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The Busing 
Network

Figure 3.  Busing Network

Figure 4 depicts one of five identical FPGA busing planes. Each plane has three bus
resources: a local-bus resource (the middle bus) and two express-bus resources. Bus
resources are connected via repeaters. Each repeater has connections to two adjacent local-
bus segments and two express-bus segments. Each local-bus segment spans four cells and
connects to consecutive repeaters. Each express-bus segment spans eight cells and
bypasses a repeater. Repeaters regenerate signals and can connect any bus to any other bus
(all pathways are legal) on the same plane. Although not shown, a local bus can bypass a
repeater via a programmable pass gate, allowing long on-chip tri-state buses to be created.
Local/ local turns are implemented through pass gates in the cel l -bus inter face.
Express/express turns are implemented through separate pass gates distributed throughout
the array.

=  I/O Pad

=  AT40K Cell  

=  Repeater Row

=  Repeater 

=  RAM Block 

Interface to AVR
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AT94KAL Series FPSLIC
most RAM blocks, RAddr is on the left and WAddr is on the right. For the right-most RAM
blocks, WAddr is on the left and RAddr is tied off. For single-ported RAM, WAddr is the
READ/WRITE address port and Din is the (bi-directional) data port. The right-most RAM
blocks can be used only for single-ported memories. WE and OE connect to the vertical
express buses in the same column on Plane V1 and V2, respectively. WAddr, RAddr, WE and
OE connect to express buses that are full length at array edge.

Reading and writing the 32 x 4 dual-port RAM are independent of each other. Reading the 32
x 4 dual-port RAM is completely asynchronous. Latches are transparent; when Load is logic 1,
data flows through; when Load is logic 0, data is latched. Each bit in the 32 x 4 dual-port RAM
is also a transparent latch. The front-end latch and the memory latch together and form an
edge-triggered flip-flop. When a bit nibble is (Write) addressed and LOAD is logic 1 and WE is
logic 0, DATA flows through the bit. When a nibble is not (Write) addressed or LOAD is logic 0
or WE is logic 1, DATA is latched in the nibble. The two CLOCK muxes are controlled
together; they both select CLOCK or they both select “1”. CLOCK is obtained from the clock
for the sector-column immediately to the left and immediately above the RAM block. Writing
any value to the RAM Clear Byte during configuration clears the RAM, see Figure 5 and
Figure 6.

Figure 8.  FPGA RAM Connections (One RAM Block)
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AT94KAL Series FPSLIC
The FPGA clocks from the AVR are effected differently in the various sleep modes of the AVR,
see Table 3.

The source clock into the FPGA GCK5 and GCK6 will determine what happens during the var-
ious power-down modes of the AVR.

If the XTAL clock input is used as an FPGA clock (GCK5 or GCK6) in Idle mode, it will still be
running. In Power-down/save mode the XTAL clock input will be off.

If the TOSC clock input is used as an FPGA clock (GCK6) in Idle mode, it will still be running in
Power-save mode but will be off in Power-down mode.

If the Watchdog Timer is used as an FPGA clock (GCK6) and was enabled in the AVR, it will
be running in all sleep modes.

Table 3.  Clock Activity in Various Modes

Mode Clock Source GCK5 GCK6

Idle

XTAL Active Active

TOSC Not Available Active

WDT Not Available Active

Power-save

XTAL Inactive Inactive

TOSC Not Available Active

WDT Not Available Active

Power-down

XTAL Inactive Inactive

TOSC Not Available Inactive

WDT Not Available Active
15
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SCR32 - SCR34 Reserved

SCR35 0 = AVR Reset Pin Disabled
1 = AVR Reset Pin Enabled (active Low Reset)
SCR35 allows the AVR Reset pin to reset the AVR only.

SCR36 0 = Protect AVR Program SRAM
1 = Allow Writes to AVR Program SRAM (Excluding Boot Block)
SCR36 protects AVR program code from writes by the FPGA.

SCR37 0 = AVR Program SRAM Boot Block Protect
1 = AVR Program SRAM Boot Block Allows Overwrite

SCR38 0 = (default) Frame Clock Inverted to AVR Data/Program SRAM

1 = Non-inverting Clock Into AVR Data/Program SRAM

SCR39 Reserved

SCR40 - SCR41 SCR41 = 0, SCR40 = 0 16 Kbytes x 16 Program/4 Kbytes x 8 Data
SCR41 = 0, SCR40 = 1 14 Kbytes x 16 Program/8 Kbytes x 8 Data
SCR41 = 1, SCR40 = 0 12 Kbytes x 16 Program/12 Kbytes x 8 Data
SCR41 = 1, SCR40 = 1 10 Kbytes x 16 Program/16 Kbytes x 8 Data
SCR40 : SCR41 AVR program/data SRAM partitioning (set by using the AT94K 
Device Options in System Designer). 

SCR 42 - 
SCR47

Reserved

SCR48 0 = EXT-INT0 Driven By Port E<4>
1 = EXT-INT0 Driven By INTP0 pad
SCR48 : SCR53 Defaults dependent on package selected.

SCR49 0 = EXT-INT1 Driven By Port E<5>
1 = EXT-INT1 Driven By INTP1 pad
SCR48 : SCR53 Defaults dependent on package selected.

SCR50 0 = EXT-INT2 Driven By Port E<6>
1 = EXT-INT2 Driven By INTP2 pad
SCR48 : SCR53 Defaults dependent on package selected.

SCR51 0 = EXT-INT3 Driven By Port E<7>
1 = EXT-INT3 Driven By INTP3 pad
SCR48 : SCR53 Defaults dependent on package selected.

SCR52 0 = UART0 Pins Assigned to Port E<1:0>
1 = UART0 Pins Assigned to UART0 pads
SCR48 : SCR53 Defaults dependent on package selected.

SCR53 0 = UART1 Pins Assigned to Port E<3:2>
1 = UART1 Pins Assigned to UART1 pads
SCR48 : SCR53 Defaults dependent on package selected.
On packages less than 144-pins, there is reduced access to AVR ports. Port D is 
not available externally in the smallest package and Port E becomes dual-purpose 
I/O to maintain access to the UARTs and external interrupt pins. The Pin List (East 
Side) on page 177 shows exactly which pins are available in each package.

SCR54 0 = AVR Port D I/O With 6 mA Drive
1 = AVR Port D I/O With 20 mA Drive

SCR55 0 = AVR Port E I/O With 6 mA Drive
1 = AVR Port E I/O With 20 mA Drive

Table 11.  FPSLIC System Control Register

Bit Description
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AVR Core and Peripherals
• AVR Core

• Watchdog Timer/On-chip Oscillator

• Oscillator-to-Internal Clock Circuit

• Oscillator-to-Timer/Counter for Real-time Clock

• 16-bit Timer/Counter and Two 8-bit Timer/Counters

• Interrupt Unit

• Multiplier

• UART (0)

• UART (1)

• I/O Port D (full 8 bits available on 144-pin or higher devices)

• I/O Port E

The embedded AVR core is a low-power CMOS 8-bit microcontroller based on the AVR RISC
architecture. The embedded AVR core achieves throughputs approaching 1 MIPS per MHz by
executing powerful instructions in a single-clock-cycle, and allows the system architect to opti-
mize power consumption versus processing speed.

The AVR core is based on an enhanced RISC architecture that combines a rich instruction set
with 32 x 8 general-purpose working registers. All the 32 x 8 registers are directly connected to
the Arithmetic Logic Unit (ALU), allowing two independent register bytes to be accessed in one
single instruction executed in one clock cycle. The resulting architecture is more code efficient
while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The embedded AVR core provides the following features: 16 general-purpose I/O lines, 32 x 8
general-purpose working registers, Real-time Counter (RTC), 3 flexible timer/counters with
compare modes and PWM, 2 UARTs, programmable Watchdog Timer with internal oscillator,
2-wire serial port, and three software-selectable Power-saving modes. The Idle mode stops
the CPU while allowing the SRAM, timer/counters, two-wire serial port, and interrupt system to
continue functioning. The Power-down mode saves the register contents but freezes the oscil-
lator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save
mode, the timer oscillator continues to run, allowing the user to maintain a timer base while the
rest of the device is sleeping.

The embedded AVR core is supported with a full suite of program and system development
tools, including C compilers, macro assemblers, program debugger/simulators and evaluation
kits.
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Figure 29.  The Parallel Instruction Fetches and Instruction Executions

Figure 30 shows the internal timing concept for the register file. In a single clock cycle an ALU
operation using two register operands is executed, and the result is stored back to the destina-
tion register.

Figure 30.  Single Cycle ALU Operation

The internal data SRAM access is performed in two system clock cycles as described in
Figure 31.

Figure 31.  On-chip Data SRAM Access Cycles
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AT94KAL Series FPSLIC
FPGA I/O Interrupt 
Control by AVR

This is an alternate memory space for the FPGA I/O Select addresses. If the FIADR bit in the
FISCR register is set to logic 1, the four I/O addresses, FISUA - FISUD, are mapped to physi-
cal registers and provide memory space for FPGA interrupt masking and interrupt flag status.
If the FIADR bit in the FISCR register is cleared to a logic 0, the I/O register addresses will be
decoded into FPGA select lines.

All FPGA interrupt lines into the AVR are negative edge triggered. See page 58 for interrupt
priority.

Interrupt Control Registers – FISUA..D

• Bits 7..4 - FIF3 - 0: FPGA Interrupt Flags 3 - 0

The 16 FPGA interrupt flag bits all work the same. Each is set (one) by a valid negative edge
transition on its associated interrupt line from the FPGA. Valid transitions are defined as any
change in state preceded by at least two cycles of the old state and succeeded by at least two
cycles of the new state. Therefore, it is required that interrupt lines transition from 1 to 0 at
least two cycles after the line is stable High; the line must then remain stable Low for at least
two cycles following the transition. Each bit is cleared by the hardware when executing the cor-
responding interrupt handling vector. Alternatively, each bit will be cleared by writing a logic 1
to it. When the I-bit in the Status Register, the corresponding FPGA interrupt mask bit and the
given FPGA interrupt flag bit are set (one), the associated interrupt is executed.

• Bits 7..4 - FIF7 - 4: FPGA Interrupt Flags 7 - 4

See Bits 7..4 - FIF3 - 0: FPGA Interrupt Flags 3 - 0.

• Bits 7..4 - FIF11 - 8: FPGA Interrupt Flags 11 - 8

See Bits 7..4 - FIF3 - 0: FPGA Interrupt Flags 3 - 0. Not available on the AT94K05.

• Bits 7..4 - FIF15 - 12: FPGA Interrupt Flags 15 - 12

See Bits 7..4 - FIF3 - 0: FPGA Interrupt Flags 3 - 0. Not available on the AT94K05.

• Bits 3..0 - FINT3 - 0: FPGA Interrupt Masks 3 - 0(1)

The 16 FPGA interrupt mask bits all work the same. When a mask bit is set (one) and the I-bit
in the Status Register is set (one), the given FPGA interrupt is enabled. The corresponding
interrupt handling vector is executed when the given FPGA interrupt flag bit is set (one) by a
negative edge transition on the associated interrupt line from the FPGA.

Note: 1. FPGA interrupts 3 - 0 will cause a wake-up from the AVR Sleep modes. These interrupts are
treated as low-level triggered in the Power-down and Power-save modes, see “Sleep
Modes” on page 66.

• Bits 3..0 - FINT7 - 4: FPGA Interrupt Masks 7 - 4

See Bits 3..0 - FINT3 - 0: FPGA Interrupt Masks 3 - 0.

• Bits 3..0 - FINT11 - 8: FPGA Interrupt Masks 11 - 8

See Bits 3..0 - FINT3 - 0: FPGA Interrupt Masks 3 - 0. Not available on the AT94K05.

• Bits 3..0 - FINT15 - 12: FPGA Interrupt Masks 15 -12

See Bits 3..0 - FINT3 - 0: FPGA Interrupt Masks 3 - 0. Not available on the AT94K05.

Bit 7 6 5 4 3 2 1 0

$14 ($34) FIF3 FIF2 FIF1 FIF0 FINT3 FINT2 FINT1 FINT0 FISUA

$15 ($35) FIF7 FIF6 FIF5 FIF4 FINT7 FINT6 FINT5 FINT4 FSUB

$16 ($36) FIF11 FIF10 FIF9 FIF8 FINT11 FINT10 FINT9 FINT8 FISUC

$17 ($37) FIF15 FIF14 FIF13 FIF12 FINT15 FINT14 FINT13 FINT12 FISUD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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AT94KAL Series FPSLIC
• Bit 2 - OCIE2: Timer/Counter2 Output Compare Interrupt Enable

When the OCIE2 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match interrupt is enabled. The corresponding interrupt is executed
if a Compare match in Timer/Counter2 occurs, i.e., when the OCF2 bit is set in the
Timer/Counter interrupt flag register – TIFR.

• Bit 1 - TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter Inter-
rupt Flag Register – TIFR.

• Bit 0 - OCIE0: Timer/Counter0 Output Compare Interrupt Enable

When the OCIE0 bit is set (one) and the I-bit in the Status Register is set (one), the
Timer/Counter0 Compare Match interrupt is enabled. The corresponding interrupt is executed
if a Compare match in Timer/Counter0 occurs, i.e., when the OCF0 bit is set in the
Timer/Counter Interrupt Flag Register – TIFR.

Timer/Counter Interrupt Flag Register – TIFR

• Bit 7 - TOV1: Timer/Counter1 Overflow Flag

The TOV1 is set (one) when an overflow occurs in Timer/Counter1. TOV1 is cleared by the
hardware when executing the corresponding interrupt handling vector. Alternatively, TOV1 is
cleared by writing a logic 1 to the flag. When the I-bit in SREG, and TOIE1 (Timer/Counter1
Overflow Interrupt Enable), and TOV1 are set (one), the Timer/Counter1 Overflow Interrupt is
executed. In PWM mode, this bit is set when Timer/Counter1 advances from $0000.

• Bit 6 - OCF1A: Output Compare Flag 1A

The OCF1A bit is set (one) when compare match occurs between the Timer/Counter1 and the
data in OCR1A – Output Compare Register 1A. OCF1A is cleared by the hardware when exe-
cuting the corresponding interrupt handling vector. Alternatively, OCF1A is cleared by writing a
logic 1 to the flag. When the I-bit in SREG, and OCIE1A (Timer/Counter1 Compare Interrupt
Enable), and the OCF1A are set (one), the Timer/Counter1 Compare A match Interrupt is
executed.

• Bit 5 - OCF1B: Output Compare Flag 1B

The OCF1B bit is set (one) when compare match occurs between the Timer/Counter1 and the
data in OCR1B – Output Compare Register 1B. OCF1B is cleared by the hardware when exe-
cuting the corresponding interrupt handling vector. Alternatively, OCF1B is cleared by writing a
logic 1 to the flag. When the I-bit in SREG, and OCIE1B (Timer/Counter1 Compare match
Interrupt Enable), and the OCF1B are set (one), the Timer/Counter1 Compare B match Inter-
rupt is executed.

• Bit 4 - TOV2: Timer/Counter2 Overflow Flag

The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by the
hardware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is
cleared by writing a logic 1 to the flag. When the I-bit in SREG, and TOIE2 (Timer/Counter1
Overflow Interrupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow Interrupt is
executed. In PWM mode, this bit is set when Timer/Counter2 advances from $00.

Bit 7 6 5 4 3 2 1 0

$38 ($58) TOV1 OCF1A OCF1B TOV2 ICF1 OCF2 TOV0 OCF0 TIFR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Assuming Run-Test/Idle is the present state, a typical scenario for using the JTAG interface is

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the 
Shift Instruction Register - Shift-IR state. While TMS is Low, shift the 4 bit JTAG 
instructions into the JTAG instruction register from the TDI input at the rising edge of TCK, 
while the captured IR-state 0x01 is shifts out on the TDO pin. The JTAG Instruction 
selects a particular Data Register as path between TDI and TDO and controls the circuitry 
surrounding the selected Data Register.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is 
latched onto the parallel output from the shift register path in the Update-IR state. The 
Exit-IR, Pause-IR, and Exit2-IR states are only used for navigating the state machine.

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift 
Data Register - Shift-DR state. While TMS is Low, upload the selected Data Register 
(selected by the present JTAG instruction in the JTAG Instruction Register) from the TDI 
input at the rising edge of TCK. At the same time, the parallel inputs to the Data Register 
captured in the Capture-DR state shifts out on the TDO pin.

• Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data 
Register has a latched parallel-output, the latching takes place in the Update-DR state. 
The Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state 
machine.

As shown in Figure 40 on page 70, the Run-Test/Idle(1) state need not be entered between
selecting JTAG instruction and using Data Registers, and some JTAG instructions may select
certain functions to be performed in the Run-Test/Idle, making it unsuitable as an Idle state.
Note: 1. Independent of the initial state of the TAP Controller, the Test-Logic-Reset state can always

be entered by holding TMS High for 5 TCK clock periods.

Using the 
Boundary-scan Chain

A complete description of the Boundary-Scan capabilities are given in the section “IEEE
1149.1 (JTAG) Boundary-scan” on page 73.

Using the On-chip 
Debug System

As shown in Figure 39, the hardware support for On-Chip Debugging consists mainly of

• A scan chain on the interface between the internal AVR CPU and the internal peripheral 
units

• A breakpoint unit

• A communication interface between the CPU and JTAG system

• A scan chain on the interface between the internal AVR CPU and the FPGA

• A scan chain on the interface between the internal Program/Data SRAM and the FPGA

All read or modify/write operations needed for implementing the Debugger are done by apply-
ing AVR instructions via the internal AVR CPU Scan Chain. The CPU sends the result to an
I/O memory mapped location which is part of the communication interface between the CPU
and the JTAG system.
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Part Number

The part number is a 16 bit code identifying the component. The JTAG Part Number for AVR
devices is listed in Table 19.

Manufacturer ID

The manufacturer ID for ATMEL is 0x01F (11 bits).

AVR Reset 
Register

The AVR Reset Register is a Test Data Register used to reset the AVR. A high value in the
Reset Register corresponds to pulling the external AVRResetn Low. The AVR is reset as long
as there is a high value present in the AVR Reset Register. Depending on the Bit settings for
the clock options, the CPU will remain reset for a Reset Time-Out Period after releasing the
AVR Reset Register. The output from this Data Register is not latched, so the reset will take
place immediately, see Figure 42.

Figure 42.  Reset Register

Boundary-scan Chain The Boundary-scan Chain has the capability of driving and observing the logic levels on the
AVR’s digital I/O pins.

See “Boundary-scan Chain” on page 76 for a complete description.

Boundary-scan 
Specific
JTAG Instructions

The instruction register is 4-bit wide, supporting up to 16 instructions. Listed below are the
JTAG instructions useful for Boundary-Scan operation. Note that the optional HIGHZ instruc-
tion is not implemented.

As a definition in this data sheet, the LSB is shifted in and out first for all shift registers.

The OPCODE for each instruction is shown behind the instruction name in hex format. The
text describes which data register is selected as path between TDI and TDO for each
instruction.

Table 19.  JTAG Part Number

Device  Part Number (Hex)

AT94K05 0xdd77

AT94K10 0xdd73

AT94K40 0xdd76

D Q
From
TDI

ClockDR · AVR_RESET

To 
TDO

From other internal and
external reset sources

Internal AVR Reset
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of the timer clock, that is, the timer is always advanced by at least one before the 
processor can read the counter value. The interrupt flags are updated three processor 
cycles after the processor clock has started. During these cycles, the processor executes 
instructions, but the interrupt condition is not readable, and the interrupt routine has not 
started yet.

• During asynchronous operation, the synchronization of the interrupt flags for the 
asynchronous timer takes three processor cycles plus one timer cycle. The timer is 
therefore advanced by at least one before the processor can read the timer value causing 
the setting of the interrupt flag. The output compare pin is changed on the timer clock and 
is not synchronized to the processor clock.

Timer/Counter1 Figure 54 shows the block diagram for Timer/Counter1.

Figure 54.  Timer/Counter1 Block Diagram
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Multiplier The multiplier is capable of multiplying two 8-bit numbers, giving a 16-bit result using only two
clock cycles. The multiplier can handle both signed and unsigned integer and fractional num-
bers without speed or code size penalty. Below are some examples of using the multiplier for
8-bit arithmetic.

To be able to use the multiplier, six new instructions are added to the AVR instruction set.
These are:

• MUL, multiplication of unsigned integers

• MULS, multiplication of signed integers

• MULSU, multiplication of a signed integer with an unsigned integer

• FMUL, multiplication of unsigned fractional numbers

• FMULS, multiplication of signed fractional numbers

• FMULSU, multiplication of a signed fractional number and with an unsigned fractional 
number

The MULSU and FMULSU instructions are included to improve the speed and code density for
multiplication of 16-bit operands. The second section will show examples of how to efficiently
use the multiplier for 16-bit arithmetic.

The component that makes a dedicated digital signal processor (DSP) specially suitable for
signal processing is the multiply-accumulate (MAC) unit. This unit is functionally equivalent to
a multiplier directly connected to an arithmetic logic unit (ALU). The FPSLIC-based AVR Core
is designed to give FPSLIC the ability to effectively perform the same multiply-accumulate
operation.

The multiply-accumulate operation (sometimes referred to as multiply-add operation) has one
critical drawback. When adding multiple values to one result variable, even when adding posi-
tive and negative values to some extent, cancel each other; the risk of the result variable to
overrun its limits becomes evident, i.e. if adding 1 to a signed byte variable that contains the
value +127, the result will be -128 instead of +128. One solution often used to solve this prob-
lem is to introduce fractional numbers, i.e. numbers that are less than 1 and greater than or
equal to -1. Some issues regarding the use of fractional numbers are discussed.

A list of all implementations with key performance specifications is given in Table 34.

Table 34.  Performance Summary

8-bit x 8-bit Routines: Word (Cycles)

Unsigned Multiply 8 x 8 = 16 bits 1 (2)

Signed Multiply 8 x 8 = 16 bits 1 (2)

Fractional Signed/Unsigned Multiply 8 x 8 = 16 bits 1 (2)

Fractional Signed Multiply-accumulate 8 x 8 + = 16 bits 3 (4)

16-bit x 16-bit Routines: Word (Cycles)

Signed/Unsigned Multiply 16 x 16 = 32 bits 6 (9)

UnSigned Multiply 16 x 16 = 32 bits 13 (17)

Signed Multiply 16 x 16 = 32 bits 15 (19)

Signed Multiply-accumulate 16 x 16 + = 32 bits 19 (23)

Fractional Signed Multiply 16 x 16 = 32 bits 16 (20)

Fractional Signed Multiply-accumulate 16 x 16 + = 32 bits 21 (25)
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Multi-processor 
Communication Mode

The Multi-processor Communication Mode enables several Slave MCUs to receive data from
a Master MCU. This is done by first decoding an address byte to find out which MCU has been
addressed. If a particular Slave MCU has been addressed, it will receive the following data
bytes as normal, while the other Slave MCUs will ignore the data bytes until another address
byte is received.

For an MCU to act as a Master MCU, it should enter 9-bit transmission mode (CHR9n in UCS-
RnB set). The 9-bit must be one to indicate that an address byte is being transmitted, and zero
to indicate that a data byte is being transmitted.

For the Slave MCUs, the mechanism appears slightly different for 8-bit and 9-bit Reception
mode. In 8-bit Reception mode (CHR9n in UCSRnB cleared), the stop bit is one for an
address byte and zero for a data byte. In 9-bit Reception mode (CHR9n in UCSRnB set), the
9-bit is one for an address byte and zero for a data byte, whereas the stop bit is always High.

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication Mode (MPCMn in UCSRnA 
is set).

2. The Master MCU sends an address byte, and all Slaves receive and read this byte. 
In the Slave MCUs, the RXCn flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn register and determines if it has been selected. 
If so, it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address 
byte.

4. For each received data byte, the receiving MCU will set the receive complete flag 
(RXCn in UCSRnA. In 8-bit mode, the receiving MCU will also generate a framing 
error (FEn in UCSRnA set), since the stop bit is zero. The other Slave MCUs, 
which still have the MPCMn bit set, will ignore the data byte. In this case, the UDRn 
register and the RXCn, FEn, or flags will not be affected.

5. After the last byte has been transferred, the process repeats from step 2.

UART Control UART0 I/O Data Register – UDR0

UART1 I/O Data Register – UDR1

The UDRn register is actually two physically separate registers sharing the same I/O address.
When writing to the register, the UART Transmit Data register is written. When reading from
UDRn, the UART Receive Data register is read.

Bit 7 6 5 4 3 2 1 0

$0C ($2C) MSB LSB UDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$03 ($23) MSB LSB UDR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
123
Rev. 1138G–FPSLI–11/03



• Bits 7..0 - 2-wire Serial Bit-rate Register

TWBR selects the division factor for the bit-rate generator. The bit-rate generator is a fre-
quency divider which generates the SCL clock frequency in the Master modes according to
the following equation:

• Bit-rate = SCL frequency

• fCK = CPU Clock frequency

• TWBR = Contents of the 2-wire Serial Bit Rate Register

Both the receiver and the transmitter can stretch the Low period of the SCL line when waiting
for user response, thereby reducing the average bit rate.

The 2-wire Serial Control Register – TWCR

• Bit 7 - TWINT: 2-wire Serial Interrupt Flag

This bit is set by the hardware when the 2-wire Serial Interface has finished its current job and
expects application software response. If the I-bit in the SREG and TWIE in the TWCR regis-
ter are set (one), the MCU will jump to the interrupt vector at address $0046. While the TWINT
flag is set, the bus SCL clock line Low period is stretched. The TWINT flag must be cleared by
software by writing a logic 1 to it. Note that this flag is not automatically cleared by the hard-
ware when executing the interrupt routine. Also note that clearing this flag starts the operation
of the 2-wire Serial Interface, so all accesses to the 2-wire Serial Address Register – TWAR,
2-wire Serial Status Register – TWSR, and 2-wire Serial Data Register – TWDR must be com-
plete before clearing this flag.

• Bit 6 - TWEA: 2-wire Serial Enable Acknowledge Flag

TWEA flag controls the generation of the acknowledge pulse. If the TWEA bit is set, the ACK
pulse is generated on the 2-wire Serial Bus if the following conditions are met:

• The device’s own Slave address has been detected

• A general call has been received, while the TWGCE bit in the TWAR is set

• A data byte has been received in Master Receiver or Slave Receiver mode

By setting the TWEA bit Low the device can be virtually disconnected from the 2-wire Serial
Bus temporarily. Address recognition can then be resumed by setting the TWEA bit again.

• Bit 5 - TWSTA: 2-wire Serial Bus START Condition Flag

The TWSTA flag is set by the CPU when it desires to become a Master on the 2-wire Serial
Bus. The 2-wire serial hardware checks if the bus is available, and generates a Start condition
on the bus if the bus is free. However, if the bus is not free, the 2-wire Serial Interface waits
until a STOP condition is detected, and then generates a new Start condition to claim the bus
Master status.

Bit 7 6 5 4 3 2 1 0

$36 ($56) TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE TWCR

Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit-rate
fCK

16 + 2(TWBR)
--------------------------------------=
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Figure 71.  Formats and States in the Master Transmitter Mode
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Figure 74.  Formats and States in the Slave Transmitter Mode
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Table 45.  Status Codes for Miscellaneous States

Status 
Code 

(TWSR)

Status of the 2-wire 
Serial Bus and 2-wire 
Serial Hardware

Application Software Response

Next Action Taken by 2-wire 
Serial HardwareTo/From TWDR

To TWCR

STA STO TWINT TWEA

$F8 No relevant state 
information available; 
TWINT = “0”

No TWDR action No TWCR action Wait or proceed current transfer

$00 Bus error due to an 
illegal START or STOP 
condition

No TWDR action 0 1 1 X Only the internal hardware is affected; no 
STOP condition is sent on the bus. In all 
cases, the bus is released and TWSTO is 
cleared.
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Figure 78.  PortE Schematic Diagram (Pin PE2)
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PortE Schematic Diagram (Pin PE3)
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I/O10

I/O11

I/O12

VCC(1)

GND

I/O13

I/O14

I/O7 I/O7 I/O15 10

I/O8 I/O8 I/O16 11

I/O9 I/O17 12

I/O10 I/O18 13

GND

I/O19

I/O20

I/O11 I/O21

I/O12 I/O22

I/O23

I/O24

GND GND GND 8 14

I/O9, FCK1 I/O13, FCK1 I/O25, FCK1 9 15

I/O10 I/O14 I/O26 10 16

I/O11 (A20) I/O15 (A20) I/O27 (A20) 17 6 11 17

I/O12 (A21) I/O16 (A21) I/O28 (A21) 18 7 12 18

VCC(1) VCC(1)

I/O17 I/O29

I/O18 I/O30

GND

I/O31

I/O32

I/O33

I/O34

I/O35

I/O36

GND

Table 56.  AT94K Pin List (Continued)

AT94K05
96 FPGA I/O

AT94K10
192 FPGA I/O

AT94K40
384 FPGA I/O

Packages

PC84 TQ100 PQ144 PQ208

Notes: 1. VCC is I/O high voltage. Please refer to the “Designing in Split Power Supply Support for
AT94KAL and AT94SAL Devices” application note.

2. VDD is core high voltage. Please refer to the “Designing in Split Power Supply Support
for AT94KAL and AT94SAL Devices” application note.

3. Unbonded pins are No Connects.
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