

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	19
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32gb002t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Р	in Numbe	r			
Function	28-Pin SPDIP/ SOIC/SSOP	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description
INT0	16	13	43	I	ST	External Interrupt Input.
MCLR	1	26	18	Ι	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	9	6	30	Ι	ANA	Main Oscillator Input Connection.
OSCO	10	7	31	0	ANA	Main Oscillator Output Connection.
PGEC1	5	2	22	I/O	ST	In-Circuit Debugger/Emulator/ICSP™ Programming Clock.
PGED1	4	1	21	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PGEC2	22	19	9	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock.
PGED2	21	18	8	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PGEC3	3	28	20	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock.
PGED3	2	27	19	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PMA0	10	7	3	I/O	ST	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	12	9	2	I/O	ST	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2	—	_	27	0	_	Parallel Master Port Address (Demultiplexed Master modes).
PMA3	_		38	0	_	
PMA4	_		37	0	_	
PMA5	_		4	0	_	
PMA6	_		5	0	_	
PMA7	_		13	0	_	
PMA8	_		32	0	_	
PMA9	_		35	0	_	
PMA10	_		12	0	_	
PMCS1	9	6	30	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe/Address Bit 15.
PMBE	11	8	36	0	_	Parallel Master Port Byte Enable Strobe.
PMD0	4	1	21	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed Master mode) or
PMD1	5	2	22	I/O	ST/TTL	Address/Data (Multiplexed Master modes).
PMD2	6	3	23	I/O	ST/TTL	1
PMD3	18	15	1	I/O	ST/TTL	1
PMD4	17	14	44	I/O	ST/TTL	1
PMD5	16	13	43	I/O	ST/TTL	1
PMD6	3	28	20	I/O	ST/TTL	1
PMD7	2	27	19	I/O	ST/TTL	1
PMRD	24	21	11	0	_	Parallel Master Port Read Strobe.
PMWR	7	4	24	0	_	Parallel Master Port Write Strobe.
	TL = TTL inpu		1	-		Schmitt Trigger input buffer

TABLE 1-2:	PIC24FJ64GB004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

NOTES:

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0					
_	—	—	_	—	—	_	DC					
bit 15							bit 8					
R/W-0 ^{(*}	¹⁾ R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0					
IPL2 ⁽²⁾) IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С					
bit 7							bit 0					
Legend:												
R = Read	able bit	W = Writable b	oit	U = Unimplen	nented bit, read	as '0'						
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown					
bit 15-9	Unimplemen	nted: Read as '0	3									
bit 8		f Carry/Borrow b										
		out from the 4th l	ow-order bit (for byte-sized da	ata) or 8th low-o	order bit (for wo	ord-sized data)					
	of the result occurred 0 = No carry out from the 4th or 8th low-order bit of the result has occurred											
bit 7-5	•					cu						
		IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2) 111 = CPU interrupt priority level is 7 (15); user interrupts disabled										
		nterrupt priority l			aloublea							
		nterrupt priority l	• • •									
		nterrupt priority le										
		nterrupt priority le nterrupt priority le										
		nterrupt priority l										
	000 = CPU ir	nterrupt priority l	evel is 0 (8)									
bit 4	RA: REPEAT	Loop Active bit										
		oop in progress										
1.11.0		oop not in progr	ess									
bit 3	N: ALU Nega											
	1 = Result wa	as negative	(zero or posit	ive)								
bit 2	OV: ALU Ove	-										
5112		occurred for sig	ned (2's com	olement) arithm	etic in this arith	metic operatio	n					
		ow has occurred										
bit 1	Z: ALU Zero	bit										
	•	tion which effect			•							
		0 = The most recent operation which effects the Z bit has cleared it (i.e., a non-zero result)										
bit 0	C: ALU Carry		Cignificant h	it of the requilt o	oourrod							
		ut from the Most out from the Most										
	-		Ū									
Note 1:	The IPL Status bi	-		-	-							
2:	The IPL Status bi					n the CPU Inte	errupt Priority					
					. 20 - 1.							

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

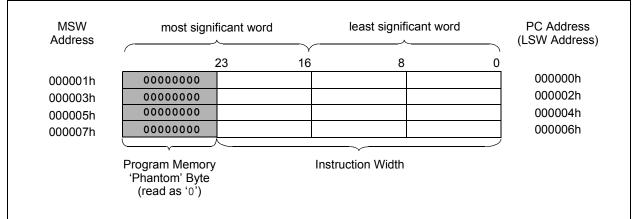
Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 00000h and 000200h for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 000000h with the actual address for the start of code at 000002h.

PIC24F devices also have two interrupt vector tables, located from 000004h to 0000FFh and 000100h to 0001FFh. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

4.1.3 FLASH CONFIGURATION WORDS


In PIC24FJ64GB004 family devices, the top four words of on-chip program memory are reserved for configuration information. On device Reset, the configuration information is copied into the appropriate Configuration registers. The addresses of the Flash Configuration Word for devices in the PIC24FJ64GB004 family are shown in Table 4-1. Their location in the memory map is shown with the other memory vectors in Figure 4-1.

The Configuration Words in program memory are a compact format. The actual Configuration bits are mapped in several different registers in the configuration memory space. Their order in the Flash Configuration Words do not reflect a corresponding arrangement in the configuration space. Additional details on the device Configuration Words are provided in **Section 26.1** "Configuration Bits".

TABLE 4-1:FLASH CONFIGURATION
WORDS FOR PIC24FJ64GB004
FAMILY DEVICES

Device	Program Memory (Words)	Configuration Word Addresses		
PIC24FJ32GB0	11,008	0057F8h: 0057FEh		
PIC24FJ64GB0	22,016	00ABF8h: 00ABFEh		

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4-18: USB OTG REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1EP0	04AA	—	—	_	—	—	_	—	—	LSPD ⁽¹⁾	RETRYDIS ⁽¹⁾	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP1	04AC	_	-	_	_	_	_	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP2	04AE	—		_	_	—	_	_	_	—	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP3	04B0	_	-	_	_	_	_	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP4	04B2	_	Ι	_	_	_	_	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP5	04B4	_	-	_	_	_	_	_		-	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP6	04B6	—	_	_	_	_	_	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP7	04B8	_	-	_	_	_	_	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP8	04BA	—	_	_	_	_	_	_		_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP9	04BC	_	_	_	_	_	_	_		_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP10	04BE	_	-	_	_	_	_	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP11	04C0	—	_	_	_	_	_	_		_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP12	04C2	—	_	_	_	_	_	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP13	04C4	_	-	_	_	_	_	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP14	04C6	—	_	_	_	_		—			—	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP15	04C8	_	_	_	_	_		_		-	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1PWMRRS	04CC	USB Power Supply PWM Duty Cycle Register						USB Power Supply PWM Period Register						0000				
U1PWMCON	04CE	PWMEN	—	_	_	_		PWMPOL	CNTEN	_	—	_	_	—	_	-	_	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Alternate register or bit definitions when the module is operating in Host mode.

2: This register is available in Host mode only.

TABLE 4-19: PARALLEL MASTER/SLAVE PORT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON	0600	PMPEN	_	PSIDL	ADRMUX1	ADRMUX0	PTBEEN	PTWREN	PTRDEN	CSF1	CSF0	ALP	_	CS1P	BEP	WRSP	RDSP	0000
PMMODE	0602	BUSY	IRQM1	IRQM0	INCM1	INCM0	MODE16	MODE1	MODE0	WAITB1	WAITB0	WAITM3	WAITM2	WAITM1	WAITM0	WAITE1	WAITE0	0000
PMADDR	0604	-	CS1	_	_	_	ADDR10 ⁽¹⁾	ADDR9 ⁽¹⁾	ADDR8 ⁽¹⁾	ADDR7 ⁽¹⁾	ADDR6 ⁽¹⁾	ADDR5 ⁽¹⁾	ADDR4 ⁽¹⁾	ADDR3 ⁽¹⁾	ADDR2 ⁽¹⁾	ADDR1	ADDR0	0000
PMDOUT1			Parallel Port Data Out Register 1 (Buffers 0 and 1)									0000						
PMDOUT2	0606		Parallel Port Data Out Register 2 (Buffers 2 and 3)									0000						
PMDIN1	0608						Pa	arallel Port I	Data In Regi	ister 1 (Buffe	ers 0 and 1)							0000
PMDIN2	060A						Pa	arallel Port I	Data In Regi	ister 2 (Buffe	ers 2 and 3)							0000
PMAEN	060C	-	PTEN14	_	_	_	PTEN10 ⁽¹⁾	PTEN9 ⁽¹⁾	PTEN8 ⁽¹⁾	PTEN7 ⁽¹⁾	PTEN6 ⁽¹⁾	PTEN5 ⁽¹⁾	PTEN4 ⁽¹⁾	PTEN3 ⁽¹⁾	PTEN2 ⁽¹⁾	PTEN1	PTEN0	0000
PMSTAT	060E	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	0000

PIC24FJ64GB004 FAMILY

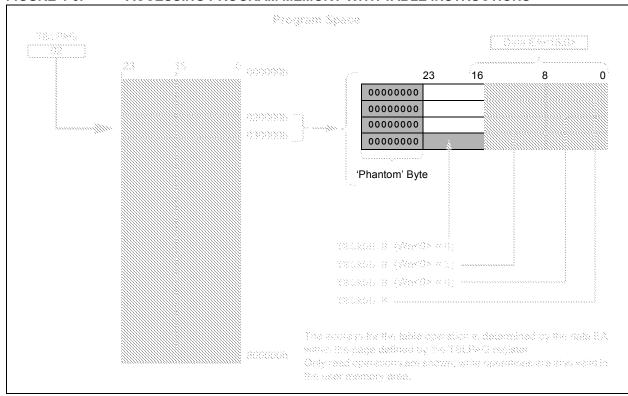
Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Bits are not available on 28-pin devices; read as '0'.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when the byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, and only then, in implemented areas, such as the Device ID. Table write operations are not allowed.

FIGURE 4-6: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.0 FLASH PROGRAM MEMORY

Note:	This data sheet summarizes the features						
	of this group of PIC24F devices. It is not						
	intended to be a comprehensive reference						
	source. For more information, refer to the						
	"PIC24F Family Reference Manual",						
	Section 4. "Program Memory"						
	(DS39715).						

The PIC24FJ64GB004 family of devices contains internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable when operating with VDD over 2.35V. (If the regulator is disabled, VDDCORE must be over 2.25V.)

It can be programmed in four ways:

- In-Circuit Serial Programming[™] (ICSP[™])
- Run-Time Self-Programming (RTSP)
- Enhanced In-Circuit Serial Programming (Enhanced ICSP)

ICSP allows a PIC24FJ64GB004 family device to be serially programmed while in the end application circuit. This is simply done with two lines for the programming clock and programming data (which are named PGECx and PGEDx, respectively), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user may write program memory data in blocks of 64 instructions (192 bytes) at a time and erase program memory in blocks of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using the TBLPAG<7:0> bits and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits<15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits<23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

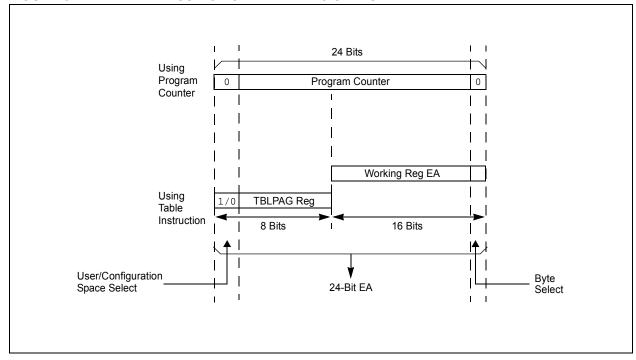


FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

R/W-0, HS	R/W-0, HS	U-0	U-0	U-0	R/CO-0, HS	R/W-0, HS	R/W-0			
TRAPR	IOPUWR	_		—	DPSLP	СМ	PMSLP			
bit 15							bita			
R/W-0, HS	R/W-0, HS	R/W-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-1, HS	R/W-1, HS			
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR			
bit 7							bit			
Legend:		CO = Clearab	le Only bit	HS = Hardwa	re Settable bit					
R = Readable	e bit	W = Writable	-		nented bit, read	as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own			
bit 15 bit 14	1 = A Trap Co 0 = A Trap Co	Reset Flag bit onflict Reset ha onflict Reset ha	s occurred s not occurred	Access Report	Elog bit					
DIL 14	1 = An illegal Pointer ca	opcode detect aused a Reset	Uninitialized W ion, an illegal ad nitialized W Res	ddress mode o	r uninitialized W	/ register used	as an Addres			
bit 13-11	•	ted: Read as '								
bit 10	•	DPSLP: Deep Sleep Mode Flag bit								
		ep has occurre ep has not occu								
bit 9	1 = A Configu	ration Word Mi	match Reset Fl smatch Reset I smatch Reset I	has occurred	ed					
bit 8	1 = Program	memory bias v	Power During Sl oltage remains oltage is powered	powered durin	g Sleep Sleep and the vo	oltage regulator	enters Standb			
bit 7	1 = A Master		R) Pin bit et has occurre et has not occu							
bit 6	SWR: Softwar 1 = A RESET i	re Reset (Instruinstruction has	uction) Flag bit been executed not been execu							
bit 5	SWDTEN: So 1 = WDT is er 0 = WDT is di	nabled	Disable of WD1	F bit ⁽²⁾						
bit 4	1 = WDT time	ndog Timer Tim -out has occur -out has not oo	red							
bit 3	1 = Device ha	e From Sleep F s been in Slee s not been in S	p mode							
bit 2	IDLE: Wake-u	ip From Idle Fl s been in Idle i	ag bit mode							

cause a device Reset. 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 7-1: SR: ALU STATUS REGISTER (IN CPU)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0
	—	—	—	_	—	—	DC ⁽¹⁾
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	0V ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits^(2,3) 111 = CPU interrupt priority level is 7 (15). User interrupts disabled. 110 = CPU interrupt priority level is 6 (14) 101 = CPU interrupt priority level is 5 (13) 100 = CPU interrupt priority level is 4 (12) 011 = CPU interrupt priority level is 3 (11) 010 = CPU interrupt priority level is 2 (10) 001 = CPU interrupt priority level is 1 (9) 000 = CPU interrupt priority level is 0 (8)

- **Note 1:** See Register 3-1 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.
 - **2:** The IPL bits are concatenated with the IPL3 bit (CORCON<3>) to form the CPU interrupt priority level. The value in parentheses indicates the interrupt priority level if IPL3 = 1.
 - 3: The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2:	CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15	•				•	•	bit 8
U-0	U-0	U-0	U-0	R/C-0	R/W-0	U-0	U-0
_	—	_	_	IPL3 ⁽²⁾	PSV ⁽¹⁾	_	—
bit 7							bit 0

Legend:	C = Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽²⁾ 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less

- **Note 1:** See Register 3-2 for the description of the remaining bit(s) that are not dedicated to interrupt control functions.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

U-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	U-0
	_	PMPIE		_		OC5IE	_
bit 15							bit 8
DAALO	DAVA	DAALO	11.0			DAMA	DAMA
R/W-0 IC5IE	R/W-0	R/W-0 IC3IE	U-0	U-0	U-0	R/W-0 SPI2IE	R/W-0 SPF2IE
bit 7	104IE	ICSIE	—		_	SFIZIE	bit C
_egend:							
R = Readab		W = Writable	oit	U = Unimplem	-	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as 'd)'				
bit 13	•	llel Master Port		ble bit			
		request is enable	-				
		request is not e					
oit 12-10	Unimplemen	ted: Read as 'd)'				
oit 9	OC5IE: Outpu	ut Compare Cha	annel 5 Interru	upt Enable bit			
		request is enab request is not e					
bit 8	-	ted: Read as '(
bit 7	•	Capture Channe		Enable bit			
		request is enab	-				
	0 = Interrupt r	request is not e	nabled				
bit 6	•	Capture Channe	•	Enable bit			
		request is enab request is not e					
bit 5	•	Capture Channe		nable bit			
	-	request is enable	-				
		request is not e					
bit 4-2	Unimplemen	ted: Read as 'd)'				
bit 1	SPI2IE: SPI2	Event Interrupt	Enable bit				
		request is enab					
-: 0		request is not e					
oit 0		2 Fault Interrupt	Enable bit				
	1 - Internuct	request is enab	ad				

REGISTER 7-13: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

_	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0			
bit 15		•	•			•	bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
0-0	OC3IP2	OC3IP1	OC3IP0	0-0	0-0	0-0	0-0			
 bit 7	UC3IF2	UC3IF I	OCSIFU	_	_		bit (
Legend:										
R = Readab		W = Writable			mented bit, read	l as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown			
			- 1							
bit 15	-	nted: Read as '								
bit 14-12		imer4 Interrupt	•							
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)						
	•									
	•									
		pt is Priority 1								
	000 = Interru	pt source is dis	abled							
	Unimplemented: Read as '0'									
bit 11	Unimplemen	nted: Read as '	0'							
	-	nted: Read as ' : Output Compa		Interrupt Priorif	ty bits					
	OC4IP<2:0>:		are Channel 4		ty bits					
	OC4IP<2:0>:	: Output Compa	are Channel 4		ty bits					
	OC4IP<2:0>:	: Output Compa	are Channel 4		ty bits					
	OC4IP<2:0>: 111 = Interru	: Output Compa pt is Priority 7 (are Channel 4		ty bits					
	OC4IP<2:0>: 111 = Interru 001 = Interru	: Output Compa	are Channel 4 highest priorit		ty bits					
bit 11 bit 10-8 bit 7	OC4IP<2:0>: 111 = Interru	: Output Compa pt is Priority 7 (pt is Priority 1	are Channel 4 highest priorit abled		ty bits					
bit 10-8 bit 7	OC4IP<2:0>: 111 = Interru	: Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis hted: Read as '	are Channel 4 highest priorit abled 0'	y interrupt)						
bit 10-8	OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>:	: Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis	are Channel 4 highest priorit abled 0' are Channel 3	y interrupt) Interrupt Priorit						
bit 10-8 bit 7	OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>:	: Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis nted: Read as ' : Output Compa	are Channel 4 highest priorit abled 0' are Channel 3	y interrupt) Interrupt Priorit						
bit 10-8 bit 7	OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>:	: Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis nted: Read as ' : Output Compa	are Channel 4 highest priorit abled 0' are Channel 3	y interrupt) Interrupt Priorit						
bit 10-8 bit 7	OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>: 111 = Interru	: Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis ted: Read as ' : Output Compa pt is Priority 7 (are Channel 4 highest priorit abled 0' are Channel 3	y interrupt) Interrupt Priorit						
bit 10-8 bit 7	OC4IP<2:0>: 111 = Interru 001 = Interru 000 = Interru Unimplemen OC3IP<2:0>: 111 = Interru 001 = Interru	: Output Compa pt is Priority 7 (pt is Priority 1 pt source is dis nted: Read as ' : Output Compa	are Channel 4 highest priorit abled o' are Channel 3 highest priorit	y interrupt) Interrupt Priorit						

REGISTER 7-23: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

REGISTER 10-7: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	_		—
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 IC5R<4:0>: Assign Input Capture 5 (IC5) to Corresponding RPn or RPIn Pin bits

REGISTER 10-8: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	—	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **OCFBR<4:0>:** Assign Output Compare Fault B (OCFB) to Corresponding RPn or RPIn Pin bits bit 7-5 **Unimplemented:** Read as '0'

bit 4-0 OCFAR<4:0>: Assign Output Compare Fault A (OCFA) to Corresponding RPn or RPIn Pin bits

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	_	—		—	—	AMSK9	AMSK8
bit 15		-					bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7	•		-				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	

bit 15-10 Unimplemented: Read as '0'

-n = Value at POR

bit 9-0

AMSK<9:0>: Mask for Address Bit x Select bits

'1' = Bit is set

1 = Enable masking for bit x of incoming message address; bit match not required in this position

'0' = Bit is cleared

x = Bit is unknown

0 = Disable masking for bit x; bit match required in this position

17.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 17-1 shows the formula for computation of the baud rate with BRGH = 0.

EQUATION 17-1: UART BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ UxBRG = $\frac{FCY}{16 \cdot Baud Rate} - 1$

Note 1: FCY denotes the instruction cycle clock

frequency (Fosc/2).**2:** Based on Fcy = Fosc/2, Doze mode and PLL are disabled.

Example 17-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 17-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 17-2: UART BAUD RATE WITH BRGH = $1^{(1,2)}$

		Baud Rate = $\frac{FCY}{4 \cdot (UxBRG + 1)}$
		$UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$
Note	1:	Fcy denotes the instruction cycle clock frequency.
	2.	Based on $E_{CV} = E_{OSC}/2$ Doze mode

2: Based on FCY = FOSC/2, Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 17-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

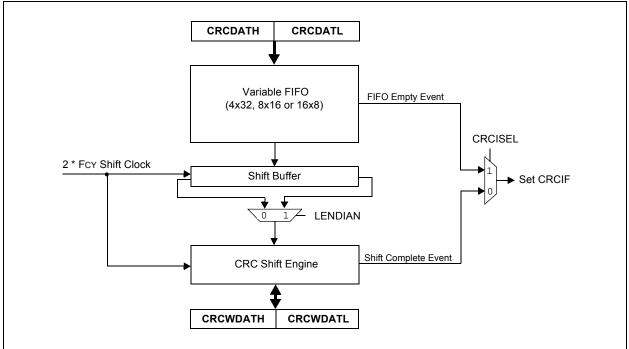
Desired Baud Rate =	Fcy/(16 (UxBRG + 1))
Solving for UxBRG Val	lue:
UxBRG =	((FCY/Desired Baud Rate)/16) - 1
UxBRG =	((4000000/9600)/16) - 1
UxBRG =	25
Calculated Baud Rate =	4000000/(16 (25 + 1))
=	9615
Error =	(Calculated Baud Rate – Desired Baud Rate)
	Desired Baud Rate
=	(9615 - 9600)/9600
=	0.16%
Note 1: Based on I	FCY = FOSC/2, Doze mode and PLL are disabled.

REGISTER 18-17: U1IR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)

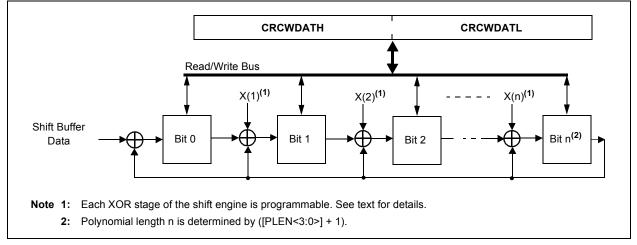
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	R-0	R/K-0, HS					
STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF
bit 7							bit 0

Legend:	U = Unimplemented bit, re	ead as '0'	
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable	e bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15-8	Unimplemented: Read as '0'
bit 7	STALLIF: STALL Handshake Interrupt bit
	1 = A STALL handshake was sent by the peripheral device during the handshake phase of the transaction in Device mode
	0 = A STALL handshake has not been sent
bit 6	ATTACHIF: Peripheral Attach Interrupt bit
	 1 = A peripheral attachment has been detected by the module; set if the bus state is not SE0 and there has been no bus activity for 2.5 μs 0 = No peripheral attachment is detected
bit 5	RESUMEIF: Resume Interrupt bit
	 1 = A K-state is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed) 0 = No K-state is observed
bit 4	IDLEIF: Idle Detect Interrupt bit
	 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of current token is complete; read U1STAT register for endpoint information 0 = Processing of current token is not complete; clear U1STAT register or load next token from U1STAT
bit 2	SOFIF: Start-of-Frame Token Interrupt bit
	 1 = A Start-of-Frame token is received by the peripheral or the Start-of-Frame threshold reached by the host
	0 = No Start-of-Frame token is received or threshold reached
bit 1	UERRIF: USB Error Condition Interrupt bit
	 1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit
	0 = No unmasked error condition has occurred
bit 0	DETACHIF: Detach Interrupt bit
	 1 = A peripheral detachment has been detected by the module; Reset state must be cleared before this bit can be reasserted
	0 = No peripheral detachment detected. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bit- wise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

21.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR


Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 41. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS39729). The programmable CRC generator provides a hardware-implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- · Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- · Configurable Interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 21-1. A simple version of the CRC shift engine is shown in Figure 21-2.

FIGURE 21-2: CRC SHIFT ENGINE DETAIL

FIGURE 21-1: CRC BLOCK DIAGRAM

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
GOTO	GOTO	Expr	Go to Address	2	2	None
	GOTO	Wn	Go to Indirect	1	2	None
INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
	INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
	INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
	INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
	IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
	IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
	IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
	IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
LNK	LNK	#lit14	Link Frame Pointer	1	1	None
LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
	LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
	LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
	LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
MOV	MOV	f,Wn	Move f to Wn	1	1	None
	MOV	[Wns+Slit10],Wnd	Move [Wns + Slit10] to Wnd	1	1	None
	MOV	f	Move f to f	1	1	N, Z
	MOV	f,WREG	Move f to WREG	1	1	N, Z
	MOV	#lit16,Wn	Move 16-bit Literal to Wn	1	1	None
	MOV.b	#lit8,Wn	Move 8-bit Literal to Wn	1	1	None
	MOV	Wn,f	Move Wn to f	1	1	None
	MOV	Wns,[Wns+Slit10]	Move Wns to [Wns + Slit10]	1	1	
	MOV	Wso,Wdo	Move Ws to Wd	1	1	None
	MOV	WREG,f	Move WREG to f	1	1	N, Z
	MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
	MOV.D	Ws, Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Signed(Ws)	1	1	None
ноц	MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(Ws)	1	1	None
	MUL.US	Wb,Ws,Wha	{Wnd + 1, Wnd} = Unsigned(Wb) * Signed(Ws)	1	1	None
	MUL.UU	Wb,Ws,Wha	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws) {Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(Ws)	1	1	None
	MUL.SU	Wb, #lit5, Wnd	{Wnd + 1, Wnd} = Signed(Wb) * Unsigned(lit5)	1	1	None
	MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5) {Wnd + 1, Wnd} = Unsigned(Wb) * Unsigned(lit5)	1	1	None
	MUL.00	f	W13:W2 = f * WREG	1	1	None
NEG			$f = \overline{f} + 1$		1	
NEG	NEG	f	_	1		C, DC, N, OV, Z
	NEG	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
	NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
NOP	NOP		No Operation	1	1	None
	NOPR		No Operation	1	1	None
POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
	POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
	POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
	POP.S		Pop Shadow Registers	1	1	All
PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
	PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
	PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
	PUSH.S		Push Shadow Registers	1	1	None

TABLE 28-2:	INSTRUCTION SET OVERVIEW (CONTINUI	ED)
		,

AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
OS50	Fplli	PLL Input Frequency Range ⁽²⁾	4	_	32	MHz	ECPLL, HSPLL, XTPLL modes	
OS51	Fsys	PLL Output Frequency Range	95.76	_	96.24	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	_	180	_	μS		
OS53	DCLK	CLKO Stability (Jitter)	-0.25	_	0.25	%		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 29-18: INTERNAL RC OSCILLATOR SPECIFICATIONS

АС СНА				$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Sym	Characteristic ⁽¹⁾	Min Typ Max Units		Conditions			
	TFRC	FRC Start-up Time	—	15	-	μS		
	Tlprc	LPRC Start-up Time	—	500	_	μS		

TABLE 29-19: INTERNAL RC OSCILLATOR ACCURACY

АС СНА			$\begin{array}{llllllllllllllllllllllllllllllllllll$				
Param No.	Characteristic	Min	Тур	Мах	Units	Conditions	
F20	FRC Accuracy @ 8 MHz ^(1,3)	-1.25	<u>+</u> 0.25	1.0	%	$-40^{\circ}C \leq Ta \leq +85^{\circ}C, \ 3.0V \leq V\text{DD} \leq 3.6V$	
F21	LPRC Accuracy @ 31 kHz ⁽²⁾	-15	—	15	%	$-40^{\circ}C \leq Ta \leq +85^{\circ}C, \ 3.0V \leq V\text{DD} \leq 3.6V$	

Note 1: Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.

2: Change of LPRC frequency as VDD changes.

3: To achieve this accuracy, physical stress applied to the microcontroller package (ex: by flexing the PCB) must be kept to a minimum.

RTCC

Alarm Configuration	
Alarm Mask Settings (figure)	
Calibration	
Register Mapping	
Selecting Clock Source	
Source Clock	
Write Lock	

S

Selective Peripheral Power Control	125
Serial Peripheral Interface. See SPI.	
SFR Space	
Software Simulator (MPLAB SIM)	
Software Stack	
Special Features	
SPI	

Т

Timer1	149
Timer2/3 and Timer4/5	151
Timing Diagrams	
CLKO and I/O Timing	322
External Clock	320
Trap Service Routine (TSR)	106
Triple Comparator	269

U

UART	
Baud Rate Generator (BRG)	190
IrDA Support	191
Operation of UxCTS and UxRTS Pins	191
Receiving	
8-Bit or 9-Bit Data Mode	191
Transmitting	
8-Bit Data Mode	191
9-Bit Data Mode	191
Break and Sync Sequence	191

Universal Asynchronous Receiver Transmitter. See UART. Universal Serial Bus
Buffer Descriptors
Assignment in Different Buffering Modes 203
Interrupts
and USB Transactions 207
Universal Serial Bus. See USB OTG.
USB On-The-Go (OTG) 10
USBOTG
Buffer Descriptors and BDT 202
Device Mode Operation
DMA Interface
Hardware Configuration
Device Mode
External Interface 201
Host and OTG Modes
Transceiver Power Requirements
VBUS Voltage Generation
Host Mode Operation
Interrupts
•
OTG Operation
Registers
VBUS Voltage Generation 201
V
VDDCORE/VCAP Pin

W

Watchdog Timer (WDT)	
Control Register	
Windowed Operation	289
WWW Address	348
WWW, On-Line Support	

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

07/15/10