

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

÷ХГ

2014	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	19
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb002-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IADLE	4-J.			CONTR	OLLER	KEGI		AF										
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
INTCON1	0080	NSTDIS	_	_	_		_	_	_	_	_	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI	—	_	_	_	_	—	_	_	_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	—	—	PMPIF	_	—	—	OC5IF	—	IC5IF	IC4IF	IC3IF	_	_	—	SPI2IF	SPF2IF	0000
IFS3	008A	_	RTCIF	_	_	_	_		_	_	_	_	_	_	MI2C2IF	SI2C2IF	_	0000
IFS4	008C	—	—	CTMUIF	_	_	_	_	LVDIF	_	_	_	_	CRCIF	U2ERIF	U1ERIF	_	0000
IFS5	008E	_	_	—	_		_	_	—		USB1IF	_	_	_	—	_		0000
IEC0	0094	—	—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	—		—	—	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	_	_	PMPIE	_		_	OC5IE	_	IC5IE	IC4IE	IC3IE	_	_	—	SPI2IE	SPF2IE	0000
IEC3	009A	_	RTCIE	—	_		_	_	_	_	_	_	_	_	MI2C2IE	SI2C2IE	_	0000
IEC4	009C	_	_	CTMUIE	_		_	_	LVDIE		_	_	_	CRCIE	U2ERIE	U1ERIE		0000
IEC5	009E	_	_	_	_	_	_	_	_	_	USB1IE	_	_	_	_	_	_	000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0		OC1IP2	OC1IP1	OC1IP0		IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	_	T2IP2	T2IP1	T2IP0		OC2IP2	OC2IP1	OC2IP0		IC2IP2	IC2IP1	IC2IP0	_	—	_	_	4440
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPF1IP2	SPF1IP1	SPF1IP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	_	—	_		_	_	—		AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	_	—	_	_	_	_	_	_	_	_	_	_	INT1IP2	INT1IP1	INT1IP0	0004
IPC6	00B0	_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	_	—	_	_	4440
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	_	_	_	_	_	_	_	_	_	SPI2IP2	SPI2IP1	SPI2IP0	_	SPF2IP2	SPF2IP1	SPF2IP0	0044
IPC9	00B6	_	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	—	_	_	4440
IPC10	00B8	_	_	_	_	_	_	_	_	_	OC5IP2	OC5IP1	OC5IP0	_	_	_	_	0040
IPC11	00BA	_	_	_	_	_	_	_	_	_	PMPIP2	PMPIP1	PMPIP0	_	_	_	_	0040
IPC12	00BC	—	—	_	-	—	MI2C2IP2	MI2C2IP1	MI2C2IP0		SI2C2IP2	SI2C2IP1	SI2C2IP0	_	_	—		0440
IPC15	00C2	—	—	_	-	—	RTCIP2	RTCIP1	RTCIP0		_	_		—	_	—		0400
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0		U1ERIP2	U1ERIP1	U1ERIP0	_	_	_		4440
IPC18	00C8			_					_			_	_	_	LVDIP2	LVDIP1	LVDIP0	0004
IPC19	00CA	—	_	_	_	—	_	_	_		CTMUIP2	CTMUIP1	CTMUIP0	—		_		0040
IPC21	00CE	—	_	_	_	—	USB1IP2	USB1IP1	USB1IP0	_	_	—	_	_	_	_	_	0400
INTTREG	00E0	CPUIRQ	_	VHOLD		ILR3	ILR2	ILR1	ILR0		VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0
_	—	CTMUIE	_	—		—	LVDIE
bit 15							bit 8
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
_	_	—		CRCIE	U2ERIE	U1ERIE	_
bit 7							bit (
Logondi							
Legend: R = Readab	lo hit	W = Writable b	.i+		ontod hit road	1 00 '0'	
			Л	•	nented bit, read		0.475
-n = Value a	IL POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	Unimplemen	ted: Read as '0	,				
bit 13	-	MU Interrupt En					
		request is enable					
		request is not er					
bit 12-9	Unimplemen	ted: Read as '0	,				
bit 8	LVDIE: Low-\	Voltage Detect Ir	nterrupt Enabl	e bit			
		request is enable request is not er					
bit 7-4	Unimplemen	ted: Read as '0	,				
bit 3	CRCIE: CRC	Generator Inter	rupt Enable bi	it			
		request is enable					
	-	request is not er					
bit 2		RT2 Error Interru	•				
	 1 = Interrupt request is enabled 0 = Interrupt request is not enabled 						
bit 1		RT1 Error Interru					
	1 = Interrupt r 0 = Interrupt r	request is enable					
		request is not er	labicu				

REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
_	_	_	_		USB1IP2	USB1IP1	USB1IP0		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	—	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown			
bit 15-11	Unimplemen	ted: Read as '	כ'						
bit 10-8	USB1IP<2:0>	: USB Interrup	t Priority bits						
	111 = Interrup	ot is Priority 7 (highest priority	interrupt)					
	•								
	•								
	•								
	001 = Interrup								
	•	ot source is dis							
bit 7-0	Unimplemen	ted: Read as '	כ'						

REGISTER 7-34: IPC21: INTERRUPT PRIORITY CONTROL REGISTER 21

9.2.4.3 Exiting Deep Sleep Mode

Deep Sleep mode exits on any one of the following events:

- POR event on VDD supply. If there is no DSBOR circuit to re-arm the VDD supply POR circuit, the external VDD supply must be lowered to the natural arming voltage of the POR circuit.
- DSWDT time-out. When the DSWDT timer times out, the device exits Deep Sleep.
- RTCC alarm (if RTCEN = 1).
- Assertion ('0') of the $\overline{\text{MCLR}}$ pin.
- Assertion of the INT0 pin (if the interrupt was enabled before Deep Sleep mode was entered). The polarity configuration is used to determine the assertion level ('0' or '1') of the pin that will cause an exit from Deep Sleep mode. Exiting from Deep Sleep mode requires a change on the INT0 pin while in Deep Sleep mode.

Note: Any interrupt pending when entering Deep Sleep mode is cleared.

Exiting Deep Sleep mode generally does not retain the state of the device and is equivalent to a Power-on Reset (POR) of the device. Exceptions to this include the RTCC (if present), which remains operational through the wake-up, the DSGPRx registers and DSWDT.

Wake-up events that occur from the time Deep Sleep exits, until the time that the POR sequence completes, are ignored and are not captured in the DSWAKE register.

The sequence for exiting Deep Sleep mode is:

- 1. After a wake-up event, the device exits Deep Sleep and performs a POR. The DSEN bit is cleared automatically. Code execution resumes at the Reset vector.
- To determine if the device exited Deep Sleep, read the Deep Sleep bit, DPSLP (RCON<10>). This bit will be set if there was an exit from Deep Sleep mode. If the bit is set, clear it.
- 3. Determine the wake-up source by reading the DSWAKE register.
- Determine if a DSBOR event occurred during Deep Sleep mode by reading the DSBOR bit (DSCON<1>).
- 5. If application context data has been saved, read it back from the DSGPR0 and DSGPR1 registers.
- 6. Clear the RELEASE bit (DSCON<0>).

9.2.4.4 Deep Sleep Wake-up Time

Since wake-up from Deep Sleep results in a POR, the wake-up time from Deep Sleep is the same as the device POR time. Also, because the internal regulator is turned off, the voltage on VCAP may drop depending on how long the device is asleep. If VCAP has dropped below 2V, then there will be additional wake-up time while the regulator charges VCAP.

Deep Sleep wake-up time is specified in **Section 29.0 "Electrical Characteristics"** as TDSWU. This specification indicates the worst case wake-up time, including the full POR Reset time (including TPOR and TRST), as well as the time to fully charge a 10 μ F capacitor on VCAP which has discharged to 0V. Wake-up may be significantly faster if VCAP has not discharged.

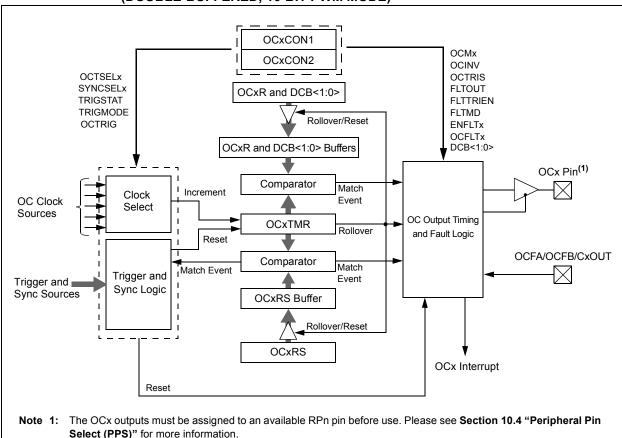
9.2.4.5 Saving Context Data with the DSGPR0/DSGPR1 Registers

As exiting Deep Sleep mode causes a POR, most Special Function Registers reset to their default POR values. In addition, because VDDCORE power is not supplied in Deep Sleep mode, information in data RAM may be lost when exiting this mode.

Applications which require critical data to be saved prior to Deep Sleep may use the Deep Sleep General Purpose registers, DSGPR0 and DSGPR1, or data EEPROM (if available). Unlike other SFRs, the contents of these registers are preserved while the device is in Deep Sleep mode. After exiting Deep Sleep, software can restore the data by reading the registers and clearing the RELEASE bit (DSCON<0>).

9.2.4.6 I/O Pins During Deep Sleep Mode

During Deep Sleep, the general purpose I/O pins retain their previous states and the Secondary Oscillator (SOSC) will remain running, if enabled. Pins that are configured as inputs (TRIS bit set) prior to entry into Deep Sleep remain high-impedance during Deep Sleep. Pins that are configured as outputs (TRIS bit clear) prior to entry into Deep Sleep remain as output pins during Deep Sleep. While in this mode, they continue to drive the output level determined by their corresponding LAT bit at the time of entry into Deep Sleep.


14.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for edge-aligned PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired on-time and load it into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to SYNCSEL<4:0> (OCxCON2<4:0>) and '0' to OCTRIG (OCxCON2<7>).

- 5. Select a clock source by writing to the OCTSEL2<2:0> (OCxCON1<12:10>) bits.
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- 7. Select the desired PWM mode in the OCM<2:0> (OCxCON1<2:0>) bits.
- 8. If a timer is selected as a clock source, set the TMRy prescale value and enable the time base by setting the TON (TxCON<15>) bit.
- Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

FIGURE 14-2: OUTPUT COMPARE BLOCK DIAGRAM (DOUBLE-BUFFERED, 16-BIT PWM MODE)

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2 ⁽²⁾	ENFLT1
bit 15							bit 8

R/W-0	R/W-0, HCS	R/W-0, HCS	R/W-0, HCS	R/W-0	R/W-0	R/W-0	R/W-0
ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2 ⁽¹⁾	OCM1 ⁽¹⁾	OCM0 ⁽¹⁾
bit 7							bit 0

Legend:	HCS = Hardware Clear	HCS = Hardware Clearable/Settable bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	'0' = Bit is cleared x = Bit is unknown					

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

bit 13	OCSIDL: Stop Output Compare x in Idle Mode Control bit 1 = Output compare x halts in CPU Idle mode 0 = Output compare x continues to operate in CPU Idle mode
bit 12-10	OCTSEL<2:0>: Output Compare x Timer Select bits
	111 = System clock
	110 = Reserved
	101 = Reserved
	100 = Timer1
	011 = Timer5
	010 = Timer4
	001 = Timer3
	000 = Timer2

bit 9 ENFLT2: Comparator Fault Input Enable bit⁽²⁾

- 1 = Comparator Fault input is enabled
- 0 = Comparator Fault input is disabled
- bit 8 **ENFLT1:** OCFB Fault Input Enable bit
 - 1 = OCFB Fault input is enabled
 - 0 = OCFB Fault input is disabled
- bit 7 ENFLT0: OCFA Fault Input Enable bit
 - 1 = OCFA Fault input is enabled
 - 0 = OCFA Fault input is disabled
- bit 6 **OCFLT2:** PWM Comparator Fault Condition Status bit⁽²⁾
 - 1 = PWM comparator Fault condition has occurred (this is cleared in hardware only)
 - 0 = PWM comparator Fault condition has not occurred (this bit is used only when OCM<2:0> = 111)
- bit 5 OCFLT1: PWM OCFB Fault Input Enable bit 1 = PWM OCFB Fault condition has occurred (this is cleared in hardware only)
 - 0 = PWM OCFB Fault condition has not occurred (this bit is used only when OCM<2:0> = 111)
- bit 4 **OCFLT0:** PWM OCFA Fault Condition Status bit
 - 1 = PWM OCFA Fault condition has occurred (this is cleared in hardware only)
 - 0 = PWM OCFA Fault condition has not occurred (this bit is used only when OCM<2:0> = 111)
- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".
 - **2:** The comparator module used for Fault input varies with the OCx module. OC1 and OC2 use Comparator 1; OC3 and OC4 use Comparator 2; OC5 uses Comparator 3.

REGISTER	15-1: SPIx	STAT: SPIx S	FATUS AND	CONTROL R	EGISTER		
R/W-0	U-0	R/W-0	U-0	U-0	R-0	R-0	R-0
SPIEN ⁽¹⁾		SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0
bit 15							bit 8
DA						DA	DA
R-0	R/C-0, HS	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0
SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF bit (
							bit t
Legend:		C = Clearable	bit	HS = Hardwa	re Settable bit		
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15	SPIEN: SPIx 1 = Enables r 0 = Disables	module and cor	figures SCKx,	SDOx, SDIx a	nd SSx as seria	al port pins	
bit 14	Unimplemen	ted: Read as ')'				
bit 13		p in Idle Mode					
		ue module oper module operati			e mode		
bit 12-11	Unimplemen	ted: Read as ')'				
bit 10-8	Master mode	-		bits (valid in E	nhanced Buffer	mode)	
	Slave mode:	PI transfers pen PI transfers unr	-				
bit 7		Register (SPIx		(valid in Enhar	nced Buffer mo	de)	
	1 = SPIx Shi	ft register is em ft register is not	pty and ready			,	
bit 6	SPIROV: Red	ceive Overflow	Flag bit				
	data in th	rte/word is comp le SPIxBUF reg low has occurre	ister.	l and discarded	. The user softv	vare has not rea	ad the previous
bit 5		ceive FIFO Em		Enhanced But	fer mode)		
		FIFO is empty FIFO is not em					
bit 4-2	SISEL<2:0>:	SPIx Buffer Int	errupt Mode b	its (valid in Enh	anced Buffer n	node)	
	110 = Internu 101 = Internu 100 = Internu 011 = Internu 010 = Internu 001 = Internu 000 = Internu	pt when SPIx to pt when last bit pt when the las pt when one da pt when SPIx ro pt when SPIx ro pt when data is pt when the la APT bit set)	is shifted into t bit is shifted ata is shifted in eceive buffer is eceive buffer is available in re	SPIxSR; as a r out of SPIxSR; to the SPIxSR; s full (SPIRBF I s 3/4 or more fu eccive buffer (S	result, the TX F now the transr as a result, the bit is set) III RMPT bit is se	nit is complete e TX FIFO has t)	
	f SPIEN = 1, the Peripheral Pin				Pn pins before	use. See Sect	ion 10.4

REGISTER 15-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

REGISTER 16-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (When operating as I ² C master. Applicable during master receive.)
	Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Sends NACK during Acknowledge 0 = Sends ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit
DIL 4	(When operating as I ² C master. Applicable during master receive.)
	1 = Initiates Acknowledge sequence on SDAx and SCLx pins and transmits ACKDT data bit. Hardware clear at end of master Acknowledge sequence.
	0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master)
	 1 = Enables Receive mode for I²C. Hardware clear at end of eighth bit of master receive data byte. 0 = Receives sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	 1 = Initiates Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence. 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enabled bit (when operating as I ² C master)
	1 = Initiates Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence
	0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enabled bit (when operating as I ² C master)
	 1 = Initiates Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

NOTES:

REGISTER 18-1: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER PROTOTYPE, USB MODE (BD0STAT THROUGH BD63STAT)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
UOWN	DTS	PID3	PID2	PID1	PID0	BC9	BC8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
BC7	BC6	BC5	BC4	BC3	BC2	BC1	BC0
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			
bit 14	the buffer DTS: Data To 1 = Data 1 pa 0 = Data 0 pa	ggle Packet bi acket	t				
bit 13-10	<u>In Device mod</u> Represents th <u>In Host mode</u>	<u>de:</u> ne PID of the re <u>:</u>	eceived token	the USB modu during the last to ansfer status inc	ransfer.		
bit 9-0	BC<9:0>: Byt This represen during a trans	te Count its the number	of bytes to be npletion, the t	transmitted or the oyte count is up	ne maximum n		

18.5.3 SEND A FULL-SPEED BULK DATA TRANSFER TO A TARGET DEVICE

- Follow the procedure described in Section 18.5.1 "Enable Host Mode and Discover a Connected Device" and Section 18.5.2 "Complete a Control Transaction to a Connected Device" to discover and configure a device.
- To enable transmit and receive transfers with handshaking enabled, write 1Dh to U1EP0. If the target device is a low-speed device, also set the LSPD bit (U1EP0<7>). If you want the hardware to automatically retry indefinitely if the target device asserts a NAK on the transfer, clear the Retry Disable bit, RETRYDIS (U1EP0<6>).
- 3. Set up the BD for the current (EVEN or ODD) Tx EP0 to transfer up to 64 bytes.
- 4. Set the USB device address of the target device in the address register (U1ADDR<6:0>).
- 5. Write an OUT token to the desired endpoint to U1TOK. This triggers the module's transmit state machines to begin transmitting the token and the data.
- 6. Wait for the Transfer Done Interrupt Flag, TRNIF. This indicates that the BD has been released back to the microprocessor, and the transfer has completed. If the retry disable bit is set, the handshake (ACK, NAK, STALL or ERROR (0Fh)) is returned in the BD PID field. If a STALL interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a detach interrupt occurs (SE0 for more than 2.5 μs), then the target has detached (U1IR<0> is set).
- 7. Once the transfer done interrupt occurs (TRNIF is set), the BD can be examined and the next data packet queued by returning to step 2.
- Note: USB speed, transceiver and pull-ups should only be configured during the module setup phase. It is not recommended to change these settings while the module is enabled.

18.6 OTG Operation

18.6.1 SESSION REQUEST PROTOCOL (SRP)

An OTG A-device may decide to power down the VBUS supply when it is not using the USB link through the Session Request Protocol (SRP). Software may do this by clearing VBUSON (U10TGCON<3>). When the VBUS supply is powered down, the A-device is said to have ended a USB session.

An OTG A-device or Embedded Host may re-power the VBUS supply at any time (initiate a new session). An OTG B-device may also request that the OTG A-device re-power the VBUS supply (initiate a new session). This is accomplished via Session Request Protocol (SRP).

Prior to requesting a new session, the B-device must first check that the previous session has definitely ended. To do this, the B-device must check for two conditions:

1. VBUS supply is below the Session Valid voltage, and

2. Both D+ and D- have been low for at least 2 ms.

The B-device will be notified of condition 1 by the SESENDIF (U1OTGIR<2>) interrupt. Software will have to manually check for condition 2.

Note:	When the A-device powers down the VBUS				
	supply, the B-device must disconnect its				
	pull-up resistor from power. If the device is				
	self-powered, it can do this by clearing				
	DPPULUP (U1OTGCON<7>) and				
	DMPULUP (U1OTGCON<6>).				

The B-device may aid in achieving condition 1 by discharging the VBUS supply through a resistor. Software may do this by setting VBUSDIS (U1OTGCON<0>).

After these initial conditions are met, the B-device may begin requesting the new session. The B-device begins by pulsing the D+ data line. Software should do this by setting DPPULUP (U10TGCON<7>). The data line should be held high for 5 to 10 ms.

The B-device then proceeds by pulsing the VBUS supply. Software should do this by setting PUVBUS (U1CNFG2<4>). When an A-device detects SRP signaling (either via the ATTACHIF (U1IR<6>) interrupt or via the SESVDIF (U1OTGIR<3>) interrupt), the A-device must restore the VBUS supply by either setting VBUSON (U1OTGCON<3>), or by setting the I/O port controlling the external power source.

The B-device should not monitor the state of the VBUS supply while performing VBUS supply pulsing. When the B-device does detect that the VBUS supply has been restored (via the SESVDIF (U10TGIR<3>) interrupt), the B-device must re-connect to the USB link by pulling up D+ or D- (via the DPPULUP or DMPULUP).

The A-device must complete the SRP by driving USB Reset signaling.

18.6.2 HOST NEGOTIATION PROTOCOL (HNP)

In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP).

HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the *On-The-Go Supplement to the USB 2.0 Specification* for more information regarding HNP. HNP may only be initiated at full speed.

After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in Suspend state, by simply indicating a disconnect. This can be done in software by clearing DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U1IR<0>) interrupt), the A-device may allow the B-device to take over as Host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP.

If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition (via ATTACHIF (U1IR<6>), the B-device becomes host. The B-device drives Reset signaling prior to using the bus.

When the B-device has finished in its role as Host, it stops all bus activity and turns on its D+ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms), the A-device turns off its D+ pull-up. The A-device may also power-down VBUS supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation, and drives Reset signaling.

18.6.3 EXTERNAL VBUS COMPARATORS

The external VBUS comparator option is enabled by setting the UVCMPDIS bit (U1CNFG2<1>). This disables the internal VBUS comparators, removing the need to attach VBUS to the microcontroller's VBUS pin.

The external comparator interface uses either the VCMPST1 and VCMPST2 pins, or the VBUSVLD, SESSVLD and SESSEND pins, based upon the setting of the UVCMPSEL bit (U1CNFG2<5>). These pins are digital inputs and should be set in the following patterns (see Table 18-3), based on the current level of the VBUS voltage.

TABLE 18-3:EXTERNAL VBUS COMPARATOR STATES

If UVCMPSEL = 0							
VCMPST1	VCMPST2	Bus Condition					
0	0	VBUS < VB_SESS	VBUS < VB_SESS_END				
1	0	VB_SESS_END < \	VB_SESS_END < VBUS < VA_SESS_VLD				
0	1	VA_SESS_VLD < VBUS < VA_VBUS_VLD					
1	1	VBUS > VVBUS_VLD					
If UVCMPSEL =	1						
VBUSVLD	SESSVLD	SESSEND	Bus Condition				
0	0	1	VBUS < VB_SESS_END				
0	0	0	VB_SESS_END < VBUS < VA_SESS_VLD				
0	1	0 VA_SESS_VLD < VBUS < VA_VBUS_VLD					
1	1	0	VBUS > VVBUS_VLD				

REGISTER 18-11: U1SOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CNT7	CNT6	CNT5	CNT4	CNT3	CNT2	CNT1	CNT0
bit 7	•				•		bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **CNT<7:0>:** Start-of-Frame Size bits;

Value represents 10 + (packet size of n bytes). For example:

0100 1010 = 64-byte packet

0010 1010 = 32-byte packet

0001 0010 = 8-byte packet

REGISTER 18-12: U1CNFG1: USB CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15 bit 8								

R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0
UTEYE	UOEMON ⁽¹⁾	—	USBSIDL	—	—	PPB1	PPB0
bit 7	·						bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	UTEYE: USB Eye Pattern Test Enable bit
	1 = Eye pattern test is enabled
	0 = Eye pattern test is disabled
bit 6	UOEMON: USB OE Monitor Enable bit ⁽¹⁾
	1 = \overline{OE} signal is active; it indicates the intervals during which the D+/D- lines are driving
	0 = OE signal is inactive
bit 5	Unimplemented: Read as '0'
bit 4	USBSIDL: USB OTG Stop in Idle Mode bit
	 Discontinue module operation when device enters Idle mode
	 0 = Continue module operation in Idle mode
bit 3-2	Unimplemented: Read as '0'

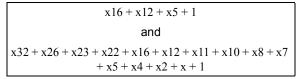
Note 1: This bit is only active when the UTRDIS bit (U1CNFG2<0>) is set.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PMPEN		PSIDL	ADRMUX1 ⁽¹⁾	ADRMUX0 ⁽¹⁾	PTBEEN	PTWREN	PTRDEN		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0 ⁽²⁾	U-0	R/W-0 ⁽²⁾	R/W-0	R/W-0	R/W-0		
CSF1	CSF0	ALP		CS1P	BEP	WRSP	RDSP		
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'			
-n = Value at		'1' = Bit is se		'0' = Bit is clea	-	x = Bit is unkr	nown		
				0 21110 0.00					
bit 15	PMPEN: Para	allel Master Po	ort Enable bit						
	1 = PMP is e	enabled							
	0 = PMP is c	lisabled, no off	-chip access pe	erformed					
bit 14	Unimplemen	ted: Read as	'0'						
bit 13	PSIDL: Stop	in Idle Mode b	it						
			eration when de ation in Idle mod		e mode				
bit 12-11		•			1)				
	ADRMUX<1:0>: Address/Data Multiplexing Selection bits ⁽¹⁾ 11 = Reserved								
	10 = All 16 bits of address are multiplexed on PMD<7:0> pins								
	01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 3 bits are multiplexed on								
	PMA<1 00 = Addres		pear on separat	e pins					
bit 10			Enable bit (16-	-	e)				
	1 = PMBE po		·						
	0 = PMBE po	ort is disabled							
bit 9	PTWREN: W	rite Enable Str	obe Port Enable	e bit					
		PMENB port is PMENB port is							
bit 8	PTRDEN: Re	ad/Write Strob	e Port Enable b	bit					
	1 = PMRD/P 0 = PMRD/P	MWR port is e MWR port is d	nabled isabled						
bit 7-6		hip Select Fur							
	11 = Reserve	-							
	10 = PMCS1	10 = PMCS1 functions as chip set							
	01 = Reserved								
	00 = Reserved								
bit 5		s Latch Polarit	•						
		gh <u>(PMALL</u> an w (PMALL and							
bit 4		ited: Read as	-						
bit 3		Select 1 Polari							
	•	gh (PMCS1/PI	-						
		w (PMCS1/PM							
Note 1: P	MA<10:2> bits a	are not availab	le on 28-pin dev	vices.					

REGISTER 19-1: PMCON: PARALLEL PORT CONTROL REGISTER

Note 1: PMA<10:2> bits are not available on 28-pin devices.

2: These bits have no effect when their corresponding pins are used as address lines.


21.1 User Interface

21.1.1 POLYNOMIAL INTERFACE

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR.

For example, consider two CRC polynomials, one a 16-bit equation and the other a 32-bit equation:

To program these polynomials into the CRC generator, set the register bits as shown in Table 21-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

21.1.2 DATA INTERFACE

The module incorporates a FIFO that works with a variable data width. Input data width can be configured to any value between one and 32 bits using the DWIDTH<4:0> bits (CRCCON2<12:8>). When the data width is greater than 15, the FIFO is four words deep. When the DWIDTH value is between 15 and 8, the FIFO is 8 words deep. When the DWIDTH value is less than 8, the FIFO is 16 words deep.

The data for which the CRC is to be calculated must first be written into the FIFO. Even if the data width is less than 8, the smallest data element that can be written into the FIFO is one byte. For example, if the DWIDTH value is five, then the size of the data is DWIDTH + 1, or six. The data is written as a whole byte; the two unused upper bits are ignored by the module.

Once data is written into the MSb of the CRCDAT registers (that is, MSb as defined by the data width), the value of the VWORD<4:0> bits (CRCCON1<12:8>) increments by one. For example, if the DWIDTH value is 24, the VWORD bits will increment when bit 7 of CRCDATH is written. Therefore, CRCDATL must always be written before CRCDATH.

The CRC engine starts shifting data when the CRCGO bit is set and the value of VWORD is greater than zero. Each word is copied out of the FIFO into a buffer register, which decrements VWORD. The data is then shifted out of the buffer. The CRC engine continues shifting at a rate of two bits per instruction cycle, until the VWORD value reaches zero. This means that for a given data width, it takes half that number of instructions for each word to complete the calculation. For example, it takes 16 cycles to calculate the CRC for a single word of 32-bit data.

When the VWORD value reaches the maximum value for the configured value of DWIDTH (4, 8 or 16), the CRCFUL bit becomes set. When the VWORD value reaches zero, the CRCMPT bit becomes set. The FIFO is emptied and VWORD<4:0> are set to '00000' whenever CRCEN is '0'.

At least one instruction cycle must pass, after a write to CRCDAT, before a read of the VWORD bits is done.

CRC Control	Bit Values				
Bits	16-Bit Polynomial	32-Bit Polynomial			
PLEN<4:0>	01111	11111			
X<31:16>	0000 0000 0000 0000 x	0000 0100 1100 0001			
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x			

TABLE 21-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIAL

26.6 JTAG Interface

PIC24FJ64GB004 family devices implement a JTAG interface, which supports boundary scan device testing.

26.7 In-Circuit Serial Programming

PIC24FJ64GB004 family microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock (PGECx) and data (PGEDx), and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

26.8 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pins.

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS and the PGECx/PGEDx pin pair designated by the ICS Configuration bits. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + Iit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE, Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT,Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE, Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU, Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT, Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
			Branch if Not Overflow	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Zero	1		None
	BRA	NZ, Expr		1	1 (2)	
	BRA	OV,Expr	Branch if Overflow	1	1 (2) 2	None
	BRA	Expr	Branch Unconditionally			None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

TABLE 28-2:	INSTRUCTION SET	OVERVIEW
		•••

DC CHARACTERISTICS		stated) Operating temperature -40°C ≤			ns: 2.0V to 3.6V (unless otherwise $^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $^{\circ}C \le TA \le +125^{\circ}C$ for Extended		
Param No.	Sym	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
	VIL	Input Low Voltage ⁽⁴⁾					
DI10		I/O Pins with ST Buffer	Vss	_	0.2 VDD	V	
DI11		I/O Pins with TTL Buffer	Vss	_	0.15 VDD	V	
DI15		MCLR	Vss	_	0.2 VDD	V	
DI16		OSC1 (XT mode)	Vss	_	0.2 VDD	V	
DI17		OSC1 (HS mode)	Vss	_	0.2 VDD	V	
DI18		I/O Pins with I ² C [™] Buffer:	Vss	_	0.3 VDD	V	
DI19		I/O Pins with SMBus Buffer:	Vss	_	0.8	V	SMBus enabled
	VIH	Input High Voltage ⁽⁴⁾					
DI20		I/O Pins with ST Buffer: with Analog Functions, Digital Only	0.8 Vdd 0.8 Vdd	_	Vdd 5.5	V V	
DI21		I/O Pins with TTL Buffer: with Analog Functions, Digital Only	0.25 Vdd + 0.8 0.25 Vdd + 0.8	_	VDD 5.5	V V	
DI25		MCLR	0.8 VDD	_	Vdd	V	
DI26		OSC1 (XT mode)	0.7 Vdd	_	Vdd	V	
DI27		OSC1 (HS mode)	0.7 VDD	_	Vdd	V	
DI28		I/O Pins with I ² C Buffer: with Analog Functions, Digital Only	0.7 Vdd 0.7 Vdd	_	Vdd 5.5	V V	
DI29		I/O Pins with SMBus Buffer: with Analog Functions, Digital Only	2.1 2.1		Vdd 5.5	V V	$2.5V \leq V\text{PIN} \leq V\text{DD}$
DI30	ICNPU	CNx Pull-up Current	50	250	400	μA	VDD = 3.3V, VPIN = VSS
DI50	lıl	Input Leakage Current ^(2,3) I/O Ports	_		<u>+</u> 50	nA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance
DI51		Analog Input Pins	—	_	<u>+</u> 50	nA	$Vss \le VPIN \le VDD,$ Pin at high-impedance
DI52		USB Differential Pins (D+, D-)	_	—	<u>+</u> 50	nA	$VUSB \ge VDD$
DI55		MCLR		_	<u>+</u> 50	nA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSC1	—	_	<u>+</u> 50	nA	$\label{eq:VSS} \begin{array}{l} VSS \leq VPIN \leq VDD, \\ XT \text{ and } HS \text{ modes} \end{array}$

TABLE 29-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: Refer to Table 1-2 for I/O pins buffer types.

AC CHARACTERISTICS			$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param No.	Sym	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max		Units	Conditions		
OS50	Fplli	PLL Input Frequency Range ⁽²⁾	4	_	32	MHz	ECPLL, HSPLL, XTPLL modes	
OS51	Fsys	PLL Output Frequency Range	95.76	_	96.24	MHz		
OS52	TLOCK	PLL Start-up Time (Lock Time)	_	180	_	μS		
OS53	DCLK	CLKO Stability (Jitter)	-0.25	_	0.25	%		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 29-18: INTERNAL RC OSCILLATOR SPECIFICATIONS

			$ \begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param No.	Sym Characteristic ¹		Min	Тур	Max	Units	Conditions	
	TFRC	FRC Start-up Time	—	15	-	μS		
	Tlprc	LPRC Start-up Time	—	500	_	μS		

TABLE 29-19: INTERNAL RC OSCILLATOR ACCURACY

AC CHARACTERISTICS		$\begin{array}{ll} \mbox{Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Characteristic		Тур	Мах	Units	Conditions	
F20	FRC Accuracy @ 8 MHz ^(1,3)	-1.25	<u>+</u> 0.25	1.0	%	$-40^{\circ}C \leq Ta \leq +85^{\circ}C, \ 3.0V \leq V\text{DD} \leq 3.6V$	
F21	LPRC Accuracy @ 31 kHz ⁽²⁾	-15	—	15	%	$-40^{\circ}C \leq Ta \leq +85^{\circ}C, \ 3.0V \leq V\text{DD} \leq 3.6V$	

Note 1: Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.

2: Change of LPRC frequency as VDD changes.

3: To achieve this accuracy, physical stress applied to the microcontroller package (ex: by flexing the PCB) must be kept to a minimum.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol Characteristic		Min.	Тур	Max.	Units	Conditions	
		Cloc	k Parame	ters				
AD50	Tad	ADC Clock Period	75	—	—	ns	Tcy = 75 ns, AD1CON3 in default state	
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns		
		Con	version R	ate				
AD55	tCONV	Conversion Time		12		TAD		
AD56	FCNV	Throughput Rate			500	ksps	AVDD > 2.7V	
AD57	tSAMP	Sample Time	—	1	—	TAD		
		Cloc	k Parame	ters				
AD61	tPSS	Sample Start Delay from setting Sample bit (SAMP)	2		3	Tad		

TABLE 29-23: ADC CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample capacitors will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.