

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	19
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32gb002t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Analog Features:

- 10-Bit, up to 13-Channel Analog-to-Digital (A/D) Converter:
 - 500 ksps conversion rate
 - Conversion available during Sleep and Idle
- Three Analog Comparators with Programmable Input/Output Configuration
- Charge Time Measurement Unit (CTMU):
 - Supports capacitive touch sensing for touch screens and capacitive switches
 - Provides high-resolution time measurement and simple temperature sensing

Peripheral Features:

- · Peripheral Pin Select:
 - Allows independent I/O mapping of many peripherals
 - Up to 25 available pins (44-pin devices)
 - Continuous hardware integrity checking and safety
- interlocks prevent unintentional configuration changes • 8-Bit Parallel Master Port (PMP/PSP);
- 8-Bit Parallel Master Port (PMP/PSP):
- Up to 16-bit multiplexed addressing, with up to 11 dedicated address pins on 44-pin devices
- Programmable polarity on control lines
- Supports legacy Parallel Slave Port

Pin Diagrams

- Hardware Real-Time Clock/Calendar (RTCC):
 - Provides clock, calendar and alarm functions
 - Functions even in Deep Sleep mode
- Two 3-Wire/4-Wire SPI modules (support 4 Frame modes) with 8-Level FIFO Buffer
- Two I²C[™] modules support Multi-Master/Slave mode and 7-Bit/10-Bit Addressing
- Two UART modules:
 - Supports RS-485, RS-232 and LIN/J2602
 - On-chip hardware encoder/decoder for IrDA®
 - Auto-wake-up on Start bit
 - Auto-Baud Detect (ABD)
 - 4-level deep FIFO buffer
- Five 16-Bit Timers/Counters with Programmable
 Prescaler
- Five 16-Bit Capture Inputs, each with a Dedicated Time Base
- Five 16-Bit Compare/PWM Outputs, each with a Dedicated Time Base
- Programmable, 32-Bit Cyclic Redundancy Check (CRC) Generator
- · Configurable Open-Drain Outputs on Digital I/O Pins
- Up to 3 External Interrupt Sources

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0800	NSTDIS		_		—			—	—	_	_	MATHERR	ADDRERR	STKERR	OSCFAIL		0000
INTCON2	0082	ALTIVT	DISI	_	_	_	—	—	_	_	_	-	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_	_	_	-	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	—	-	PMPIF		_		OC5IF	—	IC5IF	IC4IF	IC3IF	-	_	—	SPI2IF	SPF2IF	0000
IFS3	008A	_	RTCIF	_		_	_		_	_	_	-		_	MI2C2IF	SI2C2IF		0000
IFS4	008C	_		CTMUIF		_			LVDIF	_	—	_		CRCIF	U2ERIF	U1ERIF		0000
IFS5	008E	—				—			—	—	USB1IF	—		-	—	—		0000
IEC0	0094	_		AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE		T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	_	_	—	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	—	-	PMPIE		_		OC5IE	—	IC5IE	IC4IE	IC3IE	-	_	—	SPI2IE	SPF2IE	0000
IEC3	009A	_	RTCIE			_			—	_	—	_		-	MI2C2IE	SI2C2IE		0000
IEC4	009C	_		CTMUIE		_			LVDIE	_	—	_		CRCIE	U2ERIE	U1ERIE		0000
IEC5	009E	—				—			—	—	USB1IE	—		-	—	—		0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	-	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	—	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0		_	-		4440
IPC2	00A8	—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPF1IP2	SPF1IP1	SPF1IP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	—				_			_	_	AD1IP2	AD1IP1	AD1IP0		U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	—	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	—	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	—	_	—	_	_	_	_	—	_	—	—	_	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	—	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	—	—	—	_	4440
IPC7	00B2	—	U2TXIP2	U2TXIP1	U2TXIP0	—	U2RXIP2	U2RXIP1	U2RXIP0	—	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	—	_	_	_	—	—	—	—	—	SPI2IP2	SPI2IP1	SPI2IP0	_	SPF2IP2	SPF2IP1	SPF2IP0	0044
IPC9	00B6	_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0		IC3IP2	IC3IP1	IC3IP0	—	_	_	_	4440
IPC10	00B8	_	_	_	_	—	_	_	_		OC5IP2	OC5IP1	OC5IP0	—	_	_	_	0040
IPC11	00BA	—	_	_	_	—	_	_	—	—	PMPIP2	PMPIP1	PMPIP0	_	—	—	_	0040
IPC12	00BC	_	_	_	_	—	MI2C2IP2	MI2C2IP1	MI2C2IP0		SI2C2IP2	SI2C2IP1	SI2C2IP0	—	_	_	_	0440
IPC15	00C2	—	—	—	—	—	RTCIP2	RTCIP1	RTCIP0	—	-	—	—	—	—	—	_	0400
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0	—	U1ERIP2	U1ERIP1	U1ERIP0	—	—	—	—	4440
IPC18	00C8	—	_	_	_	_	_	_	_	—	—	—	_	—	LVDIP2	LVDIP1	LVDIP0	0004
IPC19	00CA	—	_	—	_	—	_	_	—	—	CTMUIP2	CTMUIP1	CTMUIP0	_	—	—	_	0040
IPC21	00CE	—	—	—	—	—	USB1IP2	USB1IP1	USB1IP0	—	—	—	—	—	—	—	—	0400
INTTREG	00E0	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 5-4: LOADING THE WRITE BUFFERS – 'C' LANGUAGE CODE

```
// C example using MPLAB C30
   #define NUM_INSTRUCTION_PER_ROW 64
   unsigned int offset;
   unsigned int i;
   unsigned long progAddr = 0xXXXXXX; // Address of row to write
unsigned int progData[2*NUM_INSTRUCTION_PER_ROW]; // Buffer of data to write
//Set up NVMCON for row programming
   NVMCON = 0 \times 4001;
                                                             // Initialize NVMCON
//Set up pointer to the first memory location to be written
   TBLPAG = progAddr>>16;
                                                            // Initialize PM Page Boundary SFR
   offset = progAddr & 0xFFFF;
                                                             // Initialize lower word of address
//Perform TBLWT instructions to write necessary number of latches
for(i=0; i < 2*NUM_INSTRUCTION_PER_ROW; i++)</pre>
   {
       __builtin_tblwtl(offset, progData[i++]);
                                                            // Write to address low word
        __builtin_tblwth(offset, progData[i]);
                                                           // Write to upper byte
       offset = offset + 2;
                                                            // Increment address
   }
```

EXAMPLE 5-5: INITIATING A PROGRAMMING SEQUENCE – ASSEMBLY LANGUAGE CODE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		;
NOP		;
BTSC	NVMCON, #15	; and wait for it to be
BRA	\$-2	; completed

EXAMPLE 5-6: INITIATING A PROGRAMMING SEQUENCE – 'C' LANGUAGE CODE

// C example using MPLAB	C30
asm("DISI #5");	<pre>// Block all interrupts with priority < 7 // for next 5 instructions</pre>
builtin_write_NVM();	// Perform unlock sequence and set WR

	-	-					
U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0
_	_	PMPIF	_	—	_	OC5IF	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
IC5IF	IC4IF	IC3IF	—	—	—	SPI2IF	SPF2IF
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemer	nted: Read as '0	,				
bit 13	PMPIF: Para	Illel Master Port	Interrupt Flag	g Status bit			
	1 = Interrupt	request has occ	urred				
hit 12-10		nted: Read as '0	,				
hit 9	OC5IE: Outo	ut Compare Cha	annel 5 Interri	unt Flag Status k	nit		
bit o	1 = Interrupt	request has occ	urred				
	0 = Interrupt	request has not	occurred				
bit 8	Unimplemer	nted: Read as 'o	2				
bit 7	IC5IF: Input	Capture Channe	l 5 Interrupt F	-lag Status bit			
	1 = Interrupt	request has occ	urred				
	0 = Interrupt	request has not	occurred				
bit 6	IC4IF: Input	Capture Channe	4 Interrupt F	-lag Status bit			
	1 = Interrupt	request has occ	occurred				
hit 5		Canture Channe	1.3 Interrunt F	-lag Status bit			
bit o	1 = Interrupt	request has occ	urred	lag olalas bit			
	0 = Interrupt	request has not	occurred				
bit 4-2	Unimplemer	nted: Read as 'o	2				
bit 1	SPI2IF: SPI2	Event Interrupt	Flag Status b	oit			
	1 = Interrupt	request has occ	urred				
	0 = Interrupt	request has not	occurred				
bit 0	SPF2IF: SPI	2 Fault Interrupt	Flag Status b	bit			
	1 = Interrupt	request has occ	urred				
		icquest nas not	occurred				

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
_	—	CTMUIF	_	_			LVDIF
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
_	—	—		CRCIF	U2ERIF	U1ERIF	
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '0)'				
bit 13	CTMUIF: CTI	MU Interrupt Fla	ag Status bit				
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	curred occurred				
bit 12-9	Unimplemen	ted: Read as 'd)'				
bit 8	LVDIF: Low-\	/oltage Detect I	nterrupt Flag S	Status bit			
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	curred occurred				
bit 7-4	Unimplemen	ted: Read as 'd)'				
bit 3	CRCIF: CRC	Generator Inte	rrupt Flag Stat	us bit			
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	curred occurred				
bit 2	U2ERIF: UAF	RT2 Error Interr	upt Flag Status	s bit			
	1 = Interrupt r	request has occ	curred				
	0 = Interrupt r	request has not	occurred				
bit 1	U1ERIF: UAF	RT1 Error Interr	upt Flag Status	s bit			
	1 = Interrupt r 0 = Interrupt r	request has occ request has not	curred occurred				
bit 0	Unimplemen	ted: Read as 'd)'				

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0
bit 15					·		bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
_	OC3IP2	OC3IP1	OC3IP0	—	_	—	—
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	T4IP<2:0>: ⊺	imer4 Interrupt	Priority bits				
	111 = Interru	pt is Priority 7(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1					
	000 = Interru	pt source is dis	abled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	OC4IP<2:0>:	Output Compa	are Channel 4	Interrupt Priorit	y bits		
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1	مامام				
hit 7		pt source is als					
		Read as					
DIL 0-4	111 - Intorru	Oulput Compa	highost priority	interrupt Priorit	y bits		
	•		nignest phone	y interrupt)			
	•						
	•						
	001 = Interru	pt is Priority 1	ahlad				
hit 3-0		tad. Read as "	abieu 0'				
5-0	ommplemen	neu. Neau do	0				

REGISTER 7-23: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

8.0 OSCILLATOR CONFIGURATION

Note:	This data sheet summarizes the features								
	of this group of PIC24F devices. It is not								
	intended to be a comprehensive reference								
	source. For more information, refer to the								
	"PIC24F Family Reference Manual",								
	Section 6. "Oscillator" (DS39700).								

The oscillator system for PIC24FJ64GB004 family devices has the following features:

• A total of four external and internal oscillator options as clock sources, providing 11 different clock modes

- An on-chip USB PLL block to provide a stable 48 MHz clock for the USB module, as well as a range of frequency options for the system clock
- Software-controllable switching between various clock sources
- Software-controllable postscaler for selective clocking of CPU for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- A separate and independently configurable system clock output for synchronizing external hardware

A simplified diagram of the oscillator system is shown in Figure 8-1.

FIGURE 8-1: PIC24FJ64GB004 FAMILY CLOCK DIAGRAM

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	_	—	—	_	—	—	—		
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	is '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-6	Unimplemen	ted: Read as '	כי						
bit 5-0	TUN<5:0>: FI	RC Oscillator T	uning bits ⁽¹⁾						
	011111 = Ma	ximum frequer	cy deviation						
	011110 =								
	•								
	•								
	000001 =								
	000000 = Ce	nter frequency,	oscillator is ru	nning at factory	/ calibrated free	quency			
	111111 =								
	•								
	•								
	100001 =								
	100000 = Mi r	nimum frequen	cy deviation						

REGISTER 8-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

8.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note:	The Primary Oscillator mode has three
	different submodes (XT, HS and EC)
	which are determined by the POSCMDx
	Configuration bits. While an application
	can switch to and from Primary Oscillator
	mode in software, it cannot switch
	between the different primary submodes
	without reprogramming the device.

8.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM Configuration bits in CW2 must be programmed to '00'. (Refer to **Section 26.1 "Configuration Bits"** for further details.) If the FCKSM Configuration bits are unprogrammed ('1x'), the clock switching function and Fail-Safe Clock Monitor function are disabled; this is the default setting.

The NOSCx control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSCx bits (OSCCON<14:12>) will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled; it is held at '0' at all times.

14.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for edge-aligned PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired on-time and load it into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to SYNCSEL<4:0> (OCxCON2<4:0>) and '0' to OCTRIG (OCxCON2<7>).

- 5. Select a clock source by writing to the OCTSEL2<2:0> (OCxCON1<12:10>) bits.
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode in the OCM<2:0> (OCxCON1<2:0>) bits.
- 8. If a timer is selected as a clock source, set the TMRy prescale value and enable the time base by setting the TON (TxCON<15>) bit.
- Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

FIGURE 14-2: OUTPUT COMPARE BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = High-Speed mode (four BRG clock cycles per bit)
 - 0 = Standard mode (16 BRG clock cycles per bit)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - 2: This feature is only available for the 16x BRG mode (BRGH = 0).

BDs have a fixed relationship to a particular endpoint, depending on the buffering configuration. Table 18-2 provides the mapping of BDs to endpoints. This relationship also means that gaps may occur in the BDT if endpoints are not enabled contiguously. This theoretically means that the BDs for disabled endpoints could be used as buffer space. In practice, users should avoid using such spaces in the BDT unless a method of validating BD addresses is implemented.

18.2.1 BUFFER OWNERSHIP

Because the buffers and their BDs are shared between the CPU and the USB module, a simple semaphore mechanism is used to distinguish which is allowed to update the BD and associated buffers in memory. This is done by using the UOWN bit as a semaphore to distinguish which is allowed to update the BD and associated buffers in memory. UOWN is the only bit that is shared between the two configurations of BDnSTAT.

When UOWN is clear, the BD entry is "owned" by the microcontroller core. When the UOWN bit is set, the BD entry and the buffer memory are "owned" by the USB peripheral. The core should not modify the BD or its corresponding data buffer during this time. Note that the microcontroller core can still read BDnSTAT while the SIE owns the buffer and vice versa.

The buffer descriptors have a different meaning based on the source of the register update. Register 18-1 and Register 18-2 show the differences in BDnSTAT depending on its current "ownership".

When UOWN is set, the user can no longer depend on the values that were written to the BDs. From this point, the USB module updates the BDs as necessary, overwriting the original BD values. The BDnSTAT register is updated by the SIE with the token PID and the transfer count is updated.

18.2.2 DMA INTERFACE

The USB OTG module uses a dedicated DMA to access both the BDT and the endpoint data buffers. Since part of the address space of the DMA is dedicated to the Buffer Descriptors, a portion of the memory connected to the DMA must comprise a contiguous address space properly mapped for the access by the module.

TABLE 18-2:	ASSIGNMENT OF BUFFER DESCRIPTORS FOR THE DIFFERENT
	BUFFERING MODES

	BDs Assigned to Endpoint												
Endpoint	Mode 0 (No Ping-Pong)		Moo (Ping-Pong o	de 1 on EP0 OUT)	Mod (Ping-Pong	le 2 on all EPs)	Mode 3 (Ping-Pong on all other EPs, except EP0)						
	Out	In	Out	In	Out	In	Out	In					
0	0	1	0 (E), 1 (O)	2	0 (E), 1 (O)	2 (E), 3 (O)	0	1					
1	2	3	3	4	4 (E), 5 (O)	6 (E), 7 (O)	2 (E), 3 (O)	4 (E), 5 (O)					
2	4	5	5	6	8 (E), 9 (O)	10 (E), 11 (O)	6 (E), 7 (O)	8 (E), 9 (O)					
3	6	7	7	8	12 (E), 13 (O)	14 (E), 15 (O)	10 (E), 11 (O)	12 (E), 13 (O)					
4	8	9	9	10	16 (E), 17 (O)	18 (E), 19 (O)	14 (E), 15 (O)	16 (E), 17 (O)					
5	10	11	11	12	20 (E), 21 (O)	22 (E), 23 (O)	18 (E), 19 (O)	20 (E), 21 (O)					
6	12	13	13	14	24 (E), 25 (O)	26 (E), 27 (O)	22 (E), 23 (O)	24 (E), 25 (O)					
7	14	15	15	16	28 (E), 29 (O)	30 (E), 31 (O)	26 (E), 27 (O)	28 (E), 29 (O)					
8	16	17	17	18	32 (E), 33 (O)	34 (E), 35 (O)	30 (E), 31 (O)	32 (E), 33 (O)					
9	18	19	19	20	36 (E), 37 (O)	38 (E), 39 (O)	34 (E), 35 (O)	36 (E), 37 (O)					
10	20	21	21	22	40 (E), 41 (O)	42 (E), 43 (O)	38 (E), 39 (O)	40 (E), 41 (O)					
11	22	23	23	24	44 (E), 45 (O)	46 (E), 47 (O)	42 (E), 43 (O)	44 (E), 45 (O)					
12	24	25	25	26	48 (E), 49 (O)	50 (E), 51 (O)	46 (E), 47 (O)	48 (E), 49 (O)					
13	26	27	27	28	52 (E), 53 (O)	54 (E), 55 (O)	50 (E), 51 (O)	52 (E), 53 (O)					
14	28	29	29	30	56 (E), 57 (O)	58 (E), 59 (O)	54 (E), 55 (O)	56 (E), 57 (O)					
15	30	31	31	32	60 (E), 61 (O)	62 (E), 63 (O)	58 (E), 59 (O)	60 (E), 61 (O)					

Legend: (E) = Even transaction buffer, (O) = Odd transaction buffer

18.7.3 USB ENDPOINT MANAGEMENT REGISTERS

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—		_	—	_					
oit 15							bit 8				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
LSPD(")	SPD ⁽¹⁾ RETRYDIS ⁽¹⁾ — EPCONDIS EPRXEN EPTXEN EPSTALL EF										
oit 7							bit C				
Leaend:											
R = Readab	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
bit 15-8	Unimplement	ted: Read as 'o)'								
oit 7	LSPD: Low-S	peed Direct Co	nnection Enab	le bit (U1EP0 d	only) ⁽¹⁾						
	1 = Direct cor	nnection to a lo	w-speed devic	e is enabled							
	0 = Direct cor	nnection to a lo	w-speed devic	e is disabled							
bit 6		Retry Disable bi	t (U1EP0 only)	(1)							
	1 = Retry NA	1 = Retry NAK transactions are enabled: retry done in hardware									
bit 5	Unimplement	ted: Read as '()'		aware						
oit 4	EPCONDIS: E	Bidirectional En	dpoint Control	bit							
	If EPTXEN an	d EPRXEN = 1	.:								
	1 = Disable E	ndpoint n from	Control transfe	ers; only Tx an	d Rx transfers	are allowed					
	0 = Enable E	ndpoint n for C	ontrol (SETUP) transfers; Tx	and Rx transfe	rs also are allo	wed.				
	For all other combinations of EPTXEN and EPRXEN:										
hit 3	FPRXEN: End	dnoint Receive	Enable bit								
	1 = Endpoint n receive is enabled										
	0 = Endpoint n receive is disabled										
oit 2	EPTXEN: End	dpoint Transmit	Enable bit								
	1 = Endpoint n transmit is enabled										
	0 = Endpoint	n transmit is di	sabled								
oit 1	EPSTALL: Er	ndpoint Stall Sta	atus bit								
	1 = Endpoint	n was stalled	ad								
oit O		n was not stalle	tu ako Enchio hit								
JILU	1 = Endnoint	upoint ⊓anusna bandshako ia r									
	\perp = Endpoint handshake is enabled 0 = Endpoint handshake is disabled (typically used for isochronous endpoints)										

Note 1: These bits are available only for U1EP0, and only in Host mode. For all other U1EPn registers, these bits are always unimplemented and read as '0'.

19.0 PARALLEL MASTER PORT (PMP)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 13. "Parallel Master Port (PMP)" (DS39713).

The Parallel Master Port (PMP) module is a parallel, 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Note: A number of the pins for the PMP are not present on PIC24FJ64GB0 family devices. Refer to the specific device's pinout to determine which pins are available. Key features of the PMP module include:

- Up to 16 Programmable Address Lines
- One Chip Select Line
- Programmable Strobe Options:
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- Programmable Polarity on Control Signals
- Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- · Selectable Input Voltage Levels

FIGURE 19-1: PMP MODULE OVERVIEW

R/W-0	R/W-0	R/W-0	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0	R/W-0 ⁽¹⁾			
PCFG15	PCFG14	PCFG13	PCFG12	PCFG11	PCFG10	PCFG9	PCFG8			
bit 15							bit 8			
R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	 t 15 PCFG15: A/D Input Band Gap Reference Enable bit 1 = Internal band gap (VBG) reference channel is disabled 0 = Internal band gap reference channel is enabled 									
bit 14 PCFG14: A/D Input Half Band Gap Reference Enable bit 1 = Internal half band gap (VBG/2) reference channel is disabled 0 = Internal half band gap reference channel is enabled										
bit 13	PCFG13: A/D	D Input Voltage	Regulator Out	put Reference I	Enable bit					
	 1 = Internal voltage regulator output (VDDCORE) reference channel is disabled 0 = Internal voltage regulator output reference channel is enabled 									
bit 12-0	PCFG<12:0>	: Analog Input	Pin Configurat	ion Control bits	(1)					
	1 = Pin for co	orresponding a	nalog channel	is configured in	Digital mode; I	/O port read is	enabled			
	0 = Pin is co	nfigured in Ana	log mode; I/O	port read is disa	abled, A/D sam	ples pin voltag	e			
			R and ANI12 ar	ro upovoilablo o	n 28 nin davica	s: loavo thoso i	corrosponding			

REGISTER 22-5: AD1PCFG: A/D PORT CONFIGURATION REGISTER

Note 1: Analog channels, AN6, AN7, AN8 and AN12, are unavailable on 28-pin devices; leave these corresponding bits set.

26.6 JTAG Interface

PIC24FJ64GB004 family devices implement a JTAG interface, which supports boundary scan device testing.

26.7 In-Circuit Serial Programming

PIC24FJ64GB004 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

26.8 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS and the PGECx/PGEDx pin pair designated by the ICS Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

TABLE 29-3: DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CH	ARACTER	ISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$				3.6V (unless otherwise stated) 85°C for Industrial 125°C for Extended
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
Operat	ing Voltag	e					
DC10	Supply V	oltage					
	Vdd			—	3.6	V	Regulator enabled
	VDD		VDDCORE	—	3.6	V	Regulator disabled
	VDDCORE		2.0	_	2.75	V	Regulator disabled
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.5	—		V	
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	_	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	_	V/ms	0-3.3V in 0.1s 0-2.5V in 60 ms
DC18	VBOR	Brown-out Reset Voltage	_	2.05		V	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This is the limit to which VDD can be lowered without losing RAM data.

TABLE 29-7: DC CHARACTERISTICS: POWER-DOWN PERIPHERAL MODULE \triangle CURRENT (IPD) (CONTINUED)

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions				
Δ Power-Dow	n Current (IP	o): PMD Bits	are Set, PMS	SLP Bit is '0	,(2)			
DC63	1.8	2.3	μA	-40°C				
DC63a	1.8	2.7	μA	+25°C				
DC63i	1.8	3.0	μA	+60°C	2.0V ⁽³⁾			
DC63b	1.8	3.0	μA	+85°C				
DC63m	2.2	3.3	μA	+125C				
DC63c	2	2.7	μA	-40°C				
DC63d	2	2.9	μA	+25°C		32 kHz Crystal with RTCC, DSWDT or Timer1: ∆Isosc; SOSCSEL = 11 ⁽⁵⁾		
DC63j	2	3.2	μA	+60°C	2.5∨ ⁽³⁾			
DC63e	2	3.5	μA	+85°C				
DC63n	2.5	3.8	μA	+125C				
DC63f	2.25	3.0	μA	-40°C				
DC63g	2.25	3.0	μA	+25°C				
DC63k	2.25	3.3	μA	+60°C	3.3V ⁽⁴⁾			
DC63h	2.25	3.5	μA	+85°C				
DC63p	2.8	4.0	μA	+125C				
DC71c	0.001	0.25	μA	-40°C				
DC71d	0.03	0.25	μA	+25°C				
DC71j	0.05	0.60	μA	+60°C	2.5V ⁽⁴⁾			
DC71e	0.08	2.0	μA	+85°C				
DC71a	3.9	10	μA	+125C		Doon Sloon BOR: Alpspon(5)		
DC71f	0.001	0.50	μA	-40°C		Deep Sleep BOR. Albsbor		
DC71g	0.03	0.50	μA	+25°C				
DC71k	0.05	0.75	μA	+60°C	3.3V ⁽⁴⁾			
DC71h	0.08	2.5	μA	+85°C				
DC71b	3.9	12.5	μA	+125C				

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Peripheral IPD deltas are measured with the device in Sleep mode (all peripherals and clocks shut down). All I/Os are configured as inputs and pulled high. Only the peripheral or clock being measured is enabled. PMSLP bit is clear and the Peripheral Module Disable bits (PMD) for all unused peripherals are set.

3: On-chip voltage regulator disabled (DISVREG tied to VDD).

4: On-chip voltage regulator enabled (DISVREG tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

5: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

DC CH	ARACT	ERISTICS	Standard Opera stated) Operating temp	erature	-40°C ≤ T -40°C ≤ T -40°C ≤ T	OV to 3.6 Ā ≤ +85° Ā ≤ +128	V (unless otherwise C for Industrial 5°C for Extended
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾					
DI10		I/O Pins with ST Buffer	Vss	—	0.2 VDD	V	
DI11		I/O Pins with TTL Buffer	Vss	—	0.15 VDD	V	
DI15		MCLR	Vss	_	0.2 VDD	V	
DI16		OSC1 (XT mode)	Vss	—	0.2 VDD	V	
DI17		OSC1 (HS mode)	Vss	—	0.2 VDD	V	
DI18		I/O Pins with I ² C™ Buffer:	Vss	—	0.3 VDD	V	
DI19		I/O Pins with SMBus Buffer:	Vss	_	0.8	V	SMBus enabled
	VIH	Input High Voltage ⁽⁴⁾					
DI20		I/O Pins with ST Buffer:	0.01/5-5) <i>(</i> = =		
		with Analog Functions,		_	VDD 55	V	
121		I/O Pins with TTL Buffer	0.0 100		0.0	v	
		with Analog Functions,	0.25 VDD + 0.8	_	Vdd	V	
		Digital Only	0.25 VDD + 0.8	—	5.5	V	
DI25		MCLR	0.8 VDD	—	Vdd	V	
DI26		OSC1 (XT mode)	0.7 VDD	—	Vdd	V	
DI27		OSC1 (HS mode)	0.7 VDD	—	Vdd	V	
DI28		I/O Pins with I ² C Buffer:					
		with Analog Functions,		—	VDD	V	
0120		Digital Office	0.7 VDD	_	5.5	v	
DI29		with Analog Functions.	2.1		Vdd	V	$2.5V \leq VPIN \leq VDD$
		Digital Only	2.1		5.5	V	
DI30	ICNPU	CNx Pull-up Current	50	250	400	μA	VDD = 3.3V, VPIN = VSS
	lil	Input Leakage Current ^(2,3)					
DI50		I/O Ports	—	—	<u>+</u> 50	nA	$VSS \leq VPIN \leq VDD,$
							Pin at high-impedance
DI51		Analog Input Pins	—	—	<u>+</u> 50	nA	VSS \leq VPIN \leq VDD, Pin at high-impedance
DI52		USB Differential Pins	—	—	<u>+</u> 50	nA	VUSB ≥ VDD
DIEE					150	54	
DI55				—	<u>+</u> 50	nA	$VSS \le VPIN \le VDD$
D156		0501	—		<u>+</u> 50	nA	$VSS \le VPIN \le VDD$, XT and HS modes

TABLE 29-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-2 for I/O pins buffer types.

TABLE 29-22: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
			Device S	Supply			
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.0	_	Lesser of VDD + 0.3 or 3.6	V	
AD02	AVss	Module Vss Supply	Vss – 0.3	—	Vss + 0.3	V	
	-		Reference	e Inputs	-		
AD05	VREFH	Reference Voltage High	AVss + 1.7		AVDD	V	
AD06	Vrefl	Reference Voltage Low	AVss	—	AVDD - 1.7	V	
AD07	VREF	Absolute Reference Voltage	AVss – 0.3	—	AVDD + 0.3	V	
AD08	IVREF	Reference voltage input current	—	—	1.25	mA	(Note 3)
AD09	ZVREF	Reference input impedance	—	10k	_	Ω	(Note 4)
			Analog	Input			
AD10	VINH-VINL	Full-Scale Input Span	VREFL	—	VREFH	V	(Note 2)
AD11	Vin	Absolute Input Voltage	AVss - 0.3	—	AVDD + 0.3	V	
AD12	VINL	Absolute VINL Input Voltage	AVss – 0.3	_	AVDD/2	V	
AD13	_	Leakage Current	_	±0.001	±0.610	μA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = $3V$, Source Impedance = $2.5 \text{ k}\Omega$
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	—	2.5K	Ω	10-bit
		·	ADC Ac	curacy			
AD20b	NR	Resolution	—	10	—	bits	
AD21b	INL	Integral Nonlinearity	—	±1	<±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD22b	DNL	Differential Nonlinearity	—	±0.5	<±1.25	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD23b	Gerr	Gain Error	_	±1	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD24b	EOFF	Offset Error	—	±1	±2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD25b	—	Monotonicity ⁽¹⁾	—	_	—	_	Guaranteed

Note 1: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

2: Measurements taken with external VREF+ and VREF- are used as the ADC voltage reference.

3: External reference voltage applied to VREF+/- pins. IVREF is current during conversion at 3.3v, 25C. Parameter is for design guidance only and is not tested.

4: Impedance during sampling at 3.3, 25C. Parameter is for design guidance only and is not tested.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED	LAND PATTERN
-------------	--------------

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch		0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A