A24)	23	13	19	27	
I/O18 (A25)	I/O26 (A25)	I/O50 (A25)	24	14	20	28	
		I/O51					
		I/O52					
I/O19	I/O27	I/O53		15	21	29	
I/O20	I/O28	I/O54			22	30	
		GND					
	I/O29	I/O55				31	
	I/O30	I/O56				32	
		I/O57					
		I/O58					
		I/O59					
		I/O60					
		VCC ⁽¹⁾					
		GND					
		I/O61					
		I/O62					
		I/O63					
 Notes: 1. VCC is I/O high voltage. Please refer to the "Designing in Split Power Supply Support for AT94KAL and AT94SAL Devices" application note. 2. VDD is core high voltage. Please refer to the "Designing in Split Power Supply Support for AT94KAL and AT94SAL Devices" application note. 2. Unbended pine are No Connector. 							

172 AT94KAL Series FPSLIC

Thermal Coefficient Table

Package Style	Lead Count	Theta J-A 0 LFPM	Theta J-A 225 LFPM	Theta J-A 500 LPFM	Theta J-C
PLCC	84	37	30	25	12
TQFP	100	47	39	33	22
LQFP	144	33	27	23	8.5
PQFP	208	32	28	24	10

