

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	33
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb004-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2010, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-60932-439-1

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

3.3.2 DIVIDER

The divide block supports signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. Sixteen-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn), and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.3.3 MULTI-BIT SHIFT SUPPORT

The PIC24F ALU supports both single bit and single-cycle, multi-bit arithmetic and logic shifts. Multi-bit shifts are implemented using a shifter block, capable of performing up to a 15-bit arithmetic right shift, or up to a 15-bit left shift, in a single cycle. All multi-bit shift instructions only support Register Direct Addressing for both the operand source and result destination.

A full summary of instructions that use the shift operation is provided below in Table 3-2.

TABLE 3-2: INSTRUCTIONS THAT USE THE SINGLE AND MULTI-BIT SHIFT OPERATION

Instruction	Description
ASR	Arithmetic Shift Right Source Register by One or More Bits.
SL	Shift Left Source Register by One or More Bits.
LSR	Logical Shift Right Source Register by One or More Bits.

TABLE 4-20: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620						Alarm	Value Registe	r Window Bas	sed on ALR	MPTR<1:0	>						xxxx
ALCFGRPT	0622	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCVAL	0624						RTCC	Value Regist	er Window Ba	ased on RT	CPTR<1:0>	•						xxxx
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	xxxx
Lenende		the state of the		. (a) Deset	aluan ana ala		dia a face a f											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-21: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	—	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	_	_	0000
CRCCON2	0642	_		_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0			_	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	0000
CRCXORL	0644	X15	X14	X13	X12	X11	X10	X9	X8	X7	X6	X5	X4	X3	X2	X1	—	0000
CRCXORH	0646	X31	X30	X29	X28	X27	X26	X25	X24	X23	X22	X21	X20	X19	X19	X17	X16	0000
CRCDATL	0648							CRC	Data Input F	Register Low	/ Word							xxxx
CRCDATH	064A							CRC	Data Input F	egister High	n Word							xxxx
CRCWDATL	064C		CRC Result Register Low Word xxx										xxxx					
CRCWDATH	064E		CRC Result Register High Word												xxxx			
1																		

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: COMPARATORS REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0650	CMIDL	_	_	_	_	C3EVT	C2EVT	C1EVT	—	_	_	_	_	C3OUT	C2OUT	C10UT	0000
CVRCON	0652	_	—	_	—	_	CVREFP	CVREFM1	CVREFM0	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000
CM1CON	0654	CEN	COE	CPOL	—	_	_	CEVT	COUT	EVPOL1	EVPOL0	—	CREF	_	_	CCH1	CCH0	0000
CM2CON	065C	CEN	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
CM3CON	0664	CEN	COE	CPOL	—	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred. Note that BOR is also set after a Power-on Reset.
 - 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits may be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

Setting Event	Clearing Event
Trap Conflict Event	POR
Illegal Opcode or Uninitialized W Register Access	POR
Configuration Mismatch Reset	POR
MCLR Reset	POR
RESET Instruction	POR
WDT Time-out	PWRSAV Instruction, POR
PWRSAV #SLEEP Instruction	POR
PWRSAV #IDLE Instruction	POR
POR, BOR	_
POR	_
PWRSAV #SLEEP instruction with DSCON <dsen> set</dsen>	POR
	Trap Conflict Event Illegal Opcode or Uninitialized W Register Access Configuration Mismatch Reset MCLR Reset RESET Instruction WDT Time-out PWRSAV #SLEEP Instruction PWRSAV #IDLE Instruction POR

TABLE 6-1: RESET FLAG BIT OPERATION

Note: All Reset flag bits may be set or cleared by the user software.

6.1 Clock Source Selection at Reset

If clock switching is enabled, the system clock source at device Reset is chosen as shown in Table 6-2. If clock switching is disabled, the system clock source is always selected according to the oscillator configuration bits. Refer to **Section 8.0 "Oscillator Configuration"** for further details.

TABLE 6-2: OSCILLATOR SELECTION vs. TYPE OF RESET (CLOCK SWITCHING ENABLED)

Reset Type	Clock Source Determinant
POR	FNOSC Configuration bits
BOR	(CW2<10:8>)
MCLR	COSC Control bits
WDTO	(OSCCON<14:12>)
SWR	

6.2 Device Reset Times

The Reset times for various types of device Reset are summarized in Table 6-3. Note that the System Reset signal, SYSRST, is released after the POR and PWRT delay times expire.

The time at which the device actually begins to execute code will also depend on the system oscillator delays, which include the Oscillator Start-up Timer (OST) and the PLL lock time. The OST and PLL lock times occur in parallel with the applicable SYSRST delay times.

The FSCM delay determines the time at which the FSCM begins to monitor the system clock source after the SYSRST signal is released.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ROEN	_	ROSSLP	ROSEL	RODIV3	RODIV2	RODIV1	RODIV0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	_	_
bit 7							bit (
<u> </u>							
Legend:	1- 1-14		L :4			(O'	
R = Readab		W = Writable		-	nented bit, read		
-n = Value a	IT POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	IOWN
bit 15	ROFN · Refer	ence Oscillator	Output Enabl	e hit			
		e oscillator is er	•				
		e oscillator is di		• p			
bit 14	Unimplemen	ted: Read as ')'				
bit 13	ROSSLP: Re	eference Oscilla	tor Output Sto	p in Sleep bit			
		e oscillator conf					
		e oscillator is di		•			
bit 12		erence Oscillato					
				clock. Note that ains the operation			enabled using
				base clock refle			e device
bit 11-8	-	: Reference Os				j	
	1111 = Base	clock value div	ided by 32,76	8			
	1110 = Base	clock value div	ided by 16,384				
		clock value div					
		clock value div clock value div					
		clock value div					
		clock value div					
		clock value div					
		clock value div					
		clock value div clock value div	-				
		clock value div	,				
		clock value div					
		clock value div					
		clock value div	ided by 2				
	0000 = Base						
bit 7-0	Unimplemen	ted: Read as '	כ'				

REGISTER 8-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

REGISTER		AKE: DEEP	SLEEP WAKE	-UP SOURC	E REGISTER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HS
_							DSINT0 ⁽¹
oit 15							bit
R/W-0, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS
DSFLT ⁽¹⁾	_	_	DSWDT ⁽¹⁾	DSRTC ⁽¹⁾	DSMCLR ⁽¹⁾	_	DSPOR ⁽²⁾
bit 7					1		bit
Legend:		HS = Hardwa	are Settable bit				
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is un	known
bit 7	DSFLT: Dee 1 = A Fault o corrupte	p Sleep Fault I occurred during	s not asserted du Detected bit ⁽¹⁾ g Deep Sleep ar during Deep Sle	nd some Deep		ation settings	may have be
bit 6-5		nted: Read as		eeh			
bit 4			o ndog Timer Time	out hit(1)			
Dit 4	1 = The Dee	p Sleep Watch	dog Timer timed dog Timer did no	l out during De)	
bit 3	DSRTC: Rea	al-Time Clock a	Ind Calendar Ala	arm bit ⁽¹⁾			
			nd Calendar trig nd Calendar did				
bit 2	$1 = \text{The } \overline{\text{MCL}}$		R Event bit ⁽¹⁾ erted during De asserted during				
bit 1		nted: Read as	-				
oit 0	•	wer-on Reset E					
	1 = The VDD	supply POR c	rcuit was active rcuit was not ac				R event
Note 1: Th			e device is in D				

- **Note 1:** This bit can only be set while the device is in Deep Sleep mode.
 - **2:** This bit can be set outside of Deep Sleep.

10.4.3.3 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention caused by two physical pins being configured as the same functional input, or two functional outputs configured as the same pin, there are no hardware enforced lock outs. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

10.4.3.4 PPS Mapping Exceptions for PIC24FJ64GB0 Family Devices

Although the PPS registers allow for up to 32 remappable pins, not all of these are implemented in all devices. Exceptions and unimplemented RPn pins are listed in Table 10-4.

TABLE 10-4: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ64GB004 FAMILY DEVICES

Device Pin		RP Pins (I/O)							
Count	Total	Unimplemented							
28 Pins	15	RP12, RP16-RP25							
44 Pins	25	RP12							

10.4.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- Configuration bit remapping lock

10.4.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON<7:0>.
- 2. Write 57h to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

10.4.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CW2<4>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

REGISTER 10-13: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—			SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	SCK2R<4:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-5	Unimplemented: Read as '0'
bit 4-0	SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 10-14: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

13.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are modules 3 and 4, and so on.) The odd-numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs, and the even module (ICy) provides the Most Significant 16 bits. Wrap-arounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

13.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx, or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the sync source before proceeding.
- Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSEL bits (ICxCON2<4:0>) to the desired sync/trigger source.
- Set the ICTSEL bits (ICxCON1<12:10>) for the desired clock source. If the desired clock source is running, set the ICTSEL bits before the Input Capture module is enabled for proper synchronization with the desired clock source.
- 6. Set the ICI bits (ICxCON1<6:5>) to the desired interrupt frequency
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSEL bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICM bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected trigger/sync source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- 1. Set the IC32 bits for both modules (ICyCON2<8> and (ICxCON2<8>), enabling the even-numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSEL and SYNCSEL bits for both modules to select the same sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSEL and SYNCSEL settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>); this forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICI bits (ICxCON1<6:5>) to the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- Note: For Synchronous mode operation, enable the sync source as the last step. Both input capture modules are held in Reset until the sync source is enabled.
- Use the ICM bits of the odd module (ICxCON1<2:0>) to set the desired capture mode.

The module is ready to capture events when the time base and the trigger/sync source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the lsw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (perform automatically by hardware).

EQUATION 15-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED⁽¹⁾

FCY

FSCK = Primary Prescaler * Secondary Prescaler

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 15-1: SAMPLE SCK FREQUENCIES^(1,2)

Fcy = 16 MHz	Secondary Prescaler Settings					
	1:1	2:1	4:1	6:1	8:1	
Primary Prescaler Settings		Invalid	8000	4000	2667	2000
	4:1	4000	2000	1000	667	500
	16:1	1000	500	250	167	125
	64:1	250	125	63	42	31
Fcy = 5 MHz						
Primary Prescaler Settings	1:1	5000	2500	1250	833	625
	4:1	1250	625	313	208	156
	16:1	313	156	78	52	39
	64:1	78	39	20	13	10

Note 1: Based on FCY = FOSC/2, Doze mode and PLL are disabled.

2: SCKx frequencies shown in kHz.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER

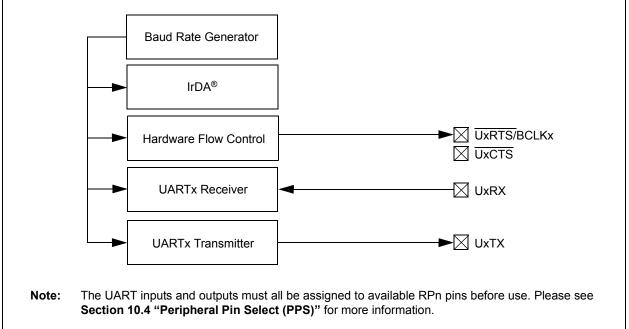
R-0, HSC		U-0	U-0	U-0						
	R-0, HSC	0-0	0-0	0-0	R/C-0, HS	R-0, HSC	R-0, HSC			
ACKSTAT	TRSTAT		—	—	BCL	GCSTAT	ADD10			
bit 15							bit			
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC			
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF			
bit 7					1	l	bit			
Legend:	I : C = Clearable bit HS = Hardware Settable bit HSC = Hardware Settable/Clearable									
R = Readal	ble bit	W = Writabl	e bit	U = Unimpleme	ented bit, read a	s '0'				
-n = Value a	at POR	'1' = Bit is se	et	'0' = Bit is clear	ed	x = Bit is unknown				
bit 15	1 = NACK 0 = ACK w Hardware s		d last last at the end of <i>l</i>	Acknowledge.						
bit 14 TRSTAT: Transmit Status bit (When operating as I ² C master. Applicable to master transmit operation.) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at the beginning of master transmission. Hardware clear at the end of slave Acknowledge.										
bit 13-11	Unimplem	ented: Read	d as '0'							
bit 10	BCL: Mast	er Bus Collis	sion Detect b	it						
	0 = No coll	ision	been detecte	ed during a mas Ilision.	ster operation					
bit 9		General Call								
	0 = Genera	al call addres	ss was receiv ss was not re dress matche	ceived	all address. Ha	rdware clear at the S	Stop detection.			
bit 8	ADD10: 10)-Bit Address	s Status bit							
	0 = 10-bit a		not matched		ed 10-bit addres	ss. Hardware clear a	t the Stop detectior			
bit 7		rite Collisior								
	0 = No coll	ision		-		I ² C module is busy ed by software).				
bit 6		ceive Overfl			,	,				
	1 = A byte 0 = No ove	was receive erflow	d while the I2	-	er was still holdi CxRCV (cleared	ng the previous byte I by software).				
bit 5	D/A: Data/	Address bit	when operat	ing as I ² C slave	e)	·				
	1 = Indicate 0 = Indicate	es that the la es that the la clear occurs	ast byte recei ast byte recei	ved was data ved was the de	vice address	er a transmission finis	shes or at receptio			

17.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note:	This data sheet summarizes the features						
	of this group of PIC24F devices. It is not						
	intended to be a comprehensive reference						
	source. For more information, refer to the						
	"PIC24F Family Reference Manual",						
	Section 21. "UART" (DS39708).						

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the PIC24F device family. The UART is a full-duplex, asynchronous system that can communicate with peripheral devices, such as personal computers, LIN/J2602, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins, and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:


- Full-Duplex, 8 or 9-Bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or Two Stop bits
- Hardware Flow Control Option with UxCTS and UxRTS pins

- Fully Integrated Baud Rate Generator with 16-Bit Prescaler
- Baud Rates Ranging from 1 Mbps to 15 bps at 16 MIPS
- 4-Deep, First-In-First-Out (FIFO) Transmit Data Buffer
- 4-Deep FIFO Receive Data Buffer
- Parity, Framing and Buffer Overrun Error Detection
- Support for 9-Bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive Interrupts
- Loopback mode for Diagnostic Support
- Support for Sync and Break Characters
- Supports Automatic Baud Rate Detection
- IrDA Encoder and Decoder Logic
- 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is shown in Figure 17-1. The UART module consists of these key important hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

REGISTER 17-1: UXMODE: UARTX MODE REGISTER

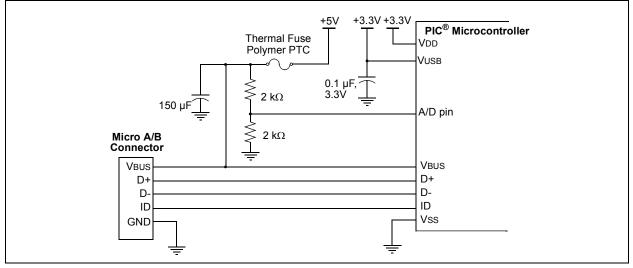
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD	—	UEN1	UEN0
bit 15							bit 8
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit
<u> </u>			<u> </u>				
Legend:		HC = Hardware					
R = Readabl		W = Writable bi	t	-	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
6:4 <i>4</i> 5		ARTx Enable bit	(1)				
bit 15				a antrollad by LL			
		s enabled; all U/ s disabled; all UA					
bit 14		nted: Read as '0	•				
bit 13	-	in Idle Mode bit					
	-	nue module ope	ration when the	e device enters	Idle mode		
		e module operati					
bit 12	IREN: IrDA [®]	Encoder and De	coder Enable	bit ⁽²⁾			
		coder and decod					
		coder and decod					
bit 11		de Selection for					
		pin in Simplex m pin in Flow Conti					
bit 10	-	nted: Read as '0					
bit 9-8	-	JARTx Enable b					
	11 = UxTX,	UxRX and BCLI	Xx pins are enabled.	abled and used	; UxCTS pin co	ntrolled by port	latches
		UxRX, UxCTS a					
		UxRX and UxR [*] and UxRX pins a			· ·		
	latches		ale ellableu all			CLKX pills con	li olleu by pol
bit 7	WAKE: Wak	e-up on Start Bit	Detect During	Sleep Mode Er	nable bit		
	1 = UARTx	will continue to s	ample the UxR	X pin; interrupt	generated on f	alling edge; bit	cleared in
		e on following ris	sing edge				
	0 = No wake	•		.,			
bit 6		ARTx Loopback	Mode Select b	It			
		Loopback mode ok mode is disab	ed				
bit 5	-	o-Baud Enable I					
		baud rate measu		next characte	r – requires rea	ception of a Syr	nc field (55h)
	cleared	in hardware upo	n completion			, ,	`
		te measurement		mpleted			
bit 4		eive Polarity Inve	ersion bit				
	1 = UxRX Id	le state is '0' le state is '1'					
		the peripheral ir				vailable RPn pi	n. See
S		Peripheral Pin S			ation.		

2: This feature is only available for the 16x BRG mode (BRGH = 0).

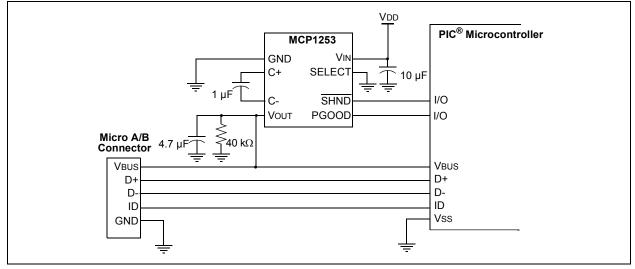
18.1.2 HOST AND OTG MODES

18.1.2.1 D+ and D- Pull-down Resistors

PIC24FJ64GB004 family devices have built-in 15 kΩ pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON<3>). If the OTGEN bit (U1OTGCON<2>) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON<5:4>).


18.1.2.2 Power Configurations

In Host mode, as well as Host mode in On-the-Go operation, the USB 2.0 specification requires that the Host application supply power on VBUS. Since the


microcontroller is running below VBUS and is not able to source sufficient current, a separate power supply must be provided.

When the application is always operating in Host mode, a simple circuit can be used to supply VBUS and regulate current on the bus (Figure 18-6). For OTG operation, it is necessary to be able to turn VBUS on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 18-7.

FIGURE 18-6: HOST INTERFACE EXAMPLE

FIGURE 18-7: OTG INTERFACE EXAMPLE

18.3 USB Interrupts

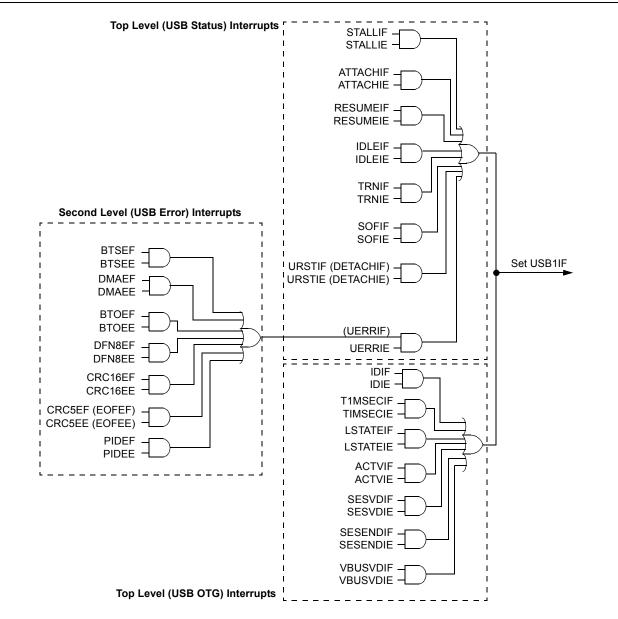

The USB OTG module has many conditions that can be configured to cause an interrupt. All interrupt sources use the same interrupt vector.

Figure 18-9 shows the interrupt logic for the USB module. There are two layers of interrupt registers in the USB module. The top level consists of overall USB status interrupts; these are enabled and flagged in the U1IE and U1IR registers, respectively. The second

FIGURE 18-9: USB OTG INTERRUPT FUNNEL

level consists of USB error conditions, which are enabled and flagged in the U1EIR and U1EIE registers. An interrupt condition in any of these triggers a USB Error Interrupt Flag (UERRIF) in the top level.

Interrupts may be used to trap routine events in a USB transaction. Figure 18-10 provides some common events within a USB frame and their corresponding interrupts.

	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_	—	—		—		_					
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
DPPULUP	DMPULUP DPPULDWN ⁽¹⁾ DMPULDWN ⁽¹⁾ VBUSON ⁽¹⁾ OTGEN ⁽¹⁾ VBUSCHG ⁽¹⁾ VBUS										
bit 7							bit (
Legend:											
R = Readab	ole bit	W = Writable bit		U = Unimplen	nented bit, re	ad as '0'					
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own				
							-				
bit 15-8	Unimpleme	nted: Read as '0'									
bit 7	DPPULUP:	D+ Pull-Up Enabl	e bit								
		line pull-up resis									
L:1 C		line pull-up resis									
bit 6		D- Pull-Up Enable line pull-up resist									
		line pull-up resist									
bit 5	DPPULDWN	I: D+ Pull-Down E	Enable bit ⁽¹⁾								
		line pull-down re									
		line pull-down re									
bit 4		N: D- Pull-Down E									
		line pull-down res line pull-down res									
bit 3		BUS Power-on bit									
		e is powered									
		e is not powered									
bit 2			OTGEN: OTG Features Enable bit ⁽¹⁾								
	1 = USB OTG is enabled; all D+/D- pull-ups and pull-downs bits are enabled										
511 2							ha aattinaa a				
	0 = USB OT	G is disabled; D-	⊦/D- pull-ups and	pull-downs are			he settings o				
bit 1	0 = USB OT the HOS	G is disabled; D- STEN and USBEN	⊦/D- pull-ups and N bits (U1CON<3	pull-downs are			he settings o				
	0 = USB OT the HOS VBUSCHG:	G is disabled; D-	HD- pull-ups and N bits (U1CON<3 ect bit ⁽¹⁾	pull-downs are			he settings o				
	0 = USB OT the HOS VBUSCHG: 1 = VBUS lin 0 = VBUS lin	G is disabled; D- STEN and USBEN VBUS Charge Sel ie is set to charge ie is set to charge	H/D- pull-ups and bits (U1CON<3 lect bit ⁽¹⁾ to 3.3V to 5V	pull-downs are			he settings o				
	0 = USB OT the HOS VBUSCHG: 1 = VBUS lin 0 = VBUS lin VBUSDIS: V	G is disabled; D- STEN and USBEN VBUS Charge Sel e is set to charge	F/D- pull-ups and N bits (U1CON<3 ect bit ⁽¹⁾ to 3.3V to 5V nable bit ⁽¹⁾	pull-downs are			he settings o				

Note 1: These bits are only used in Host mode; do not use in Device mode.

21.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction of the data that is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

21.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions.

If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt.

21.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- 2. Configure the module for the desired operation:
 - a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits
 - b) Configure the data width and shift direction using the DWIDTH and LENDIAN bits
 - c) Select the desired interrupt mode using the CRCISEL bit
- Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left
- Clear old results by writing 00h to CRCWDATL and CRCWDATH. CRCWDAT can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

21.2 Registers

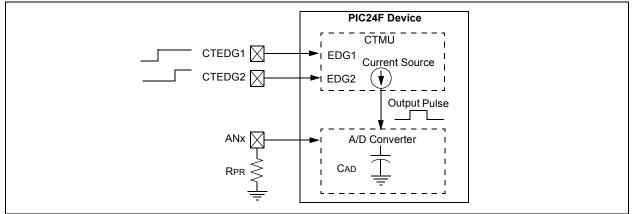
There are eight registers associated with the module:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 21-1 and Register 21-2) control the operation of the module and configure the various settings. The CRCXOR registers (Register 21-3 and Register 21-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word, input data and CRC processed output, respectively.

25.2 Measuring Time

Time measurements on the pulse width can be similarly performed using the A/D module's internal capacitor (CAD) and a precision resistor for current calibration. Figure 25-2 shows the external connections used for time measurements, and how the CTMU and A/D modules are related in this application. This example also shows both edge events coming from the external CTEDG pins, but other configurations using internal edge sources are possible. For the smallest time measurements, select the internal A/D Channel 31, CH0S<4:0> = 11111. This minimizes any stray capacitance that may otherwise be associated with using an input pin, thus keeping the total capacitance to that of the A/D Converter itself (4-5 pF). A detailed discussion on measuring capacitance and time with the CTMU module is provided in the "PIC24F Family Reference Manual".


25.3 Pulse Generation and Delay

The CTMU module can also generate an output pulse with edges that are not synchronous with the device's system clock. More specifically, it can generate a pulse with a programmable delay from an edge event input to the module.

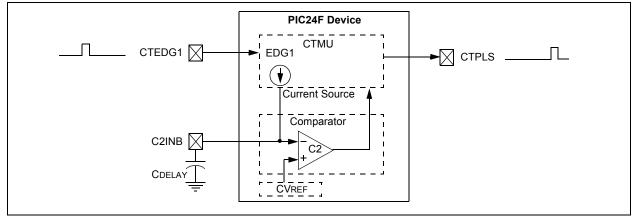

When the module is configured for pulse generation delay by setting the TGEN bit (CTMUCON<12>), the internal current source is connected to the B input of Comparator 2. A capacitor (CDELAY) is connected to the Comparator 2 pin, C2INB, and the comparator voltage reference, CVREF, is connected to C2INA. CVREF is then configured for a specific trip point. The module begins to charge CDELAY when an edge event is detected. When CDELAY charges above the CVREF trip point, a pulse is output on CTPLS. The length of the pulse delay is determined by the value of CDELAY and the CVREF trip point.

Figure 25-3 shows the external connections for pulse generation, as well as the relationship of the different analog modules required. While CTEDG1 is shown as the input pulse source, other options are available. A detailed discussion on pulse generation with the CTMU module is provided in the "*PIC24F Family Reference Manual*".

FIGURE 25-2: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR TIME MEASUREMENT

FIGURE 25-3: TYPICAL CONNECTIONS AND INTERNAL CONFIGURATION FOR PULSE DELAY GENERATION

TABLE 29-7: DC CHARACTERISTICS: POWER-DOWN PERIPHERAL MODULE \triangle CURRENT (IPD) (CONTINUED)

			Standard O	,		V to 3 6V (unloss otherwise stated)			
DC CHARACTERISTICS			Standard Operating Conditions: 2.0V to 3.6V (unless otherwise stated Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial						
De charao	ENGTIOD			emperature		+125°C for Extended			
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions					
Δ Power-Dow	n Current (IPI	o): PMD Bits	are Set, PM	SLP Bit is '0) [,] (2)				
DC63	1.8	2.3	μA	-40°C					
DC63a	1.8	2.7	μA	+25°C					
DC63i	1.8	3.0	μΑ	+60°C	2.0V ⁽³⁾				
DC63b	1.8	3.0	μA	+85°C					
DC63m	2.2	3.3	μA	+125C					
DC63c	2	2.7	μA	-40°C					
DC63d	2	2.9	μA	+25°C		32 kHz Crystal with RTCC,			
DC63j	2	3.2	μA	+60°C	2.5V ⁽³⁾	DSWDT or Timer1: ∆Isosc;			
DC63e	2	3.5	μA	+85°C		SOSCSEL = 11 ⁽⁵⁾			
DC63n	2.5	3.8	μA	+125C					
DC63f	2.25	3.0	μA	-40°C					
DC63g	2.25	3.0	μA	+25°C					
DC63k	2.25	3.3	μA	+60°C	3.3V ⁽⁴⁾				
DC63h	2.25	3.5	μA	+85°C					
DC63p	2.8	4.0	μA	+125C					
DC71c	0.001	0.25	μA	-40°C					
DC71d	0.03	0.25	μA	+25°C					
DC71j	0.05	0.60	μA	+60°C	2.5V ⁽⁴⁾				
DC71e	0.08	2.0	μA	+85°C					
DC71a	3.9	10	μA	+125C		– Deep Sleep BOR: ∆ldsbor ⁽⁵⁾			
DC71f	0.001	0.50	μA	-40°C					
DC71g	0.03	0.50	μA	+25°C					
DC71k	0.05	0.75	μA	+60°C	3.3V ⁽⁴⁾				
DC71h	0.08	2.5	μA	+85°C					
DC71b	3.9	12.5	μΑ	+125C					

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Peripheral IPD deltas are measured with the device in Sleep mode (all peripherals and clocks shut down). All I/Os are configured as inputs and pulled high. Only the peripheral or clock being measured is enabled. PMSLP bit is clear and the Peripheral Module Disable bits (PMD) for all unused peripherals are set.

3: On-chip voltage regulator disabled (DISVREG tied to VDD).

4: On-chip voltage regulator enabled (DISVREG tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

5: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com