E·XFL

Welcome to E-XFL.COM

Embedded - FPGAs (Field Programmable Gate Array) with Microcontrollers: Enhancing Flexibility and Performance

Embedded - FPGAs (Field Programmable Gate

Arrays) with Microcontrollers represent a cutting-edge category of electronic components that combine the flexibility of FPGA technology with the processing power of integrated microcontrollers. This hybrid approach offers a versatile solution for designing and implementing complex digital systems that require both programmable logic and embedded processing capabilities.

What Are Embedded - FPGAs with Microcontrollers?

At their care EDCAR are comicanductor douices that can

Details

Product Status	Obsolete
Core Type	8-Bit AVR
Speed	25 MHz
Interface	I²C, UART
Program SRAM Bytes	20K-32K
FPGA SRAM	4kb
EEPROM Size	-
Data SRAM Bytes	4K ~ 16K
FPGA Core Cells	576
FPGA Gates	10K
FPGA Registers	846
Voltage - Supply	3V ~ 3.6V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 70°C
Package / Case	208-BFQFP
Supplier Device Package	208-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at94k10al-25dqc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1. FPSLIC Device Date Code with JTAG ICE Support

The AT94K series architecture is shown in Figure 2.

Figure 2. AT94K Series Architecture

AT94KAL Series FPSLIC

Figure 10. FreeRAM Example: 128 x 8 Dual-ported RAM (Asynchronous)⁽¹⁾

Note: 1. These layouts can be generated automatically using the Macro Generators.

Data SRAM Access by FPGA – FPGAFrame Mode

The FPGA user logic has access to the data SRAM directly through the FPGA side of the dual-port memory, see Figure 20. A single bit in the configuration control register (SCR63 – see "System Control Register – FPGA/AVR" on page 30) enables this interface. The interface is disabled during configuration downloads. Express buses on the East edge of the array are used to interface the memory. Full read and write access is available. To allow easy implementation, the interface itself is dedicated in routing resources, and is controlled in the System Designer software suite using the AVR FPGA interface dialog.

Once the SCR63 bit is set there is no additional read enable from the FPGA side. This means that the read is always enabled. You can also perform a read or write from the AVR at the same time as an FPGA read or write. If there is a possibility of a write address being accessed by both devices at the same time, the designer should add arbitration to the FPGA Logic to control who has priority. In most cases the AVR would be used to restrict access by the FPGA using the FMXOR bit, see "Software Control Register – SFTCR" on page 51. You can read from the same location from both sides simultaneously.

SCR bit 38 controls the polarity of the clock to the SRAM from the AT40K FPGA.

This option is used to allow for code (Program Memory) changes.

The FPSLIC SRAM is up to 36 x 8 Kbytes of dual port, see Figure 19):

- The A side (port) is accessed by the AVR.
- The B side (port) is accessed by the FPGA/Configuration Logic.
- The B side (port) can be accessed by the AVR with ST and LD instructions in DBG mode for code self-modify.

Structurally, the [$(n \cdot 2)$ Kbytes 8] memory is built from (n)2 Kbytes 8 blocks, numbered SRAM0 through SRAM(n).

SRAM Access by FPGA/AVR

Accessing and Modifying the Program Memory from the AVR

System Control

Configuration Modes

The AT94K family has four configuration modes controlled by mode pins M0 and M2, see Table 10.

Table 10. Configuration Modes

M2	МО	Name
0	0	Mode 0 - Master Serial
0	1	Mode 1 - Slave Serial Cascade
1	0	Mode 2 - Reserved
1	1	Mode 3 - Reserved

Modes 2 and 3 are reserved and are used for factory test.

Modes 0 and 1 are pin-compatible with the appropriate AT40K counterpart. AVR I/O will be taken over by the configuration logic for the CHECK pin during both modes.

Refer to the "AT94K Series Configuration" application note for details on downloading bitstreams.

System Control Register – FPGA/AVR

The configuration control register in the FPSLIC consists of 8 bytes of data, which are loaded with the FPGA/Prog. Code at power-up from external nonvolatile memory. FPSLIC System Control Register values, see Table 11, can be set in the System Designer software. Recommended defaults are included in the software.

	Table 11.	FPSLIC System Control Register
--	-----------	---------------------------------------

Bit	Description
SCR0 - SCR1	Reserved
SCR2	0 = Enable Cascading 1 = Disable Cascading SCR2 controls the operation of the dual-function I/O CSOUT. When SCR2 is set, the CSOUT pin is not used by the configuration during downloads, set this bit for configurations where two or more devices are cascaded together. This applies for configuration to another FPSLIC device or to an FPGA.
SCR3	0 = Check Function Enabled 1 = Check Function Disabled SCR3 controls the operation of the CHECK pin and enables the Check Function. When SCR3 is set, the dual use AVR I/O/CHECK pin is not used by the configuration during downloads, and can be used as AVR I/O.
SCR4	0 = Memory Lockout Disabled 1 = Memory Lockout Enabled SCR4 is the Security Flag and controls the writing and checking of configuration memory during any subsequent configuration download. When SCR4 is set, any subsequent configuration download initiated by the user, whether a normal download or a CHECK function download, causes the INIT pin to immediately activate. CON is released, and no further configuration activity takes place. The download sequence during which SCR4 is set is NOT affected. The Control Register write is also prohibited, so bit SCR4 may only be cleared by a power-on reset or manual reset.
SCR5	Reserved

Conditional Branch Summary

Test	Boolean	Mnemonic	Complementary	Boolean	Mnemonic	Comment
Rd > Rr	$Z \bullet (N \oplus V) = 0$	BRLT	Rd ≤ Rr	Z+(N ⊕ V) = 1	BRGE	Signed
Rd ≥ Rr	(N ⊕ V) = 0	BRGE	Rd < Rr	(N ⊕ V) = 1	BRLT	Signed
Rd = Rr	Z = 1	BREQ	Rd ≠ Rr	Z = 0	BRNE	Signed
Rd ≤ Rr	Z+(N ⊕ V) = 1	BRGE	Rd > Rr	$Z \bullet (N \oplus V) = 0$	BRLT	Signed
Rd < Rr	(N ⊕ V) = 1	BRLT	Rd ≥ Rr	(N ⊕ V) = 0	BRGE	Signed
Rd > Rr	C + Z = 0	BRLO	Rd ≤ Rr	C + Z = 1	BRSH	Unsigned
Rd ≥ Rr	C = 0	BRSH/BRCC	Rd < Rr	C = 1	BRLO/BRCS	Unsigned
Rd = Rr	Z = 1	BREQ	Rd ≠ Rr	Z = 0	BRNE	Unsigned
Rd ≤ Rr	C + Z = 1	BRSH	Rd > Rr	C + Z = 0	BRLO	Unsigned
Rd < Rr	C = 1	BRLO/BRCS	Rd ≥ Rr	C = 0	BRSH/BRCC	Unsigned
Carry	C = 1	BRCS	No Carry	C = 0	BRCC	Simple
Negative	N = 1	BRMI	Positive	N = 0	BRPL	Simple
Overflow	V = 1	BRVS	No Overflow	V = 0	BRVC	Simple
Zero	Z = 1	BREQ	Not Zero	Z = 0	BRNE	Simple

Complete Instruction Set Summary

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clock			
	Arithmetic and Logic Instructions							
ADD	Rd, Rr	Add without Carry	$Rd \leftarrow Rd + Rr$	Z,C,N,V,S,H	1			
ADC	Rd, Rr	Add with Carry	$Rd \gets Rd + Rr + C$	Z,C,N,V,S,H	1			
ADIW	Rd, K	Add Immediate to Word	$Rd+1:Rd \leftarrow Rd+1:Rd + K$	Z,C,N,V,S	2			
SUB	Rd, Rr	Subtract without Carry	$Rd \leftarrow Rd - Rr$	Z,C,N,V,S,H	1			
SUBI	Rd, K	Subtract Immediate	$Rd \leftarrow Rd - K$	Z,C,N,V,S,H	1			
SBC	Rd, Rr	Subtract with Carry	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,S,H	1			
SBCI	Rd, K	Subtract Immediate with Carry	$Rd \gets Rd - K - C$	Z,C,N,V,S,H	1			
SBIW	Rd, K	Subtract Immediate from Word	$Rd+1:Rd \leftarrow Rd+1:Rd - K$	Z,C,N,V,S	2			
AND	Rd, Rr	Logical AND	$Rd \leftarrow Rd \bullet Rr$	Z,N,V,S	1			
ANDI	Rd, K	Logical AND with Immediate	$Rd \gets Rd \bullet K$	Z,N,V,S	1			
OR	Rd, Rr	Logical OR	$Rd \leftarrow Rd \lor Rr$	Z,N,V,S	1			
ORI	Rd, K	Logical OR with Immediate	$Rd \leftarrow Rd \lor K$	Z,N,V,S	1			
EOR	Rd, Rr	Exclusive OR	$Rd \gets Rd \oplus Rr$	Z,N,V,S	1			
СОМ	Rd	One's Complement	$Rd \leftarrow \$FF - Rd$	Z,C,N,V,S	1			
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,S,H	1			
SBR	Rd, K	Set Bit(s) in Register	$Rd \leftarrow Rd \lor K$	Z,N,V,S	1			

36 AT94KAL Series FPSLIC

Instruction Set Summary (Continued)

Mnemonics	Operands	Description	Operation	Flags	#Clock		
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2		
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2		
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2		
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2		
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2		
BRLT	k	Branch if Less Than, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2		
BRHS	k	Branch if Half-carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2		
BRHC	k	Branch if Half-carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2		
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2		
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2		
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2		
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2		
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2		
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2		
Data Transfer Instructions							
MOV	Rd, Rr	Copy Register	$Rd \leftarrow Rr$	None	1		
MOVW	Rd, Rr	Copy Register Pair	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1		
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1		
LDS	Rd, k	Load Direct from Data Space	$Rd \leftarrow (k)$	None	2		
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2		
LD	Rd, X+	Load Indirect and Post-Increment	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2		
LD	Rd, -X	Load Indirect and Pre-Decrement	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2		
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2		
LD	Rd, Y+	Load Indirect and Post-Increment	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2		
LD	Rd, -Y	Load Indirect and Pre-Decrement	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2		
LDD	Rd, Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2		
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2		
LD	Rd, Z+	Load Indirect and Post-Increment	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2		
LD	Rd, -Z	Load Indirect and Pre-Decrement	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2		
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2		
STS	k, Rr	Store Direct to Data Space	$Rd \leftarrow (k)$	None	2		
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2		
ST	X+, Rr	Store Indirect and Post-Increment	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2		
ST	-X, Rr	Store Indirect and Pre-Decrement	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2		
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2		
ST	Y+, Rr	Store Indirect and Post-Increment	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2		

38 AT94KAL Series FPSLIC

The Stack Pointer points to the data SRAM stack area where the Subroutine and Interrupt Stacks are located. This Stack space in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. The stack pointer must be set to point above \$60. The Stack Pointer is decremented by one when data is pushed onto the Stack with the PUSH instruction, and it is decremented by two when an address is pushed onto the Stack with subroutine calls and interrupts. The Stack Pointer is incremented by one when data is popped from the Stack with the POP instruction, and it is incremented by two when an address is popped from the Stack with return from subroutine RET or return from interrupt RETI.

Software Control of System Configuration

The software control register will allow the software to manage select system level configuration bits.

Software Control Register – SFTCR

Bit	7	6	5	4	3	2	1	0	_
\$3A (\$5A)	-	-	-	-	FMXOR	WDTS	DBG	SRST	SFTCR
Read/Write	R	R	R	R	R/W	R/W	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	

• Bits 7..4 - Res: Reserved Bits

These bits are reserved in the AT94K and always read as zero.

• Bit 3 - FMXOR: Frame Mode XOR (Enable/Disable)

This bit is XORed with the System Control Register's Enable Frame Interface bit. The behavior when this bit is set to 1 is dependent on how the SCR was initialized. If the Enable Frame Interface bit in the SCR is 0, the FMXOR bit enables the Frame Interface when set to 1. If the Enable Frame Interface bit in the SCR is 1, the FMXOR bit disables the Frame Interface when set to 1. During AVR reset, the FMXOR bit is cleared by the hardware.

• Bit 2 - WDTS: Software Watchdog Test Clock Select

When this bit is set to 1, the test clock signal is selected to replace the AVR internal oscillator into the associated watchdog timer logic. During AVR reset, the WDTS bit is cleared by the hardware.

• Bit 1 - DBG: Debug Mode

When this bit is set to 1, the AVR can write its own program SRAM. During AVR reset, the DBG bit is cleared by the hardware.

• Bit 0 - SRST: Software Reset

When this bit is set (one), a reset request is sent to the system configuration external to the AVR. Appropriate reset signals are generated back into the AVR and configuration download is initiated. A software reset will cause the EXTRF bit in the MCUR register to be set (one), which remains set throughout the AVR reset and may be read by the restarted program upon reset complete. The external reset flag is set (one) since the requested reset is issued from the system configuration external to the AVR core. During AVR reset, the SRST bit is cleared by the hardware.

Figure 33. Out Instruction - AVR Writing to the FPGA

Note: 1. AVR expects Write to be captured by the FPGA upon posedge of the AVR clock.

Figure 34. In Instruction – AVR Reading FPGA

- Notes: 1. AVR captures read data upon posedge of the AVR clock.
 - At the end of an FPGA read cycle, there is a chance for the AVR data bus contention between the FPGA and another peripheral to start to drive (active IORE at new address versus FPGAIORE + Select "n"), but since the AVR clock would have already captured the data from AVR DBUS (= FPGA Data Out), this is a "don't care" situation.

56 AT94KAL Series FPSLIC

The most typical program setup for the Reset and Interrupt Vector Addresses are:

Address	Labels	Code	Comments
\$0000	jmp	RESET	Reset Handle: Program Execution Starts Here
\$0002	jmp	FPGA_INT0	; FPGA Interrupt0 Handle
\$0004	jmp	EXT_INT0	; External Interrupt0 Handle
\$0006	jmp	FPGA_INT1	; FPGA Interrupt1 Handle
\$0008	jmp	EXT_INT1	; External Interrupt1 Handle
\$000A	jmp	FPGA_INT2	; FPGA Interrupt2 Handle
\$000C	jmp	EXT_INT2	; External Interrupt2 Handle
\$000E	jmp	FPGA_INT3	; FPGA Interrupt3 Handle
\$0010	jmp	EXT_INT3	; External Interrupt3 Handle
\$0012	jmp	TIM2_COMP	; Timer/Counter2 Compare Match Interrupt Handle
\$0014	jmp	TIM2_OVF	; Timer/Counter2 Overflow Interrupt Handle
\$0016	jmp	TIM1_CAPT	; Timer/Counter1 Capture Event Interrupt Handle
\$0018	jmp	TIM1_COMPA	; Timer/Counter1 Compare Match A Interrupt Handle
\$001A	jmp	TIM1_COMPB	; Timer/Counter1 Compare Match B Interrupt Handle
\$001C	jmp	TIM1_OVF	; Timer/Counter1 Overflow Interrupt Handle
\$001E	jmp	TIM0_COMP	; Timer/Counter0 Compare Match Interrupt Handle
\$0020	jmp	TIM0_OVF	; Timer/Counter0 Overflow Interrupt Handle
\$0022	jmp	FPGA_INT4	; FPGA Interrupt4 Handle
\$0024	jmp	FPGA_INT5	; FPGA Interrupt5 Handle
\$0026	jmp	FPGA_INT6	; FPGA Interrupt6 Handle
\$0028	jmp	FPGA_INT7	; FPGA Interrupt7 Handle
\$002A	jmp	UART0_RXC	; UARTO Receive Complete Interrupt Handle
\$002C	jmp	UART0_DRE	; UARTO Data Register Empty Interrupt Handle
\$002E	jmp	UART0_TXC	; UARTO Transmit Complete Interrupt Handle
\$0030	jmp	FPGA_INT8	; FPGA Interrupt8 Handle ⁽¹⁾
\$0032	jmp	FPGA_INT9	; FPGA Interrupt9 Handle ⁽¹⁾
\$0034	jmp	FPGA_INT10	; FPGA Interrupt10 Handle ⁽¹⁾
\$0036	jmp	FPGA_INT11	; FPGA Interrupt11 Handle ⁽¹⁾
\$0038	jmp	UART1_RXC	; UART1 Receive Complete Interrupt Handle
\$003A	jmp	UART1_DRE	; UART1 Data Register Empty Interrupt Handle
\$003C	jmp	UART1_TXC	; UART1 Transmit Complete Interrupt Handle
\$003E	jmp	FPGA_INT12	; FPGA Interrupt12 Handle ⁽¹⁾
\$0040	jmp	FPGA_INT13	; FPGA Interrupt13 Handle ⁽¹⁾
\$0042	jmp	FPGA_INT14	; FPGA Interrupt14 Handle ⁽¹⁾
\$0044	jmp	FPGA_INT15	; FPGA Interrupt15 Handle ⁽¹⁾
\$0046	jmp	TWS_INT	; 2-wire Serial Interrupt
;			
RESET:			
\$0048	ldi	r16,high(RAMEND)	; Main program start
\$0049	out	SPH,r16	
\$004A	ldi	r16,low(RAMEND)	
\$004B	out	SPL,r16	
\$004C	<instr></instr>	xxx	

Note:

: 1. Not Available on AT94K05. However, the vector jump table positions must be maintained for appropriate UART and 2-wire serial interrupt jumps.

• Bit 3 - ICF1: Input Capture Flag 1

The ICF1 bit is set (one) to flag an input capture event, indicating that the Timer/Counter1 value has been transferred to the input capture register – ICR1. ICF1 is cleared by the hardware when executing the corresponding interrupt handling vector. Alternatively, ICF1 is cleared by writing a logic 1 to the flag. When the SREG I-bit, and TICIE1 (Timer/Counter1 Input Capture Interrupt Enable), and ICF1 are set (one), the Timer/Counter1 Capture Interrupt is executed.

• Bit 2 - OCF2: Output Compare Flag 2

The OCF2 bit is set (one) when compare match occurs between Timer/Counter2 and the data in OCR2 – Output Compare Register 2. OCF2 is cleared by the hardware when executing the corresponding interrupt handling vector. Alternatively, OCF2 is cleared by writing a logic 1 to the flag. When the I-bit in SREG, and OCIE2 (Timer/Counter2 Compare Interrupt Enable), and the OCF2 are set (one), the Timer/Counter2 Output Compare Interrupt is executed.

• Bit 1 - TOV0: Timer/Counter0 Overflow Flag

The TOV0 bit is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared by the hardware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by writing a logic 1 to the flag. When the SREG I-bit, and TOIE0 (Timer/Counter0 Overflow Interrupt Enable), and TOV0 are set (one), the Timer/Counter0 Overflow interrupt is executed. In PWM mode, this bit is set when Timer/Counter0 advances from \$00.

• Bit 0 - OCF0: Output Compare Flag 0

The OCF0 bit is set (one) when compare match occurs between Timer/Counter0 and the data in OCR0 – Output Compare Register 0. OCF0 is cleared by the hardware when executing the corresponding interrupt handling vector. Alternatively, OCF0 is cleared by writing a logic 1 to the flag. When the I-bit in SREG, and OCIE0 (Timer/Counter2 Compare Interrupt Enable), and the OCF0 are set (one), the Timer/Counter0 Output Compare Interrupt is executed.

Interrupt Response The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. Four clock cycles after the interrupt flag has been set, the program vector address for the actual interrupt handling routine is executed. During this four clock-cycle period, the Program Counter (2 bytes) is pushed onto the Stack, and the Stack Pointer is decremented by 2. The vector is normally a jump to the interrupt routine, and this jump takes three clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is serviced.

A return from an interrupt handling routine (same as for a subroutine call routine) takes four clock cycles. During these four clock cycles, the Program Counter (2 bytes) is popped back from the Stack, and the Stack Pointer is incremented by 2. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is serviced.

Sleep Modes To enter any of the three Sleep modes, the SE bit in MCUR must be set (one) and a SLEEP instruction must be executed. The SM1 and SM0 bits in the MCUR register select which Sleep mode (Idle, Power-down, or Power-save) will be activated by the SLEEP instruction, see Table 12 on page 52.

In Power-down and Power-save modes, the four external interrupts, EXT_INT0...3, and FPGA interrupts, FPGA INT0...3, are triggered as low level-triggered interrupts. If an enabled interrupt occurs while the MCU is in a Sleep mode, the MCU awakes, executes the interrupt routine, and resumes execution from the instruction following SLEEP. The contents of the register file, SRAM, and I/O memory are unaltered. If a reset occurs during Sleep mode, the MCU wakes up and executes from the Reset vector

66 AT94KAL Series FPSLIC

Rev. 1138G-FPSLI-11/03

When no alternate port function is present, the Input Data - ID corresponds to the PINn register value, Output Data corresponds to the PORTn register, Output Control corresponds to the Data Direction (DDn) register, and the PuLL-up Disable (PLD) corresponds to logic expression (DDn OR NOT(PORTBn)).

Digital alternate port functions are connected outside the dashed box in Figure 44 to make the scan chain read the actual pin value.

Scanning AVR RESET Multiple sources contribute to the internal AVR reset; therefore, the AVR reset pin is not observed. Instead, the internal AVR reset signal output from the Reset Control Unit is observed, see Figure 45. The scanned signal is active High if AVRResetn is Low and enabled or the device is in general reset (Resetn or power-on) or configuration download.

Figure 45. Observe-only Cell

Scanning 2-wire Serial

The SCL and SDA pins are open drain, bi-directional and enabled separately. The "Enable Output" bits (active High) in the scan chain are supported by general boundary-scan cells. Enabling the output will drive the pin Low from a tri-state. External pull-ups on the 2-wire bus are required to pull the pins High if the output is disabled. The "Data Out/In" and "Clock Out/In" bits in the scan chain are observe-only cells. Figure 46 shows how each pin is connected in the scan chain.

Scanning the Clock Pins Figure 47 shows how each oscillator with external connection is supported in the scan chain. The Enable signal is supported with a general boundary-scan cell, while the oscillator/clock output is attached to an observe-only cell. In addition to the main clock, the timer oscillator is scanned in the same way. The output from the internal RC-Oscillator is not scanned, as this oscillator does not have external connections.

AT94KAL Series FPSLIC

2-wire Serial Interface (Byte Oriented)

The 2-wire Serial Bus is a bi-directional two-wire serial communication standard. It is designed primarily for simple but efficient integrated circuit (IC) control. The system is comprised of two lines, SCL (Serial Clock) and SDA (Serial Data) that carry information between the ICs connected to them. Various communication configurations can be designed using this bus. Figure 68 shows a typical 2-wire Serial Bus configuration. Any device connected to the bus can be Master or Slave.

Figure 68. 2-wire Serial Bus Configuration

The 2-wire Serial Interface provides a serial interface that meets the 2-wire Serial Bus specification and supports Master/Slave and Transmitter/Receiver operation at up to 400 kHz bus clock rate. The 2-wire Serial Interface has hardware support for the 7-bit addressing, but is easily extended to 10-bit addressing format in software. When operating in 2-wire Serial mode, i.e., when TWEN is set, a glitch filter is enabled for the input signals from the pins SCL and SDA, and the output from these pins are slew-rate controlled. The 2-wire Serial Interface is byte oriented. The operation of the serial 2-wire Serial Bus is shown as a pulse diagram in Figure 69, including the START and STOP conditions and generation of ACK signal by the bus receiver.

Figure 69. 2-wire Serial Bus Timing Diagram

The block diagram of the 2-wire Serial Bus interface is shown in Figure 70.

Figure 74. Formats and States in the Slave Transmitter Mode

Table 45. Status Codes for Miscellaneous States

		Application Software Response					
Status	Status of the 2-wire			То Т	WCR		Next Action Taken by 2-wire
(TWSR)	Serial Hardware	To/From TWDR	STA	STO	TWINT	TWEA	Serial Hardware
\$F8	No relevant state information available; TWINT = "0"	No TWDR action		No TWO	CR action		Wait or proceed current transfer
\$00	Bus error due to an illegal START or STOP condition	No TWDR action	0	1	1	X	Only the internal hardware is affected; no STOP condition is sent on the bus. In all cases, the bus is released and TWSTO is cleared.

Figure 82. PortE Schematic Diagram (Pin PE7)

AC Timing Characteristics – 3.3V Operation

Delays are based on fixed loads and are described in the notes. Maximum times based on worst case: $V_{CC} = 3.00V$, temperature = 70°C Minimum times based on best case: $V_{CC} = 3.60V$, temperature = 0°C Maximum delays are the average of t_{PDLH} and t_{PDHL}.

Cell Function	Parameter	Path	-25	Units	Notes
Core					
2 Input Gate	t _{PD} (Maximum)	x/y -> x/y	2.9	ns	1 Unit Load
3 Input Gate	t _{PD} (Maximum)	x/y/z -> x/y	2.8	ns	1 Unit Load
3 Input Gate	t _{PD} (Maximum)	x/y/w -> x/y	3.4	ns	1 Unit Load
4 Input Gate	t _{PD} (Maximum)	x/y/w/z -> x/y	3.4	ns	1 Unit Load
Fast Carry	t _{PD} (Maximum)	y -> y	2.3	ns	1 Unit Load
Fast Carry	t _{PD} (Maximum)	x -> y	2.9	ns	1 Unit Load
Fast Carry	t _{PD} (Maximum)	y -> x	3.0	ns	1 Unit Load
Fast Carry	t _{PD} (Maximum)	X -> X	2.3	ns	1 Unit Load
Fast Carry	t _{PD} (Maximum)	w -> y	3.4	ns	1 Unit Load
Fast Carry	t _{PD} (Maximum)	W -> X	3.4	ns	1 Unit Load
Fast Carry	t _{PD} (Maximum)	z -> y	3.4	ns	1 Unit Load
Fast Carry	t _{PD} (Maximum)	Z -> X	2.4	ns	1 Unit Load
DFF	t _{PD} (Maximum)	q -> x/y	2.8	ns	1 Unit Load
DFF	t _{setup} (Minimum)	x/y -> clk	_	-	_
DFF	t _{hold} (Minimum)	x/y -> clk	-	-	_
DFF	t _{PD} (Maximum)	R -> x/y	3.2	ns	1 Unit Load
DFF	t _{PD} (Maximum)	S -> x/y	3.0	ns	1 Unit Load
DFF	t _{PD} (Maximum)	q -> w	2.7	ns	-
incremental -> L	t _{PD} (Maximum)	x/y -> L	2.4	ns	_
Local Output Enable	t _{PZX} (Maximum)	oe -> L	2.8	ns	1 Unit Load
Local Output Enable	t _{PXZ} (Maximum)	oe -> L	2.4	ns	

AC Timing Characteristics – 3.3V Operation

Delays are based on fixed loads and are described in the notes.
Maximum times based on worst case: $V_{CC} = 3.0V$, temperature = 70°C
Minimum times based on best case: $V_{CC} = 3.6V$, temperature = 0°C

Cell Function	Parameter	Path	-25	Units	Notes		
Async RAM							
Write	t _{WECYC} (Minimum)	cycle time	12.0	ns	-		
Write	t _{WEL} (Minimum)	we	5.0	ns	Pulse Width Low		
Write	t _{WEH} (Minimum)	we	5.0	ns	Pulse Width High		
Write	t _{setup} (Minimum)	wr addr setup-> we	5.3	ns			
Write	t _{hold} (Minimum)	wr addr hold -> we	0.0	ns	_		
Write	t _{setup} (Minimum)	din setup -> we	5.0	ns			
Write	t _{hold} (Minimum)	din hold -> we	0.0	ns	_		
Write	t _{hold} (Minimum)	oe hold -> we	0.0	ns			
Write/Read	t _{PD} (Maximum)	din -> dout	8.7	ns	rd addr = wr addr		
Read	t _{PD} (Maximum)	rd addr -> dout	6.3	ns			
Read	t _{PZX} (Maximum)	oe -> dout	2.9	ns	-		
Read	t _{PXZ} (Maximum)	oe -> dout	3.5	ns			
Sync RAM							
Write	t _{CYC} (Minimum)	cycle time	12.0	ns			
Write	t _{CLKL} (Minimum)	clk	5.0	ns	-		
Write	t _{CLKH} (Minimum)	clk	5.0	ns	Pulse Width High		
Write	t _{setup} (Minimum)	we setup-> clk	3.2	ns			
Write	t _{hold} (Minimum)	we hold -> clk	0.0	ns	-		
Write	t _{setup} (Minimum)	wr addr setup-> clk	5.0	ns			
Write	t _{hold} (Minimum)	wr addr hold -> clk	0.0	ns	_		
Write	t _{setup} (Minimum)	wr data setup-> clk	3.9	ns			
Write	t _{hold} (Minimum)	wr data hold -> clk	0.0	ns	-		
Write/Read	t _{PD} (Maximum)	din -> dout	8.7	ns	rd addr = wr addr		
Write/Read	t _{PD} (Maximum)	clk -> dout	5.8	ns	rd addr = wr addr		
Read	t _{PD} (Maximum)	rd addr -> dout	6.3	ns			
Read	t _{PZX} (Maximum)	oe -> dout	2.9	ns	-		
Read	t _{PXZ} (Maximum)	oe -> dout	3.5	ns			

CMOS buffer delays are measured from a V_{IH} of 1/2 V_{CC} at the pad to the internal V_{IH} at A. The input buffer load is constant. Buffer delay is to a pad voltage of 1.5V with one output switching. Parameter based on characterization and simulation; not tested in production. An FPGA power calculation is available in Atmei's System Designer software (see also page 160).

Table 56. AT94K Pin List (Continued)

AT94K05	AT94K10	A T94K40	Packages				
96 FPGA I/O	FPGA I/O 192 FPGA I/O 384 FPGA I/O		PC84	TQ100	PQ144	PQ208	
VCC ⁽¹⁾	VCC ⁽¹⁾	VCC ⁽¹⁾	54	51	73	106	
RESET	RESET	RESET	55	52	74	108	
PE0	PE0	PE0	56	53	75	109	
PE1	PE1	PE1	57	54	76	110	
PD0	PD0	PD0			77	111	
PD1	PD1	PD1			78	112	
		GND					
		VCC ⁽¹⁾					
		GND					
PE2	PE2	PE2	58	55	79	113	
PD2	PD2	PD2		56	80	114	
		GND					
No Connect	No Connect	No Connect			81	119	
PD3	PD3	PD3			82	120	
PD4	PD4	PD4			83	121	
	VCC ⁽¹⁾	VCC ⁽¹⁾					
PE3	PE3	PE3	59	57	84	122	
CS0, Cs0n	CS0, Cs0n	CS0, Cs0n	60	58	85	123	
		GND					
		GND					
		VCC ⁽¹⁾					
SDA	SDA	SDA				124	
SCL	SCL	SCL				125	
		GND					
PD5	PD5	PD5		59	86	126	
PD6	PD6	PD6		60	87	127	
PE4	PE4	PE4	61	61	88	128	
PE5	PE5	PE5	62	62	89	129	
VDD ⁽²⁾	VDD ⁽²⁾	VDD ⁽²⁾	63	63	90	130	
GND	GND	GND	64	64	91	131	
PE6	PE6	PE6	65	65	92	132	
PE7 (CHECK)	PE7 (CHECK)	PE7 (CHECK)	66	66	93	133	
PD7	PD7	PD7		67	94	134	
 Notes: 1. VCC is I/O high voltage. Please refer to the "Designing in Split Power Supply Support for AT94KAL and AT94SAL Devices" application note. 2. VDD is core high voltage. Please refer to the "Designing in Split Power Supply Support for AT94KAL and AT94SAL Devices" application note. 							

3. Unbonded pins are No Connects.

178 AT94KAL Series FPSLIC

Table 56. AT94K Pin List (Continued)

AT94K05	AT94K10 192 FPGA I/O	AT94K40 384 FPGA I/O	Packages				
96 FPGA I/O			PC84	TQ100	PQ144	PQ208	
I/O100	I/O148	I/O292			114	164	
		I/O293					
		I/O294					
		GND					
		I/O295					
		I/O296					
I/O101 (CS1 , A2)	I/O149 (CS1 , A2)	I/O297 (CS1 , A2)	79	80	115	165	
I/O102 (A3)	I/O150 (A3)	I/O298 (A3)	80	81	116	166	
		I/O299					
		I/O300					
		VCC ⁽¹⁾					
		GND					
I/O104	I/O151	I/O301	Shorted to Testclock	Shorted to Testclock	Shorted to Testclock	Shorted to Testclock	
	I/O152	I/O302					
I/O103	I/O153	I/O303			117	167	
	I/O154	I/O304				168	
		I/O305					
		I/O306					
		GND					
		I/O307					
		I/O308					
	I/O155	I/O309				169	
	I/O156	I/O310				170	
		I/O311					
		I/O312					
GND	GND	GND			118	171	
I/O105	I/O157	I/O313			119	172	
I/O106	I/O158	I/O314			120	173	
	I/O159	I/O315					
	I/O160	I/O316					
	VCC ⁽¹⁾	VCC ⁽¹⁾					
		I/O317					
		I/O318					
 Notes: 1. VCC is I/O high voltage. Please refer to the "Designing in Split Power Supply Support for AT94KAL and AT94SAL Devices" application note. 2. VDD is core high voltage. Please refer to the "Designing in Split Power Supply Support for AT94KAL and AT94SAL Devices" application note. 							

3. Unbonded pins are No Connects.

AT94K05	AT94K10	AT94K40	Packages			
96 FPGA I/O	192 FPGA I/O	384 FPGA I/O	PC84	TQ100	PQ144	PQ20
		GND				
		I/O319				
		I/O320				
		I/O321				
		I/O322				
		I/O323				
		I/O324				
		GND				
		VCC ⁽¹⁾				
I/O107 (A4)	I/O161 (A4)	I/O325 (A4)	81	82	121	174
I/O108 (A5)	I/O162 (A5)	I/O326 (A5)	82	83	122	175
		GND				
	I/O163	I/O327				176
	I/O164	I/O328				177
I/O109	I/O165	I/O329		84	123	178
I/O110	I/O166	I/O330		85	124	179
		GND				
		I/O331				
		I/O332				
		I/O333				
		I/O334				
I/O111 (A6)	I/O167 (A6)	I/O335 (A6)	83	86	125	180
I/O112 (A7)	I/O168 (A7)	I/O336 (A7)	84	87	126	181
GND	GND	GND	1	88	127	182
VDD ⁽²⁾	VDD ⁽²⁾	VDD ⁽²⁾	2	89	128	183
I/O113 (A8)	I/O169 (A8)	I/O337 (A8)	3	90	129	184
I/O114 (A9)	I/O170 (A9)	I/O338 (A9)	4	91	130	185
		I/O339				
		I/O340				
		I/O341				
		I/O342				
		GND				
I/O115	I/O171	I/O343		92	131	186
	1/0170	1/0344		93	132	187

Table 56.	AT94K Pin List	(Continued)
-----------	----------------	-------------

3. Unbonded pins are No Connects.

