

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

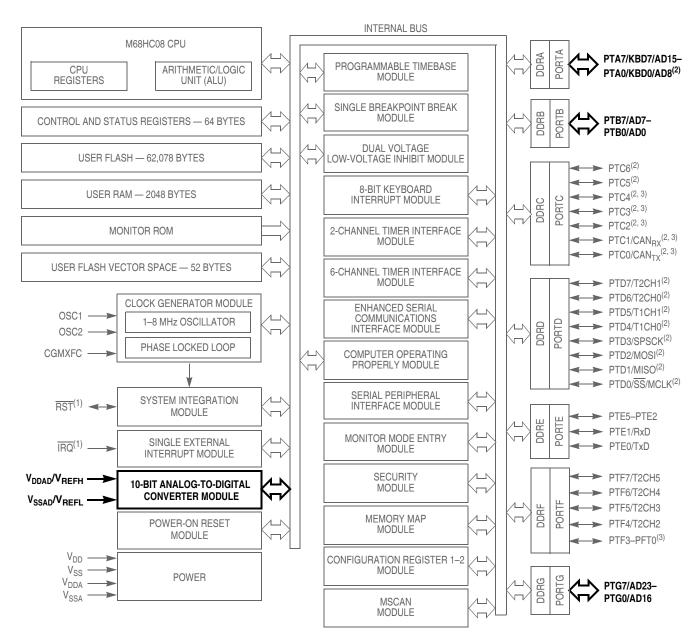
Details

E·XFI

2000	
Product Status	Active
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	CANbus, SCI, SPI
Peripherals	LVD, POR, PWM
Number of I/O	53
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc908gz60cfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



Memory

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0		
\$003C	ADC Status and Control Register (ADSCR)	Read: Write:	COCO R	AIEN	ADCO	ADCH4	ADCH3	ADCH2	ADCH1	ADCH0		
	See page 68.	Reset:	0	0	0	1	1	1	1	1		
	ADC Data High Register	Read:	0	0	0	0	0	0	AD9	AD8		
\$003D (ADRH)		Write:										
	See page 70.	Reset:		Unaffected by reset								
	ADC Data Low Register	Read:	AD7	AD6	AD5	AD4	A3	AD2	AD1	AD0		
\$003E	(ADRL)	Write:										
	See page 70.	Reset:				Unaffecte	d by reset					
\$003F	ADC Clock Register (ADCLK)	Read: Write:	ADIV2	ADIV1	ADIV0	ADICLK	MODE1	MODE0	R	0		
	See page 72.	Reset:	0	0	0	0	0	1	0	0		
\$0440	Port F Data Register (PTF)	Read: Write:	PTF7	PTF6	PTF5	PTF4	PTAF3	PTF2	PTF1	PTF0		
	See page 185.	Reset:				Unaffecte	d by reset			<u>. </u>		
\$0441	Port G Data Register (PTG)	Read: Write:	PTG7	PTG6	PTG5	PTG4	PTG3	PTG2	PTG1	PTG0		
	See page 186.	Reset:		1		Unaffecte	d by reset		1	I		
\$0444	Data Direction Register F (DDRF)	Read: Write:	DDRF7	DDRF6	DDRF5	DDRF4	DDRF3	DDRF2	DDRF1	DDRF0		
	See page 185.	Reset:	0	0	0	0	0	0	0	0		
\$0445	Data Direction Register G (DDRG)	Read: Write:	DDRG7	DDRG6	DDRG5	DDRG4	DDRG3	DDRG2	DDRG1	DDRG0		
	See page 187.	Reset:	0	0	0	0	0	0	0	0		
\$0448	Keyboard Interrupt Polarity Register (INTKBIPR)	Read: Write:	KBIP7	KBIP6	KBIP5	KBIP4	KBIP3	KBIP2	KBIP1	KBIP0		
	See page 121.	Reset:	0	0	0	0	0	0	0	0		
	TIM2 Channel 2 Status and	Read:	CH2F		MOOD	14004		FL 00A	TO1/0	OLIONAAV		
\$0456	Control Register (T2SC2)	Write:	0	CH2IE	MS2B	MS2A	ELS2B	ELS2A	TOV2	CH2MAX		
	See page 297.	Reset:	0	0	0	0	0	0	0	0		
\$0457	TIM2 Channel 2 Register High (T2CH2H)	Read: Write:	Bit 15	14	13	12	11	10	9	Bit 8		
	See page 297.	Reset:		1	1	Indetermina	te after reset		1	<u>. </u>		
\$0458	TIM2 Channel 2 Register Low (T2CH2L)	Read: Write:	Bit 7	6	5	4	3	2	1	Bit 0		
	See page 297.	Reset:	t: Indeterminate after reset									
				= Unimplem	nented	R = Reserve	d	U = Unaffect	ted			

Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 9)

Analog-to-Digital Converter (ADC)

1. Pin contains integrated pullup device.

2. Ports are software configurable with pullup device if input port or pullup/pulldown device for keyboard input.

3. Higher current drive port pins

Figure 3-1. Block Diagram Highlighting ADC Block and Pins

Configuration Register (CONFIG)

LVI5OR3 — LVI 5-V or 3-V Operating Mode Bit

LVI5OR3 selects the voltage operating mode of the LVI module (see Chapter 11 Low-Voltage Inhibit (LVI)). The voltage mode selected for the LVI should match the operating V_{DD} (see Chapter 21

Electrical Specifications) for the LVI's voltage trip points for each of the modes.

1 = LVI operates in 5-V mode

0 = LVI operates in 3-V mode

NOTE

The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other resets will leave this bit unaffected.

SSREC — Short Stop Recovery Bit

SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles instead of a 4096-CGMXCLK cycle delay.

1 = Stop mode recovery after 32 CGMXCLK cycles

0 = Stop mode recovery after 4096 CGMXCLK cycles

NOTE

Exiting stop mode by any reset will result in the long stop recovery.

The short stop recovery delay can be enabled when using a crystal or resonator and the OSCENINSTOP bit is set. The short stop recovery delay can be enabled when an external oscillator is used, regardless of the OSCENINSTOP setting.

The short stop recovery delay must be disabled when the OSCENINSTOP bit is clear and a crystal or resonator is used.

STOP — STOP Instruction Enable Bit

STOP enables the STOP instruction.

- 1 = STOP instruction enabled
- 0 = STOP instruction treated as illegal opcode

COPD — COP Disable Bit

COPD disables the COP module. See Chapter 6 Computer Operating Properly (COP) Module.

- 1 = COP module disabled
- 0 = COP module enabled

Central Processor Unit (CPU)

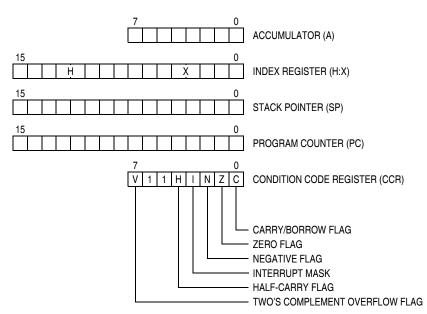


Figure 7-1. CPU Registers

7.3.1 Accumulator

The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations.

Figure 7-2. Accumulator (A)

7.3.2 Index Register

The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.

In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand.

The index register can serve also as a temporary data storage location.

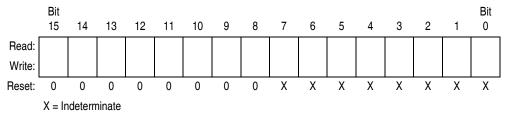


Figure 7-3. Index Register (H:X)

Source Form	Operation	Description			Effect on CCR				Address Mode	Opcode	Operand	les
Form	·				I	NZ		С	Add Moo		Ope	Cycles
BHS rel	Branch if Higher or Same (Same as BCC)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) = 0$	-	-	-	-	-	-	REL	24	rr	3
BIH rel	Branch if IRQ Pin High	$PC \leftarrow (PC) + 2 + rel ? \overline{IRQ} = 1$	-	-	-	-	-	-	REL	2F	rr	3
BIL rel	Branch if IRQ Pin Low	$PC \leftarrow (PC) + 2 + \mathit{rel} ? \overline{IRQ} = 0$	-	-	Ι	Ι	-	Ι	REL	2E	rr	3
BIT #opr BIT opr BIT opr, BIT opr,X BIT opr,X BIT x BIT opr,SP BIT opr,SP	Bit Test	(A) & (M)	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A5 B5 C5 D5 E5 F5 9EE5 9ED5	ii dd hh II ee ff ff ee ff	2 3 4 3 2 4 5
BLE opr	Branch if Less Than or Equal To (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (Z) \mid (N \oplus V) = 1$	-	-	-	-	-	-	REL	93	rr	3
BLO rel	Branch if Lower (Same as BCS)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) = 1$	-	-	-	-	-	-	REL	25	rr	3
BLS rel	Branch if Lower or Same	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (C) \mid (Z) = 1$	-	-	-	-		-	REL	23	rr	3
BLT opr	Branch if Less Than (Signed Operands)	$PC \leftarrow (PC) + 2 + \mathit{rel} ? (N \oplus V) = 1$	-	-	-	-	-	-	REL	91	rr	3
BMC rel	Branch if Interrupt Mask Clear	$PC \leftarrow (PC) + 2 + rel? (I) = 0$	-	-	-	-	-	-	REL	2C	rr	3
BMI rel	Branch if Minus	$PC \leftarrow (PC) + 2 + rel? (N) = 1$	-	-	-	-	-	-	REL	2B	rr	3
BMS rel	Branch if Interrupt Mask Set	$PC \leftarrow (PC) + 2 + rel? (I) = 1$	-	-	-	-	-	-	REL	2D	rr	3
BNE rel	Branch if Not Equal	$PC \leftarrow (PC) + 2 + rel? (Z) = 0$	-	-	-	-	-	-	REL	26	rr	3
BPL rel	Branch if Plus	$PC \leftarrow (PC) + 2 + rel? (N) = 0$	-	-	-	-	-	-	REL	2A	rr	3
BRA rel	Branch Always	$PC \leftarrow (PC) + 2 + rel$	-	-	-	-	-	-	REL	20	rr	3
BRCLR n,opr,rel	Branch if Bit <i>n</i> in M Clear	PC ← (PC) + 3 + <i>rel</i> ? (Mn) = 0	_	_	_	_	_	ţ	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	01 03 05 07 09 0B 0D 0F	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	555555555
BRN rel	Branch Never	$PC \leftarrow (PC) + 2$	-	-	-	-	-	-	REL	21	rr	3
BRSET n,opr,rel	Branch if Bit <i>n</i> in M Set	PC ← (PC) + 3 + <i>rel</i> ? (Mn) = 1	_	_	_	_	_	Ţ	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	00 02 04 06 08 0A 0C 0E	dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr	55555555 55555555555555555555555555555
BSET n,opr	Set Bit <i>n</i> in M	Mn ← 1	_	_	_	_	_	_	DIR (b0) DIR (b1) DIR (b2) DIR (b3) DIR (b4) DIR (b5) DIR (b6) DIR (b7)	10 12 14 16 18 1A 1C 1E	dd dd dd dd dd dd dd dd dd	4 4 4 4 4 4 4 4
BSR rel	Branch to Subroutine	$\begin{array}{l} PC \leftarrow (PC) + 2; push \; (PCL) \\ SP \leftarrow (SP) - 1; push \; (PCH) \\ SP \leftarrow (SP) - 1 \\ PC \leftarrow (PC) + \mathit{rel} \end{array}$	_	_	_	_	_	-	REL	AD	rr	4
CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel	Compare and Branch if Equal	$\begin{array}{c} PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (X) - (M) = \$00 \\ PC \leftarrow (PC) + 3 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 2 + rel ? (A) - (M) = \$00 \\ PC \leftarrow (PC) + 4 + rel ? (A) - (M) = \$00 \end{array}$	_	_	_	_	_	_	DIR IMM IMM IX1+ IX+ SP1	31 41 51 61 71 9E61	dd rr ii rr ii rr ff rr rr ff rr	5 4 4 5 4 6
CLC	Clear Carry Bit	C ← 0	-	-	-	-	-	0	INH	98		1
CLI	Clear Interrupt Mask	l ← 0	-	1-	0	-	-	-	INH	9A		2

Table 7-1. Instruction Set Summary	(Sheet 2 of 6)
------------------------------------	----------------

Low-Power Modes

10.15 Exiting Wait Mode

These events restart the CPU clock and load the program counter with the reset vector or with an interrupt vector:

- External reset A low on the RST pin resets the MCU and loads the program counter with the contents of locations \$FFFE and \$FFFF.
- External interrupt A high-to-low transition on an external interrupt pin (IRQ pin) loads the program counter with the contents of locations: \$FFFA and \$FFFB; IRQ pin.
- Break interrupt In emulation mode, a break interrupt loads the program counter with the contents of \$FFFC and \$FFFD.
- Computer operating properly (COP) module reset A timeout of the COP counter resets the MCU and loads the program counter with the contents of \$FFFE and \$FFFF.
- Low-voltage inhibit (LVI) module reset A power supply voltage below the V_{TRIPF} voltage resets the MCU and loads the program counter with the contents of locations \$FFFE and \$FFFF.
- Clock generator module (CGM) interrupt A CPU interrupt request from the CGM loads the program counter with the contents of \$FFF8 and \$FFF9.
- Keyboard interrupt (KBI) module A CPU interrupt request from the KBI module loads the program counter with the contents of \$FFE0 and \$FFE1.
- Timer 1 interface (TIM1) module interrupt A CPU interrupt request from the TIM1 loads the program counter with the contents of:
 - \$FFF2 and \$FFF3; TIM1 overflow
 - \$FFF4 and \$FFF5; TIM1 channel 1
 - \$FFF6 and \$FFF7; TIM1 channel 0
- Timer 2 interface module (TIM2) interrupt A CPU interrupt request from the TIM2 loads the program counter with the contents of:
 - \$FFEC and \$FFED; TIM2 overflow
 - \$FFEE and \$FFEF; TIM2 channel 1
 - \$FFF0 and \$FFF1; TIM2 channel 0
 - \$FFCC and \$FFCD; TIM2 channel 5
 - \$FFCE and \$FFCF; TIM2 channel 4
 - \$FFD0 and \$FFD1; TIM2 channel 3
 - \$FFD2 and \$FFD3; TIM2 channel 2
- Serial peripheral interface (SPI) module interrupt A CPU interrupt request from the SPI loads the program counter with the contents of:
 - \$FFE8 and \$FFE9; SPI transmitter
 - \$FFEA and \$FFEB; SPI receiver
- Serial communications interface (SCI) module interrupt A CPU interrupt request from the SCI loads the program counter with the contents of:
 - \$FFE2 and \$FFE3; SCI transmitter
 - \$FFE4 and \$FFE5; SCI receiver
 - \$FFE6 and \$FFE7; SCI receiver error
- Analog-to-digital converter (ADC) module interrupt A CPU interrupt request from the ADC loads the program counter with the contents of: \$FFDE and \$FFDF; ADC conversion complete.
- Timebase module (TBM) interrupt A CPU interrupt request from the TBM loads the program counter with the contents of: \$FFDC and \$FFDD; TBM interrupt.

12.12 Programmer's Model of Message Storage

This section details the organization of the receive and transmit message buffers and the associated control registers. For reasons of programmer interface simplification, the receive and transmit message buffers have the same outline. Each message buffer allocates 16 bytes in the memory map containing a 13-byte data structure. An additional transmit buffer priority register (TBPR) is defined for the transmit buffers.

Addr ⁽¹⁾	Register Name
\$05b0	IDENTIFIER REGISTER 0
\$05b1	IDENTIFIER REGISTER 1
\$05b2	IDENTIFIER REGISTER 2
\$05b3	IDENTIFIER REGISTER 3
\$05b4	DATA SEGMENT REGISTER 0
\$05b5	DATA SEGMENT REGISTER 1
\$05b6	DATA SEGMENT REGISTER 2
\$05b7	DATA SEGMENT REGISTER 3
\$05b8	DATA SEGMENT REGISTER 4
\$05b9	DATA SEGMENT REGISTER 5
\$05bA	DATA SEGMENT REGISTER 6
\$05bB	DATA SEGMENT REGISTER 7
\$05bC	DATA LENGTH REGISTER
\$05bD	TRANSMIT BUFFER PRIORITY REGISTER ⁽²⁾
\$05bE	UNUSED
\$05bF	UNUSED

1. Where b equals the following:

b = 4 for receive buffer

b = 5 for transmit buffer 0

b = 6 for transmit buffer 1

b = 7 for transmit buffer 2

2. Not applicable for receive buffers

Figure 12-11. Message Buffer Organization

Input/Output (I/O) Ports

13.3.2 Data Direction Register A

Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a 0 disables the output buffer.

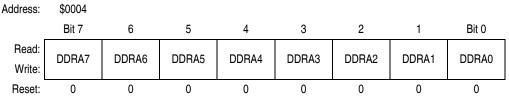
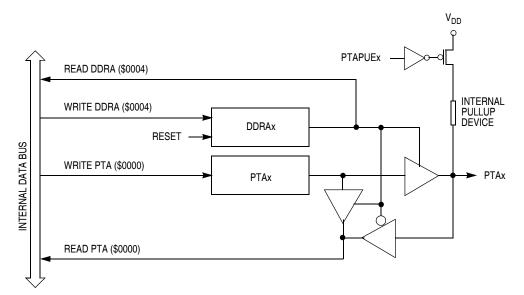


Figure 13-3. Data Direction Register A (DDRA)

DDRA7–DDRA0 — Data Direction Register A Bits

These read/write bits control port A data direction. Reset clears DDRA7–DDRA0, configuring all port A pins as inputs.

1 = Corresponding port A pin configured as output


0 = Corresponding port A pin configured as input

NOTE

Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1.

Figure 13-4 shows the port A I/O logic.

When bit DDRAx is a 1, reading address \$0000 reads the PTAx data latch. When bit DDRAx is a 0, reading address \$0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-2 summarizes the operation of the port A pins.

13.8 Port F

Port F is an 8-bit special-function port that shares four of its pins with the timer interface (TIM2) module.

13.8.1 Port F Data Register

The port F data register (PTF) contains a data latch for each of the eight port F pins.

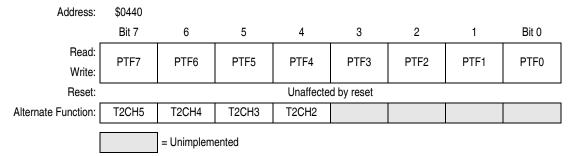


Figure 13-20. Port F Data Register (PTF)

PTF7–PTF0 — Port F Data Bits

These read/write bits are software-programmable. Data direction of each port F pin is under the control of the corresponding bit in data direction register F. Reset has no effect on port F data.

T2CH5–T2CH2 — Timer 2 Channel I/O Bits

The PTF7/T2CH5–PTF4/T2CH2 pins are the TIM2 input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTF7/T2CH5–PTF4/T2CH2 pins are timer channel I/O pins or general-purpose I/O pins. See Chapter 18 Timer Interface Module (TIM1) and Chapter 19 Timer Interface Module (TIM2).

13.8.2 Data Direction Register F

Data direction register F (DDRF) determines whether each port F pin is an input or an output. Writing a 1 to a DDRF bit enables the output buffer for the corresponding port F pin; a 0 disables the output buffer.

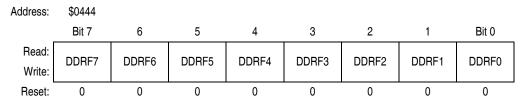


Figure 13-21. Data Direction Register F (DDRF)

DDRF7–DDRF0 — Data Direction Register F Bits

These read/write bits control port F data direction. Reset clears DDRF7–DDRF0, configuring all port F pins as inputs.

1 = Corresponding port F pin configured as output

0 = Corresponding port F pin configured as input

NOTE

Avoid glitches on port F pins by writing to the port F data register before changing data direction register F bits from 0 to 1.

Figure 13-22 shows the port F I/O logic.

Functional Description

To initiate an ESCI transmission:

- 1. Enable the ESCI by writing a 1 to the enable ESCI bit (ENSCI) in ESCI control register 1 (SCC1).
- 2. Enable the transmitter by writing a 1 to the transmitter enable bit (TE) in ESCI control register 2 (SCC2).
- 3. Clear the ESCI transmitter empty bit (SCTE) by first reading ESCI status register 1 (SCS1) and then writing to the SCDR. For 9-bit data, also write the T8 bit in SCC3.
- 4. Repeat step 3 for each subsequent transmission.

At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A 0 start bit automatically goes into the least significant bit (LSB) position of the transmit shift register. A 1 stop bit goes into the most significant bit (MSB) position.

The ESCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the ESCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request.

When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, high. If at any time software clears the ENSCI bit in ESCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port E pins.

14.4.2.3 Break Characters

Writing a 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. For TXINV = 0 (output not inverted), a transmitted break character contains all 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1 and the LINR bits in SCBR. As long as SBK is at 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one 1. The automatic 1 at the end of a break character guarantees the recognition of the start bit of the next character.

When LINR is cleared in SCBR, the ESCI recognizes a break character when a start bit is followed by eight or nine 0 data bits and a 0 where the stop bit should be, resulting in a total of 10 or 11 consecutive 0 data bits. When LINR is set in SCBR, the ESCI recognizes a break character when a start bit is followed by 9 or 10 0 data bits and a 0 where the stop bit should be, resulting in a total of 11 or 12 consecutive 0 data bits.

Receiving a break character has these effects on ESCI registers:

- Sets the framing error bit (FE) in SCS1
- Sets the ESCI receiver full bit (SCRF) in SCS1
- Clears the ESCI data register (SCDR)
- Clears the R8 bit in SCC3
- Sets the break flag bit (BKF) in SCS2
- May set the overrun (OR), noise flag (NF), parity error (PE), or reception in progress flag (RPF) bits

14.5.2 Stop Mode

The ESCI module is inactive in stop mode. The STOP instruction does not affect ESCI register states. ESCI module operation resumes after the MCU exits stop mode.

Because the internal clock is inactive during stop mode, entering stop mode during an ESCI transmission or reception results in invalid data.

14.6 ESCI During Break Module Interrupts

The BCFE bit in the break flag control register (SBFCR) enables software to clear status bits during the break state. See 20.2 Break Module (BRK).

To allow software to clear status bits during a break interrupt, write a 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state.

To protect status bits during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at 0. After the break, doing the second step clears the status bit.

14.7 I/O Signals

Port E shares two of its pins with the ESCI module. The two ESCI I/O pins are:

- PTE0/TxD transmit data
- PTE1/RxD receive data

14.7.1 PTE0/TxD (Transmit Data)

The PTE0/TxD pin is the serial data output from the ESCI transmitter. The ESCI shares the PTE0/TxD pin with port E. When the ESCI is enabled, the PTE0/TxD pin is an output regardless of the state of the DDRE0 bit in data direction register E (DDRE).

14.7.2 PTE1/RxD (Receive Data)

The PTE1/RxD pin is the serial data input to the ESCI receiver. The ESCI shares the PTE1/RxD pin with port E. When the ESCI is enabled, the PTE1/RxD pin is an input regardless of the state of the DDRE1 bit in data direction register E (DDRE).

14.8 I/O Registers

These I/O registers control and monitor ESCI operation:

- ESCI control register 1, SCC1
- ESCI control register 2, SCC2
- ESCI control register 3, SCC3
- ESCI status register 1, SCS1
- ESCI status register 2, SCS2
- ESCI data register, SCDR

TE — Transmitter Enable Bit

Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (high). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit.

1 = Transmitter enabled

0 = Transmitter disabled

NOTE

Writing to the TE bit is not allowed when the enable ESCI bit (ENSCI) is clear. ENSCI is in ESCI control register 1.

RE — Receiver Enable Bit

Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit.

1 = Receiver enabled

0 = Receiver disabled

NOTE

Writing to the RE bit is not allowed when the enable ESCI bit (ENSCI) is clear. ENSCI is in ESCI control register 1.

RWU — Receiver Wakeup Bit

This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit.

1 = Standby state

0 = Normal operation

SBK — Send Break Bit

Setting and then clearing this read/write bit transmits a break character followed by a 1. The 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no 1s between them. Reset clears the SBK bit.

1 = Transmit break characters

0 = No break characters being transmitted

NOTE

Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the ESCI to send a break character instead of a preamble.

14.8.3 ESCI Control Register 3

ESCI control register 3 (SCC3):

- Stores the ninth ESCI data bit received and the ninth ESCI data bit to be transmitted.
- Enables these interrupts:
 - Receiver overrun
 - Noise error
 - Framing error
 - Parity error

Enhanced Serial Communications Interface (ESCI) Module

System Integration Module (SIM)

Source	Flag	Mask ⁽¹⁾	INT Register Flag	Priority ⁽²⁾	Vector Address
Reset	None	None	None	0	\$FFFE\$FFFF
SWI instruction	None	None	None	0	\$FFFC\$FFFD
IRQ pin	IRQF	IMASK1	IF1	1	\$FFFA—\$FFFB
CGM change in lock	PLLF	PLLIE	IF2	2	\$FFF8-\$FFF9
TIM1 channel 0	CH0F	CH0IE	IF3	3	\$FFF6-\$FFF7
TIM1 channel 1	CH1F	CH1IE	IF4	4	\$FFF4-\$FFF5
TIM1 overflow	TOF	TOIE	IF5	5	\$FFF2\$FFF3
TIM2 channel 0	CH0F	CHOIE	IF6	6	\$FFF0\$FFF1
TIM2 channel 1	CH1F	CH1IE	IF7	7	\$FFEE-\$FFEF
TIM2 overflow	TOF	TOIE	IF8	8	\$FFEC\$FFED
SPI receiver full	SPRF	SPRIE			
SPI overflow	OVRF	ERRIE	IF9	9	\$FFEA\$FFEB
SPI mode fault	MODF	ERRIE			
SPI transmitter empty	SPTE	SPTIE	IF10	10	\$FFE8\$FFE9
SCI receiver overrun	OR	ORIE			
SCI noise flag	NF	NEIE			
SCI framing error	FE	FEIE	IF11	11	\$FFE6-\$FFE7
SCI parity error	PE	PEIE	•		
SCI receiver full	SCRF	SCRIE	1510	10	
SCI input idle	IDLE	ILIE	IF12	12	\$FFE4-\$FFE5
SCI transmitter empty	SCTE	SCTIE	1510	10	
SCI transmission complete	TC	TCIE	IF13	13	\$FFE2-\$FFE3
Keyboard pin	KEYF	IMASKK	IF14	14	\$FFE0-\$FFE1
ADC conversion complete	COCO	AIEN	IF15	15	\$FFDE-\$FFDF
Timebase	TBIF	TBIE	IF16	16	\$FFDC\$FFDD
MSCAN08 receiver wakeup	WUPIF	WUPIE	IF17	17	\$FFDA-\$FFDB
MSCAN08 error	RWRNIF TWRNIF RERIF TERRIF BOFFIF OVRIF	RWRNIE TWRNIE RERRIE TERRIE BOFFIE OVRIE	IF18	18	\$FFD8–\$FFD9
MSCAN08 receiver	RXF	RXFIE	IF19	19	\$FFD6\$FFD7
MSCAN08 transmitter	TXE2 TXE1 TXE0	TXEIE2 TXEIE1 TXEIE0	IF20	20	\$FFD4–\$FFD5
TIM2 channel 2	CH2F	CH2IE	IF21	21	\$FFD2–FFD3
TIM2 channel 3	CH3F	CH3IE	IF22	22	\$FFD0-FFD1
TIM2 channel 4	CH4F	CH4IE	IF23	23	\$FFCE-FFCF
TIM2 channel 5	CH5F	CH5IE	IF24	24	\$FFCC-FFCD

Table 15-3. Interrupt Sources

1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction.

2. 0 = highest priority

Serial Peripheral Interface (SPI) Module

16.6 Error Conditions

The following flags signal SPI error conditions:

- Overflow (OVRF) Failing to read the SPI data register before the next full byte enters the shift
 register sets the OVRF bit. The new byte does not transfer to the receive data register, and the
 unread byte still can be read. OVRF is in the SPI status and control register.
- Mode fault error (MODF) The MODF bit indicates that the voltage on the slave select pin (SS) is inconsistent with the mode of the SPI. MODF is in the SPI status and control register.

16.6.1 Overflow Error

The overflow flag (OVRF) becomes set if the receive data register still has unread data from a previous transmission when the capture strobe of bit 1 of the next transmission occurs. The bit 1 capture strobe occurs in the middle of SPSCK cycle 7 (see Figure 16-5 and Figure 16-7.) If an overflow occurs, all data received after the overflow and before the OVRF bit is cleared does not transfer to the receive data register and does not set the SPI receiver full bit (SPRF). The unread data that transferred to the receive data register before the overflow occurred can still be read. Therefore, an overflow error always indicates the loss of data. Clear the overflow flag by reading the SPI status and control register and then reading the SPI data register.

OVRF generates a receiver/error CPU interrupt request if the error interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF interrupts share the same CPU interrupt vector (see Figure 16-12.) It is not possible to enable MODF or OVRF individually to generate a receiver/error CPU interrupt request. However, leaving MODFEN low prevents MODF from being set.

If the CPU SPRF interrupt is enabled and the OVRF interrupt is not, watch for an overflow condition. Figure 16-10 shows how it is possible to miss an overflow. The first part of Figure 16-10 shows how it is possible to read the SPSCR and SPDR to clear the SPRF without problems. However, as illustrated by the second transmission example, the OVRF bit can be set in between the time that SPSCR and SPDR are read.

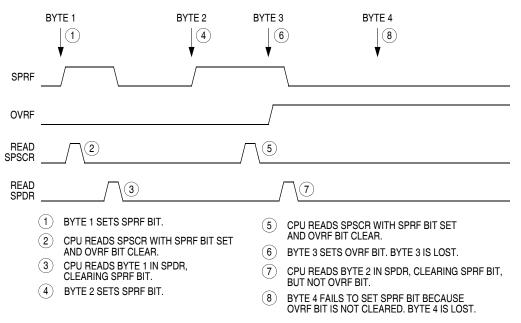


Figure 16-10. Missed Read of Overflow Condition

18.8.2 TIM1 Counter Registers

The two read-only TIM1 counter registers contain the high and low bytes of the value in the TIM1 counter. Reading the high byte (T1CNTH) latches the contents of the low byte (T1CNTL) into a buffer. Subsequent reads of T1CNTH do not affect the latched T1CNTL value until T1CNTL is read. Reset clears the TIM1 counter registers. Setting the TIM1 reset bit (TRST) also clears the TIM1 counter registers.

NOTE If you read T1CNTH during a break interrupt, be sure to unlatch T1CNTL by reading T1CNTL before exiting the break interrupt. Otherwise, T1CNTL retains the value latched during the break.

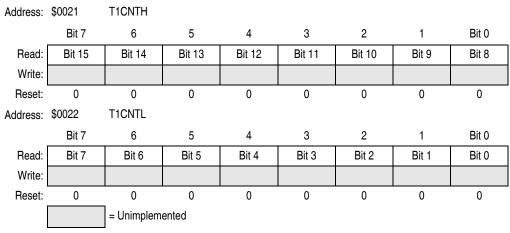


Figure 18-6. TIM1 Counter Registers (T1CNTH:T1CNTL)

18.8.3 TIM1 Counter Modulo Registers

The read/write TIM1 modulo registers contain the modulo value for the TIM1 counter. When the TIM1 counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM1 counter resumes counting from \$0000 at the next timer clock. Writing to the high byte (T1MODH) inhibits the TOF bit and overflow interrupts until the low byte (T1MODL) is written. Reset sets the TIM1 counter modulo registers.

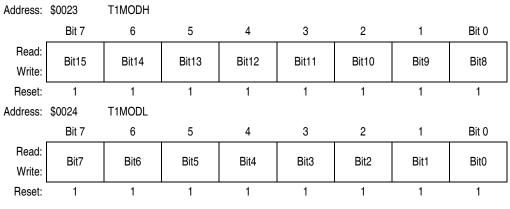
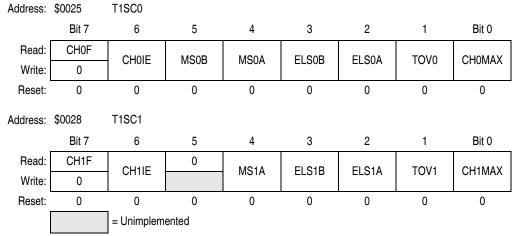


Figure 18-7. TIM1 Counter Modulo Registers (T1MODH:T1MODL)

NOTE

Reset the TIM1 counter before writing to the TIM1 counter modulo registers.



Timer Interface Module (TIM1)

18.8.4 TIM1 Channel Status and Control Registers

Each of the TIM1 channel status and control registers does the following:

- Flags input captures and output compares
- Enables input capture and output compare interrupts
- Selects input capture, output compare, or PWM operation
- Selects high, low, or toggling output on output compare
- Selects rising edge, falling edge, or any edge as the active input capture trigger
- Selects output toggling on TIM1 overflow
- Selects 0% and 100% PWM duty cycle
- Selects buffered or unbuffered output compare/PWM operation

Figure 18-8. TIM1 Channel Status and Control Registers (T1SC0:T1SC1)

CHxF — Channel x Flag Bit

When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM1 counter registers matches the value in the TIM1 channel x registers.

Clear CHxF by reading the TIM1 channel x status and control register with CHxF set and then writing a 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF.

Reset clears the CHxF bit. Writing a 1 to CHxF has no effect.

- 1 = Input capture or output compare on channel x
- 0 = No input capture or output compare on channel x

CHxIE — Channel x Interrupt Enable Bit

This read/write bit enables TIM1 CPU interrupt service requests on channel x. Reset clears the CHxIE bit.

1 = Channel x CPU interrupt requests enabled

0 = Channel x CPU interrupt requests disabled

Timer Interface Module (TIM2)

Address:	\$0033	T2SC1						
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	CH1F	CH1IE	0	MS1A	ELS1B	ELS1A	TOV1	CH1MAX
Write:	0	OTTIL				LLOIA	1001	OTTIVIAX
Reset:	0	0	0	0	0	0	0	0
Address:	\$0456	T2SC2						
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	CH2F	CH2IE	MS2B	MS2A	ELS2B	ELS2A	TOV2	CH2MAX
Write:	0	UNZIE	WIGED	WOLA		LLOLA	1012	ONEMAX
Reset:	0	0	0	0	0	0	0	0
Address:	\$0459	T2SC3						
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	CH3F	CH3IE	0	MS3A	ELS3B	ELS3A	TOV3	CH3MAX
Write:	0	ONDIE		NIOOA	LLOOD	LLOOK	1005	ONDIVIAN
Reset:	0	0	0	0	0	0	0	0
Address:	\$045C	T2SC4						
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	CH4F	CH4IE	MS4B	MS4A	ELS4B	ELS4A	TOV4	CH4MAX
Write:	0	OTHE	MOTE	WO-7A		LLOHA	1014	
Reset:	0	0	0	0	0	0	0	0
Address:	\$045F	T2SC5						
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	CH5F	CH5IE	0	MS5A	ELS5B	ELS5A	TOV5	CH5MAX
Write:	0	ONDIE		NOSA		LLOOK	1005	ONDIVIAN
Reset:	0	0	0	0	0	0	0	0
		= Unimplem	ented					

Figure 19-8. TIM2 Channel Status and Control Registers (T2SC0:T2SC5) (Continued)

CHxF — Channel x Flag Bit

When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM2 counter registers matches the value in the TIM2 channel x registers.

When CHxIE = 1, clear CHxF by reading TIM2 channel x status and control register with CHxF set, and then writing a 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF.

Reset clears the CHxF bit. Writing a 1 to CHxF has no effect.

- 1 = Input capture or output compare on channel x
- 0 = No input capture or output compare on channel x

CHxIE — Channel x Interrupt Enable Bit

This read/write bit enables TIM2 CPU interrupts on channel x. Reset clears the CHxIE bit.

- 1 = Channel x CPU interrupt requests enabled
- 0 = Channel x CPU interrupt requests disabled

19.8.5 TIM2 Channel Registers

These read/write registers contain the captured TIM2 counter value of the input capture function or the output compare value of the output compare function. The state of the TIM2 channel registers after reset is unknown.

In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM2 channel x registers (T2CHxH) inhibits input captures until the low byte (T2CHxL) is read.

In output compare mode (MSxB:MSxA \neq 0:0), writing to the high byte of the TIM2 channel x registers (T2CHxH) inhibits output compares until the low byte (T2CHxL) is written.

Address:	\$0031	T2CH0H						
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Reset:				Indeterminat	e after reset			
Address:	\$0032	T2CH0L						
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset:				Indeterminat	e after reset			
Address:	\$0034	T2CH1H						
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Write:	Bit 10	DRTY	Bit To	DRTE	Bit II	Bit To	Bito	Dir o
Reset:				Indeterminat	e after reset			
Address:	\$0035	T2CH1L						
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Write:		2 0	20				2	2 0
Reset:				Indeterminat	e after reset			
Address:	\$0457	T2CH2H						
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
Write:	2		2.1.10			2	2.00	2 0
Reset:				Indeterminat	e after reset			
Address:	\$0458	T2CH2L						
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Write:		Diro	5.0					
Reset:				Indeterminat	e after reset			

Figure 19-10. TIM2 Channel Registers (T2CH0H/L:T2CH5H/L)

Electrical Specifications

21.14 Timer Interface Module Characteristics

Characteristic	Symbol	Min	Max	Unit
Timer input capture pulse width	t _{TH,} t _{TL}	2	_	t _{cyc}
Timer input capture period	t _{TLTL}	Note ⁽¹⁾	_	t _{cyc}
Timer input clock pulse width	t _{TCL} , t _{TCH}	t _{cyc} + 5	_	ns

1. The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 t_{cyc} .

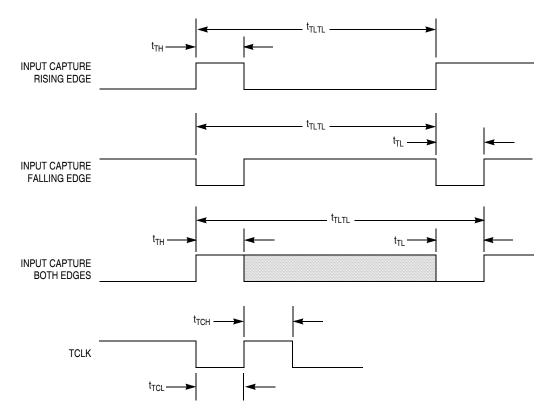


Figure 21-4. Timer Input Timing