

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	32KB (11K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj32gb004-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Р	in Numbe	r			
Function	28-Pin SPDIP/ SOIC/SSOP	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description
RP0	4	1	21	I/O	ST	Remappable Peripheral (input or output).
RP1	5	2	22	I/O	ST	
RP2	6	3	23	I/O	ST	
RP3	7	4	24	I/O	ST	
RP4	11	8	33	I/O	ST	
RP5	2	27	19	I/O	ST	
RP6	3	28	20	I/O	ST	
RP7	16	13	43	I/O	ST	
RP8	17	14	44	I/O	ST	
RP9	18	15	1	I/O	ST	
RP10	21	18	8	I/O	ST	
RP11	22	19	9	I/O	ST	
RP13	24	21	11	I/O	ST	
RP14	25	22	14	I/O	ST	
RP15	26	23	15	I/O	ST	
RP16	—	_	25	I/O	ST	
RP17	—	_	26	I/O	ST	
RP18	—	_	27	I/O	ST	
RP19	—	_	36	I/O	ST	
RP20	—	_	37	I/O	ST	
RP21	—	_	38	I/O	ST	
RP22	—	_	2	I/O	ST	-
RP23	—	_	3	I/O	ST	-
RP24	—	_	4	I/O	ST	-
RP25	—	—	5	I/O	ST	
RTCC	7	4	24	0	—	Real-Time Clock Alarm/Seconds Pulse Output.
SESSEND	24	21	11	I	ST	USB VBUS Session End Status Input.
SESSVLD	3	28	20	I	ST	USB VBUS Session Valid Status Input.
SCL1	17	14	44	I/O	l ² C	I2C1 Synchronous Serial Clock Input/Output.
SCL2	7	4	24	I/O	l ² C	I2C2 Synchronous Serial Clock Input/Output.
SDA1	18	15	1	I/O	l ² C	I2C1 Data Input/Output.
SDA2	6	3	23	I/O	l ² C	I2C2 Data Input/Output.
SOSCI	11	8	33	I	ANA	Secondary Oscillator/Timer1 Clock Input.
SOSCO	12	9	34	0	ANA	Secondary Oscillator/Timer1 Clock Output.
T1CK	12	9	34	I	ST	Timer1 Clock Input.
ТСК	17	14	13	I	ST	JTAG Test Clock Input.
TDI	16	13	35	I	ST	JTAG Test Data Input.
TDO	18	15	32	0	—	JTAG Test Data Output.
TMS	14	11	12	I	ST	JTAG Test Mode Select Input.
USBID	14	11	41	I	ST	USB OTG ID (OTG mode only).
USBOEN	17	14	44	0	—	USB Output Enable Control (for external transceiver).

TABLE 1-2. PIC24F.I64GB004 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

TTL = TTL input buffer Legend:

ANA = Analog level input/output

 $I^2C^{TM} = I^2C/SMBus$ input buffer

ST = Schmitt Trigger input buffer

10.3 Input Change Notification

The input change notification function of the I/O ports allows the PIC24FJ64GB004 family of devices to generate interrupt requests to the processor in response to a change of state on selected input pins. This feature is capable of detecting input Change-of-States (COS) even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 29 external inputs that may be selected (enabled) for generating an interrupt request on a Change-of-State.

Registers, CNEN1 and CNEN2, contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin has a weak pull-up connected to it. The pull-up acts as a current source that is connected to the pin. This eliminates the need for external resistors when push button or keypad devices are connected. The pull-ups are separately enabled using the CNPU1 and CNPU2 registers (for pull-ups). Each CN pin has individual control bits for its pull-up. Setting a control bit enables the weak pull-up for the corresponding pin.

When the internal pull-up is selected, the pin pulls up to VDD-0.7V (typical). Make sure that there is no external pull-up source when the internal pull-ups are enabled, as the voltage difference can cause a current path.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

10.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code or a complete redesign may be the only option.

The Peripheral Pin Select feature provides an alternative to these choices by enabling the user's peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. Peripheral Pin Select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

10.4.1 AVAILABLE PINS

The Peripheral Pin Select feature is used with a range of up to 25 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation "RPn" in their full pin designation, where "n" is the remappable pin number.

See Table 1-2 for a summary of pinout options in each package offering.

10.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the Peripheral Pin Select are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals.

Peripheral Pin Select is not available for I^2C^{TM} change notification inputs, RTCC alarm outputs or peripherals with analog inputs.

A key difference between pin select and non pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

10.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (for example, OC and UART transmit) take priority over any general purpose digital functions permanently tied to that pin, such as PMP and port I/O. Specialized digital outputs, such as USB functionality, take priority over PPS outputs on the same pin. The pin diagrams at the beginning of this data sheet list peripheral outputs in order of priority. Refer to them for priority concerns on a particular pin.

Unlike devices with fixed peripherals, pin-selectable peripheral inputs never take ownership of a pin. The pin's output buffer is controlled by the pin's TRIS bit setting, or by a fixed peripheral on the pin. If the pin is configured in Digital mode, then the PPS input will operate correctly, reading the input. If an analog function is enabled on the same pin, the pin-selectable input will be disabled.

EXAMPLE 10-2: CONFIGURIN	G UART1 INPUT AND OUTPUT FUNCTIONS IN ASSEMBLY CODE
--------------------------	---

;unlock	registers
push	wl;
push	w2;
push	w3;
mov	#OSCCON, w1;
mov	#0x46, w2;
mov	#0x57, w3;
mov.b	w2, [w1];
mov.b	w3, [w1];
bclr	OSCCON, #6;
; Configur	e Input Functions (Table10-2)
; Assign U	1CTS To Pin RP1, U1RX To Pin RP0
mov	#0x0100, w1;
mov	w1,RPINR18;
; Configur	e Output Functions (Table 10-3)
; Assign U	1RTS TO Pin RP3, U1TX TO Pin RP2
mov	#0x0403, w1;
mov	w1, RPOR1;
;lock	registers
mov	#OSCCON, w1;
mov	#0x46, w2;
mov	#0x57, w3;
mov.b	w2, [w1];
mov.b	w3, [w1];
bset	OSCCON, #6;
pop	w3;
	_
рор	w2;
рор рор	w2; w1;

EXAMPLE 10-3: CONFIGURING UART1 INPUT AND OUTPUT FUNCTIONS IN 'C'

```
//unlock registers
__builtin_write_OSCCONL(OSCCON & 0xBF);
// Configure Input Functions (Table 9-1)
// Assign UIRX To Pin RP0
RPINR18bits.U1RXR = 0;
// Assign UICTS To Pin RP1
RPINR18bits.U1CTSR = 1;
// Configure Output Functions (Table 9-2)
// Assign U1TX To Pin RP2
RPOR1bits.RP2R = 3;
// Assign U1RTS To Pin RP3
RPOR1bits.RP3R = 4;
//lock registers
__builtin_write_OSCCONL(OSCCON | 0x40);
```

REGISTER 10-19: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-13 Unimplemented: Read as '0'

- bit 12-8**RP9R<4:0>:** RP9 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP9 (see Table 10-3 for peripheral function numbers).bit 7-5**Unimplemented:** Read as '0'bit 4-0**RP8R<4:0>:** RP8 Output Pin Mapping bits
 - Peripheral output number n is assigned to pin, RP8 (see Table 10-3 for peripheral function numbers).

REGISTER 10-20: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP11R<4:0>:** RP11 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP11 (see Table 10-3 for peripheral function numbers).

- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP10R<4:0>:** RP10 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP10 (see Table 10-3 for peripheral function numbers).

REGISTER 12-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽³⁾

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽¹⁾	—	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
U-0	R/W-0 TGATE ⁽¹⁾	R/W-0 TCKPS1 ⁽¹⁾		U-0	U-0	R/W-0 TCS ^(1,2)	U-0

Legend:							
R = Reada	able bit	W = Writable bit	U = Unimplemented bit,	read as '0'			
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15	1 = Start	nery On bit ⁽¹⁾ s 16-bit Timery s 16-bit Timery					
bit 14	Unimple	Unimplemented: Read as '0'					
bit 13	TSIDL: S	top in Idle Mode bit ⁽¹⁾					
		ntinue module operation whe nue module operation in Idle					
bit 12-7	Unimple	mented: Read as '0'					
bit 6	When TC This bit is <u>When TC</u> 1 = Gate	ignored.					
bit 5-4	TCKPS<	1:0>: Timery Input Clock Pres	scale Select bits ⁽¹⁾				
	11 = 1:25 10 = 1:64 01 = 1:8 00 = 1:1	56					
bit 3-2	Unimple	mented: Read as '0'					
bit 1	1 = Exte	ery Clock Source Select bit ⁽¹ rnal clock from pin TyCK (on nal clock (Fosc/2)					
bit 0	Unimple	mented: Read as '0'					
Note 1:	operation; all	timer functions are set throug	gh T2CON and T4CON.	e bits have no effect on Timery			
2:	If TCS = $1, F$	RPINRx (TxCK) must be conf	igured to an available RPn pir	a. See Section 10.4 "Peripheral			

Pin Select (PPS)" for more information.

3: Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

17.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 17-1 shows the formula for computation of the baud rate with BRGH = 0.

EQUATION 17-1: UART BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate = $\frac{FCY}{16 \cdot (UxBRG + 1)}$ UxBRG = $\frac{FCY}{16 \cdot Baud Rate} - 1$

Note 1: FCY denotes the instruction cycle clock

frequency (Fosc/2).**2:** Based on Fcy = Fosc/2, Doze mode and PLL are disabled.

Example 17-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 17-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 17-2: UART BAUD RATE WITH BRGH = $1^{(1,2)}$

		Baud Rate = $\frac{FCY}{4 \cdot (UxBRG + 1)}$
		$UxBRG = \frac{FCY}{4 \cdot Baud Rate} - 1$
Note	1:	Fcy denotes the instruction cycle clock frequency.
	2.	Based on $E_{CV} = E_{OSC}/2$ Doze mode

2: Based on FCY = FOSC/2, Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 17-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate =	FCY/(16 (UxBRG + 1))
Solving for UxBRG Va	lue:
	((FCY/Desired Baud Rate)/16) – 1 ((4000000/9600)/16) – 1 25
	4000000/(16 (25 + 1)) 9615
=	(Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate (9615 – 9600)/9600 0.16%
Note 1: Based on	Fcy = Fosc/2, Doze mode and PLL are disabled.

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	U-0	R/W-0, HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV ⁽¹⁾	UTXISEL0	—	UTXBRK	UTXEN ⁽²⁾	UTXBF	TRMT
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXISEL1	URXISEL0	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit 0

Legend:	C = Clearable bit	HC = Hardware Clearat	HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15,13 UTXISEL<1:0>: Transmission Interrupt Mode Selection bits

- 11 = Reserved; do not use
- 10 = Interrupt when a character is transferred to the Transmit Shift Register (TSR), and as a result, the transmit buffer becomes empty
- 01 = Interrupt when the last character is shifted out of the Transmit Shift Register; all transmit operations are completed
- 00 = Interrupt when a character is transferred to the Transmit Shift Register (this implies there is at least one character open in the transmit buffer)

bit 14 UTXINV: IrDA[®] Encoder Transmit Polarity Inversion bit⁽¹⁾

bit 14	UIXINV: IrDA® Encoder Transmit Polarity Inversion bit
	<u>IREN = 0:</u>
	1 = UxTX Idle '0'
	0 = UxTX Idle '1'
	<u>IREN = 1:</u>
	1 = UxTX Idle '1'
	0 = UxTX Idle '0'
bit 12	Unimplemented: Read as '0'
bit 11	UTXBRK: Transmit Break bit
	 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
	0 = Sync Break transmission disabled or completed
bit 10	UTXEN: Transmit Enable bit ⁽²⁾
	1 = Transmit enabled, UxTX pin controlled by UARTx
	 Transmit disabled, any pending transmission is aborted and the buffer is reset; UxTX pin controlled by port
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only)
	1 = Transmit buffer is full
	0 = Transmit buffer is not full; at least one more character can be written
bit 8	TRMT: Transmit Shift Register Empty bit (read-only)
	1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has completed)
	0 = Transmit Shift Register is not empty, a transmission is in progress or queued
bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters

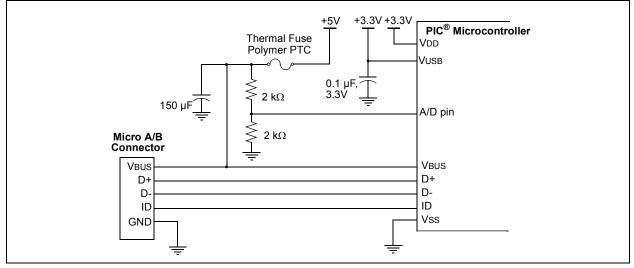
- Note 1: Value of bit only affects the transmit properties of the module when the IrDA encoder is enabled (IREN = 1).
 - 2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

NOTES:

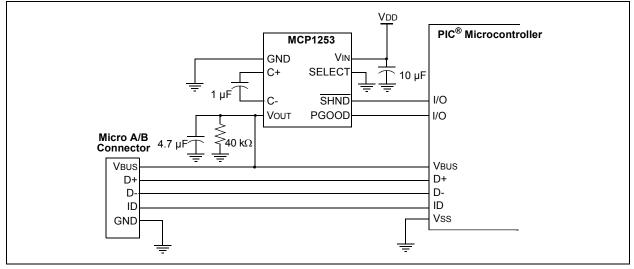
18.1.2 HOST AND OTG MODES

18.1.2.1 D+ and D- Pull-down Resistors

PIC24FJ64GB004 family devices have built-in 15 kΩ pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON<3>). If the OTGEN bit (U1OTGCON<2>) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON<5:4>).


18.1.2.2 Power Configurations

In Host mode, as well as Host mode in On-the-Go operation, the USB 2.0 specification requires that the Host application supply power on VBUS. Since the


microcontroller is running below VBUS and is not able to source sufficient current, a separate power supply must be provided.

When the application is always operating in Host mode, a simple circuit can be used to supply VBUS and regulate current on the bus (Figure 18-6). For OTG operation, it is necessary to be able to turn VBUS on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 18-7.

FIGURE 18-6: HOST INTERFACE EXAMPLE

FIGURE 18-7: OTG INTERFACE EXAMPLE

REGISTER 18-11: U1SOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0
bit 7		•					bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at	Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unl		nown				

bit 15-8 Unimplemented: Read as '0'

bit 7-0 CNT<7:0>: Start-of-Frame Size bits;

Value represents 10 + (packet size of n bytes). For example:

0100 1010 = 64-byte packet

0010 1010 = 32-byte packet

0001 0010 = 8-byte packet

REGISTER 18-12: U1CNFG1: USB CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
UTEYE	UOEMON ⁽¹⁾	—	USBSIDL	—	—	PPB1	PPB0
bit 7	·						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	UTEYE: USB Eye Pattern Test Enable bit
	1 = Eye pattern test is enabled
	0 = Eye pattern test is disabled
bit 6	UOEMON: USB OE Monitor Enable bit ⁽¹⁾
	1 = \overline{OE} signal is active; it indicates the intervals during which the D+/D- lines are driving
	0 = OE signal is inactive
bit 5	Unimplemented: Read as '0'
bit 4	USBSIDL: USB OTG Stop in Idle Mode bit
	 Discontinue module operation when device enters Idle mode
	 0 = Continue module operation in Idle mode
bit 3-2	Unimplemented: Read as '0'

Note 1: This bit is only active when the UTRDIS bit (U1CNFG2<0>) is set.

18.7.2 USB INTERRUPT REGISTERS

REGISTER 18-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	IDIF: ID State Change Indicator bit
	1 = Change in ID state is detected
	0 = No ID state change
bit 6	T1MSECIF: 1 Millisecond Timer bit
	1 = The 1 millisecond timer has expired
	0 = The 1 millisecond timer has not expired
bit 5	LSTATEIF: Line State Stable Indicator bit
	1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from last time
	0 = USB line state has not been stable for 1 ms
bit 4	ACTVIF: Bus Activity Indicator bit
	1 = Activity on the D+/D- lines or VBUS is detected
	0 = No activity on the D+/D- lines or VBUS is detected
bit 3	SESVDIF: Session Valid Change Indicator bit
	1 = VBUS has crossed VA_SESS_END (as defined in the USB OTG Specification) ⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 2	SESENDIF: B-Device VBUS Change Indicator bit
	1 = VBUS change on B-device is detected; VBUS has crossed VB_SESS_END (as defined in the USB OTG Specification) ⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVDIF A-Device VBUS Change Indicator bit
	1 = VBUS change on A-device is detected; VBUS has crossed VA_VBUS_VLD (as defined in the USB OTG Specification) ⁽¹⁾
	0 = No VBUS change on A-device is detected
Note 1:	VBUS threshold crossings may be either rising or falling.

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PMPEN		PSIDL	ADRMUX1 ⁽¹⁾	ADRMUX0 ⁽¹⁾	PTBEEN	PTWREN	PTRDEN		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0 ⁽²⁾	U-0	R/W-0 ⁽²⁾	R/W-0	R/W-0	R/W-0		
CSF1	CSF0	ALP		CS1P	BEP	WRSP	RDSP		
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'			
-n = Value at		'1' = Bit is se		'0' = Bit is clea	-	x = Bit is unkr	nown		
				0 21110 0.00					
bit 15	PMPEN: Para	allel Master Po	ort Enable bit						
	1 = PMP is e	enabled							
	0 = PMP is c	lisabled, no off	-chip access pe	erformed					
bit 14	Unimplemen	ted: Read as	'0'						
bit 13	PSIDL: Stop	in Idle Mode b	it						
			eration when de ation in Idle mod		e mode				
bit 12-11		•			1)				
	ADRMUX<1:0>: Address/Data Multiplexing Selection bits ⁽¹⁾ 11 = Reserved								
	10 = All 16 k	oits of address	are multiplexed	l on PMD<7:0>	pins				
	01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed or								
	PMA<1 00 = Addres		pear on separat	e pins					
bit 10			Enable bit (16-	-	e)				
	1 = PMBE po		·						
	0 = PMBE po	ort is disabled							
bit 9	PTWREN: W	rite Enable Str	obe Port Enable	e bit					
		PMENB port is PMENB port is							
bit 8	PTRDEN: Re	ad/Write Strob	e Port Enable b	bit					
	1 = PMRD/P 0 = PMRD/P	MWR port is e MWR port is d	nabled isabled						
bit 7-6		hip Select Fur							
	11 = Reserve	-							
	10 = PMCS1	functions as c	hip set						
	01 = Reserve								
	00 = Reserve		(2)						
bit 5		s Latch Polarit	•						
		gh <u>(PMALL</u> an w (PMALL and							
bit 4		ited: Read as	-						
bit 3		Select 1 Polari							
	•	gh (PMCS1/PI	-						
		w (PMCS1/PM							
Note 1: P	MA<10:2> bits a	are not availab	le on 28-pin dev	vices.					

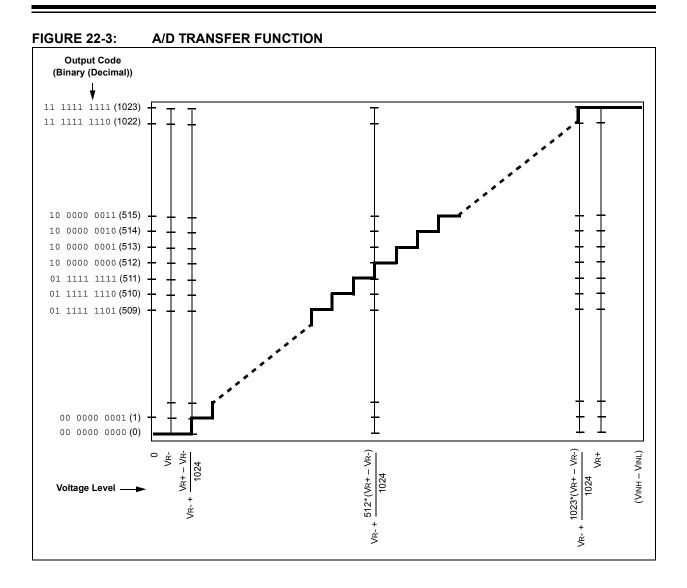
REGISTER 19-1: PMCON: PARALLEL PORT CONTROL REGISTER

Note 1: PMA<10:2> bits are not available on 28-pin devices.

2: These bits have no effect when their corresponding pins are used as address lines.

REGISTER 19-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	_	—		_	RTSECSEL1 ⁽¹⁾	RTSECSEL0 ⁽¹⁾	PMPTTL
bit 7	•		•		•		bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read a	as '0'	
-n = Value at POR '1' = Bit is set			t	'0' = Bit is cleared x = Bit is unknown			vn
bit 15-3	Unimpleme	nted: Read as	'0'				
					(4)		


- bit 2-1 RTSECSEL<1:0>: RTCC Seconds Clock Output Select bits⁽¹⁾
 - 11 = Reserved; do not use
 - 10 = RTCC source clock is selected for the RTCC pin (clock can be LPRC or SOSC, depending on the setting of the Flash Configuration bit, RTCOSC (CW4<5>))
 - 01 = RTCC seconds clock is selected for the RTCC pin
 - 00 = RTCC alarm pulse is selected for the RTCC pin

bit 0 **PMPTTL:** PMP Module TTL Input Buffer Select bit

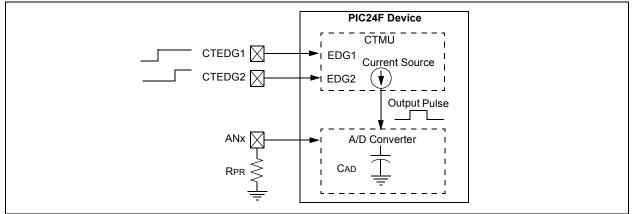
- 1 = PMP module uses TTL input buffers
- 0 = PMP module uses Schmitt Trigger input buffers
- Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit needs to be set.

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0		
CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0		
bit 15							bit 8		
R-0, HCS	R-1, HCS	R/W-0	R/W-0, HC	R/W-0	U-0	U-0	U-0		
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	—		
bit 7							bit (
			<u>Olaarahla hit</u>		ara Claarabla/C	attable bit			
Legend:	- 1-14	HC = Hardware		HCS = Hardwa					
R = Readabl		W = Writable bit		-	ented bit, read				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown		
pit 15	CRCEN: CR	C Enable bit							
	1 = Module i	s enabled							
	0 = Module i NOT res	s enabled. All sta et	te machines, poi	nters and CRCV	VDAT/CRCDA	T are reset; otl	her SFRs are		
oit 14	Unimplemen	ted: Read as '0'							
oit 13	CSIDL: CRC	Stop in Idle Mod	e bit						
		nue module operation module operation		ce enters Idle m	ode				
oit 12-8	VWORD<4:0	>: Pointer Value	bits						
		number of valid v PLEN<3:0> \leq 7.	words in the FIF	O. Has a maxim	num value of 8	when PLEN<	3:0> > 7		
bit 7	CRCFUL: FI	FO Full bit							
	1 = FIFO is f								
	0 = FIFO is r								
bit 6		FO Empty Bit							
	1 = FIFO is e 0 = FIFO is r								
bit 5		RC interrupt Sele	ection bit						
		on FIFO is empt		on is not compl	ete				
		on shift is compl							
bit 4	CRCGO: Sta	rt CRC bit							
		C serial shifter							
		ial shifter is turne							
bit 3		ata Shift Direction							
		rd is shifted into t rd is shifted into t							
bit 2-0		ted: Read as '0'							

REGISTER 21-1: CRCCON1: CRC CONTROL REGISTER 1

25.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's internal capacitor (CAD) and a precision resistor for current calibration. Figure 25-2 shows the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDG pins, but other configurations using internal edge sources are possible. For the smallest time measurements, select the internal A/D Channel 31, CH0S<4:0> = 11111. This minimizes any stray capacitance that may otherwise be associated with using an input pin, thus keeping the total capacitance to that of the A/D Converter itself (4-5 pF). A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "PIC24F Family Reference Manual".


25.3 Pulse Generation and Delay

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module.

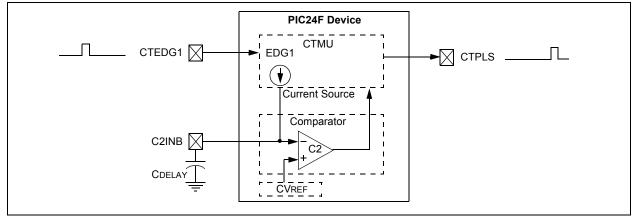

When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON<12>), the internal current source is connected to the B input of Comparator 2. A capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the comparator voltage reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 25-3 shows the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTEDG1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

FIGURE 25-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

FIGURE 25-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION

REGISTER 25-1: CTMUCON: CTMU CONTROL REGISTER (CONTINUED)

- bit 3-2
 EDG1SEL<1:0>: Edge 1 Source Select bits

 11 = CTED1 pin
 10 = CTED2 pin

 01 = OC1 module
 00 = Timer1 module

 bit 1
 EDG2STAT: Edge 2 Status bit

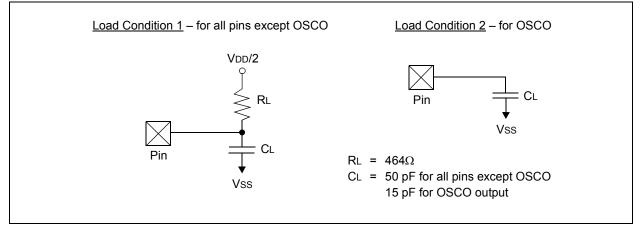
 1 = Edge 2 event has occurred
 0 = Edge 2 event has not occurred

 bit 0
 EDG1STAT: Edge 1 Status bit

 1 = Edge 1 event has occurred
 0 = Edge 1 event has not occurred
- Note 1: If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".

REGISTER 25-2:	CTMUICON: CTMU CURRENT CONTROL REGISTER

REGISTER	25-2: CTIVIC		UCURRENT	CONTROL R	EGISTER			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ITRIM5	ITRIM4	ITRIM3	ITRIM2	ITRIM1	ITRIM0	IRNG1	IRNG0	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
					_	_		
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	t is unknown	
	011110 000001 = Min 000000 = No	nimum positive minal current c	change from r	nominal current nominal current d by IRNG<1:0> nominal curren				
bit 9-8	IRNG<1:0>: 0 11 = 100 × Ba 10 = 10 × Bas 01 = Base cu	Current Source ase Current	Range Select 5 μA nominal)	n nominal currer bits	nt			
bit 7-0	Unimplemen	ted: Read as '	0'					
	· · · · · · · · · · · · · · · · · · ·							


29.2 AC Characteristics and Timing Parameters

The information contained in this section defines the PIC24FJ64GB004 family AC characteristics and timing parameters.

TABLE 29-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)				
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial and $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Operating voltage VDD range as described in Section 29.1 "DC Characteristics" .				
	Operating voltage vob range as described in Section 23.1 De Characteristics .				

FIGURE 29-3: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 29-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO50	Cosc2	OSCO/CLKO Pin	_		15	pF	In XT and HS modes when external clock is used to drive OSCI.
DO56	Сю	All I/O Pins and OSCO	—	_	50	pF	EC mode.
DO58	Св	SCLx, SDAx	—	_	400	pF	In l ² C™ mode.

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min. Typ Max. Units Conditions				
		Cloc	k Parame	ters			
AD50	Tad	ADC Clock Period	75	—	—	ns	Tcy = 75 ns, AD1CON3 in default state
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns	
		Con	version R	ate			
AD55	tCONV	Conversion Time		12		TAD	
AD56	FCNV	Throughput Rate			500	ksps	AVDD > 2.7V
AD57	tSAMP	Sample Time	—	1	—	TAD	
		Cloc	k Parame	ters			
AD61	tPSS	Sample Start Delay from setting Sample bit (SAMP)	2		3	Tad	

TABLE 29-23: ADC CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample capacitors will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

RTCC

Alarm Configuration	
Alarm Mask Settings (figure)	
Calibration	
Register Mapping	
Selecting Clock Source	
Source Clock	
Write Lock	

S

Selective Peripheral Power Control	125
Serial Peripheral Interface. See SPI.	
SFR Space	
Software Simulator (MPLAB SIM)	
Software Stack	
Special Features	
SPI	

Т

Timer1	149
Timer2/3 and Timer4/5	151
Timing Diagrams	
CLKO and I/O Timing	322
External Clock	320
Trap Service Routine (TSR)	106
Triple Comparator	269

U

UART	
Baud Rate Generator (BRG)	190
IrDA Support	191
Operation of UxCTS and UxRTS Pins	191
Receiving	
8-Bit or 9-Bit Data Mode	191
Transmitting	
8-Bit Data Mode	191
9-Bit Data Mode	191
Break and Sync Sequence	191

Universal Asynchronous Receiver Transmitter. See UART. Universal Serial Bus
Buffer Descriptors
Assignment in Different Buffering Modes 203
Interrupts
and USB Transactions 207
Universal Serial Bus. See USB OTG.
USB On-The-Go (OTG) 10
USBOTG
Buffer Descriptors and BDT 202
Device Mode Operation
DMA Interface
Hardware Configuration
Device Mode
External Interface 201
Host and OTG Modes
Transceiver Power Requirements
VBUS Voltage Generation
Host Mode Operation
Interrupts
•
OTG Operation
Registers
VBUS Voltage Generation 201
V
VDDCORE/VCAP Pin

W

Watchdog Timer (WDT)	
Control Register	
Windowed Operation	289
WWW Address	348
WWW, On-Line Support	