

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	64KB (22K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj64gb004t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Number		r				
Function	28-Pin SPDIP/ SOIC/SSOP	28-Pin QFN	44-Pin QFN/TQFP	I/O	Input Buffer	Description
INT0	16	13	43	Ι	ST	External Interrupt Input.
MCLR	1	26	18	Ι	ST	Master Clear (device Reset) Input. This line is brought low to cause a Reset.
OSCI	9	6	30	Ι	ANA	Main Oscillator Input Connection.
OSCO	10	7	31	0	ANA	Main Oscillator Output Connection.
PGEC1	5	2	22	I/O	ST	In-Circuit Debugger/Emulator/ICSP™ Programming Clock.
PGED1	4	1	21	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PGEC2	22	19	9	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock.
PGED2	21	18	8	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PGEC3	3	28	20	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock.
PGED3	2	27	19	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data.
PMA0	10	7	3	I/O	ST	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	12	9	2	I/O	ST	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2	—		27	0	—	Parallel Master Port Address (Demultiplexed Master modes).
PMA3	_		38	0	—	
PMA4	—		37	0	—	
PMA5	—	_	4	0	—	
PMA6	—		5	0	—	
PMA7	—		13	0	—	
PMA8	_		32	0	—	
PMA9	_		35	0	—	
PMA10	—		12	0	—	
PMCS1	9	6	30	I/O	ST/TTL	Parallel Master Port Chip Select 1 Strobe/Address Bit 15.
PMBE	11	8	36	0	—	Parallel Master Port Byte Enable Strobe.
PMD0	4	1	21	I/O	ST/TTL	Parallel Master Port Data (Demultiplexed Master mode) or
PMD1	5	2	22	I/O	ST/TTL	Address/Data (Multiplexed Master modes).
PMD2	6	3	23	I/O	ST/TTL	
PMD3	18	15	1	I/O	ST/TTL	
PMD4	17	14	44	I/O	ST/TTL	
PMD5	16	13	43	I/O	ST/TTL	
PMD6	3	28	20	I/O	ST/TTL	
PMD7	2	27	19	I/O	ST/TTL	
PMRD	24	21	11	0	_	Parallel Master Port Read Strobe.
PMWR	7	4	24	0	—	Parallel Master Port Write Strobe.

Legend: TTL = TTL input buffer ANA = Analog level input/output ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

TABLE 4-23: PERIPHERAL PIN SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	_	_	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	_	—	_	_	_	_	—	_	1F00
RPINR1	0682		_		_		_	_	_	_	_	_	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	001F
RPINR3	0686		_		T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	_	_	_	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	1F1F
RPINR4	0688		_		T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0	_	—	_	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0	1F1F
RPINR7	068E		_		IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	_	_		IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	1F1F
RPINR8	0690		_		IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	_	_		IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	1F1F
RPINR9	0692	_	—	_	—	-	—	—	—	_	—		IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	001F
RPINR11	0696	_	—	_	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0	—	—	—	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	1F1F
RPINR18	06A4	_	—	_	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	_	_	—	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	1F1F
RPINR19	06A6	_	—	_	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0	—		—	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	1F1F
RPINR20	06A8	_	—	_	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0	—	_	—	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	1F1F
RPINR21	06AA	-	—		—	_	—	—	—	—	—	—	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	001F
RPINR22	06AC	_	—	_	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	—		—	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	1F1F
RPINR23	06AE	-	—		—	_	—	—	—	—	—	—	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	001F
RPOR0	06C0	-	—	-	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0	—	—	—	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	—	—	—	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	—	—	—	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	-	—	-	RP5R4	RP5R3	RP5R2	RP5R1	RP5R0	—	—	—	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	—	—	_	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0		—		RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8	_	—	-	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	—	—	—	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	—	—	_	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0		—		RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC	_	—	_	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	_	—		—	—	—	—	—	0000
RPOR7	06CE	_	—	-	RP15R4	RP15R3	RP15R2	RP15R1	RP15R0	—	—	—	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8 ⁽¹⁾	06D0	—	—	—	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0	—	—	—	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9 ⁽¹⁾	06D2	_	—	_	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0	_	—	_	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10 ⁽¹⁾	06D4	_	—	_	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0	_	_		RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11 ⁽¹⁾	06D6	_	—	_	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0	_	—	—	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12 ⁽¹⁾	06D8	-	—	_	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	_	—	—	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Registers are unimplemented in 28-pin devices; read as '0'.

R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0		
ALTIVT	DISI	—	—	_	_	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
	_	—	—		INT2EP	INT1EP	INT0EP		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15	ALTIVT: Enable Alternate Interrupt Vector Table (AIVT) bit								
	1 = Use Alteri	nate Interrupt V	ector Table						
	0 = Use stand	dard (default) In	terrupt Vector	Table (IVT)					
bit 14	DISI: DISI In	struction Status	s bit						
	1 = DISI inst	ruction is active) atiwo						
hit 12 2		tod: Pood os 'o	, ,						
bit 0		real Interrupt 2	, Edge Detect (Delerity Celect	h:t				
DIL 2	1 = Interrupt of	ernal interrupt 2	Euge Delect P	Polarity Select	DIL				
	0 = Interrupt of	on positive edg	9						
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect F	Polarity Select	bit				
	1 = Interrupt on negative edge								
	0 = Interrupt o	on positive edge	e						
bit 0	INT0EP: External Interrupt 0 Edge Detect Polarity Select bit								
	1 = Interrupt on negative edge								
	0 = Interrupt o	on positive edge	e						

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0		
bit 15							bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15	Unimplemen	ted: Read as '), i (i =						
bit 14-12	U1RXIP<2:0>	>: UAR [1 Rece	eiver Interrupt F	Priority bits					
	•	puis priority / (nignest priority	mierrupt)					
	•								
	•								
	001 = Interrupt is Priority 1								
bit 11	Inimplemented: Read as '0'								
bit 10-8	SPI1IP<2:0>· SPI1 Event Interrunt Priority hits								
	111 = Interru	pt is Priority 7 (highest priority	interrupt)					
	•		0 , ,	.,					
	•								
	• 001 = Interru	ot is Priority 1							
	000 = Interru	pt source is dis	abled						
bit 7	Unimplemen	ted: Read as '	D'						
bit 6-4	SPF1IP<2:0>	: SPI1 Fault In	terrupt Priority	bits					
	111 = Interru	pt is Priority 7(highest priority	interrupt)					
	•								
	•								
	001 = Interru 000 = Interru	pt is Priority 1 pt source is dis	abled						
bit 3	Unimplemen	ted: Read as '	o'						
bit 2-0	T3IP<2:0>: ⊺	imer3 Interrupt	Priority bits						
	111 = Interru	pt is Priority 7 (highest priority	interrupt)					
	•								
	•								
	001 = Interru	pt is Priority 1							
	000 = Interru	pt source is dis	abled						

REGISTER 7-19: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0			
bit 15					·		bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
_	OC3IP2	OC3IP1	OC3IP0	—	_	—	—			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	Unimplemented: Read as '0'									
bit 14-12	T4IP<2:0>: Timer4 Interrupt Priority bits									
	111 = Interrupt is Priority 7 (highest priority interrupt)									
	•									
	•									
	001 = Interru	pt is Priority 1								
	000 = Interru	pt source is dis	abled							
bit 11	Unimplemen	ted: Read as '	0'							
bit 10-8	OC4IP<2:0>:	Output Compa	are Channel 4	Interrupt Priorit	y bits					
	111 = Interru	pt is Priority 7 (highest priorit	y interrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1	مامام							
hit 7		pt source is als								
		Read as								
DIL 0-4	111 - Intorru	Oulput Compa	highost priority	interrupt Priorit	y bits					
	•		nignest phone	y interrupt)						
	•									
	•									
	001 = Interru	pt is Priority 1	ahlad							
hit 3-0		tad. Read as "	abieu 0'							
5-0	ommplemen	neu. Neau do	0							

REGISTER 7-23: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

REGISTER 7-32: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	LVDIP2	LVDIP1	LVDIP0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

bit 2-0 LVDIP<2:0>: Low-Voltage Detect Interrupt Priority bits 111 = Interrupt is Priority 7 (highest priority interrupt)

- 001 = Interrupt is Priority 1

000 = Interrupt source is disabled

REGISTER 7-33: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0

_	CTMUIP2	CTMUIP1	CTMUIP0	—	 	_
bit 7						bit 0

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

9.2.2 IDLE MODE

Idle mode has these features:

- The CPU will stop executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Selective Peripheral Module Control").
- If the WDT or FSCM is enabled, the LPRC will also remain active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution begins immediately, starting with the instruction following the PWRSAV instruction or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction (except for Deep Sleep mode) will be held off until entry into Sleep or Idle mode has completed. The device will then wake-up from Sleep or Idle mode.

9.2.4 DEEP SLEEP MODE

In PIC24FJ64GB004 family devices, Deep Sleep mode is intended to provide the lowest levels of power consumption available, without requiring the use of external switches to completely remove all power from the device. Entry into Deep Sleep mode is completely under software control. Exit from Deep Sleep mode can be triggered from any of the following events:

- POR event
- MCLR event
- RTCC alarm (If the RTCC is present)
- External Interrupt 0
- Deep Sleep Watchdog Timer (DSWDT) time-out

In Deep Sleep mode, it is possible to keep the device Real-Time Clock and Calendar (RTCC) running without the loss of clock cycles.

The device has a dedicated Deep Sleep Brown-out Reset (DSBOR) and a Deep Sleep Watchdog Timer Reset (DSWDT) for monitoring voltage and time-out events. The DSBOR and DSWDT are independent of the standard BOR and WDT used with other power-managed modes (Sleep, Idle and Doze). **Note:** Since Deep Sleep mode powers down the microcontroller by turning off the on-chip VDDCORE voltage regulator, Deep Sleep capability is available only when operating with the internal regulator enabled.

9.2.4.1 Entering Deep Sleep Mode

Deep Sleep mode is entered by setting the DSEN bit in the DSCON register, and then executing a SLEEP instruction (PWRSAV #SLEEP_MODE) within one to three instruction cycles to minimize the chance that Deep Sleep will be spuriously entered.

If the PWRSAV command is not given within three instruction cycles, the DSEN bit will be cleared by the hardware and must be set again by the software before entering Deep Sleep mode. The DSEN bit is also automatically cleared when exiting the Deep Sleep mode.

Note:	To re-enter Deep Sleep after a Deep Sleep							
	wake-up, allow a delay of at least 3 TCY							
	after clearing the RELEASE bit.							

The sequence to enter Deep Sleep mode is:

- 1. If the application requires the Deep Sleep WDT, enable it and configure its clock source (see **Section 9.2.4.7 "Deep Sleep WDT"** for details).
- If the application requires Deep Sleep BOR, enable it by programming the DSBOREN Configuration bit (CW4<6>).
- 3. If the application requires wake-up from Deep Sleep on RTCC alarm, enable and configure the RTCC module (see Section 20.0 "Real-Time Clock and Calendar (RTCC)" for more information).
- 4. If needed, save any critical application context data by writing it to the DSGPR0 and DSGPR1 registers (optional).
- 5. Enable Deep Sleep mode by setting the DSEN bit (DSCON<15>).
- 6. Enter Deep Sleep mode by immediately issuing a PWRSAV #0 instruction.

Any time the DSEN bit is set, all bits in the DSWAKE register will be automatically cleared.

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

10.2 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the A/D port pins. Setting a port pin as an analog input also requires that the corresponding TRIS bit be set. If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin that is defined as a digital input (including the ANx pins) may cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP (Example 10-1).

EXAMPLE 10-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV	W0, TRISB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

10.2.2 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Pins that are used as digital only inputs are able to handle DC voltages up to 5.5V, a level typical for digital logic circuits. In contrast, pins that also have analog input functions of any kind can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should be avoided.

Table 10-1 summarizes the input voltage capabilities. Refer to **Section 29.0 "Electrical Characteristics"** for more details.

Port or Pin	Tolerate d Input	Description
PORTA<4:0>	Vdd	Only VDD input
PORTB<15:13>		levels are tolerated.
PORTB<4:0>		
PORTC<3:0>(1)		
PORTA<10:7> ⁽¹⁾	5.5V	Tolerates input levels
PORTB<11:7>		above VDD, useful for
PORTB<5>		most standard logic.
PORTC<9:4> ⁽¹⁾		

TABLE 10-1: INPUT VOLTAGE TOLERANCE

Note 1: Not available on 28-pin devices.

10.4.3.3 Mapping Limitations

The control schema of the Peripheral Pin Select is extremely flexible. Other than systematic blocks that prevent signal contention caused by two physical pins being configured as the same functional input, or two functional outputs configured as the same pin, there are no hardware enforced lock outs. The flexibility extends to the point of allowing a single input to drive multiple peripherals or a single functional output to drive multiple output pins.

10.4.3.4 PPS Mapping Exceptions for PIC24FJ64GB0 Family Devices

Although the PPS registers allow for up to 32 remappable pins, not all of these are implemented in all devices. Exceptions and unimplemented RPn pins are listed in Table 10-4.

TABLE 10-4: REMAPPABLE PIN EXCEPTIONS FOR PIC24FJ64GB004 FAMILY DEVICES

Device Pin	RP Pins (I/O)				
Count	Total	Unimplemented			
28 Pins	15	RP12, RP16-RP25			
44 Pins	25	RP12			

10.4.4 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. PIC24F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- Configuration bit remapping lock

10.4.4.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 46h to OSCCON<7:0>.
- 2. Write 57h to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the Peripheral Pin Selects to be configured with a single unlock sequence, followed by an update to all control registers, then locked with a second lock sequence.

10.4.4.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a Configuration Mismatch Reset will be triggered.

10.4.4.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (CW2<4>) Configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute and the Peripheral Pin Select Control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows users unlimited access (with the proper use of the unlock sequence) to the Peripheral Pin Select registers.

REGISTER 10-5: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0
bit 15							bit 8

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	IC2R<4:0>: Assign Input Capture 2 (IC2) to Corresponding RPn or RPIn Pin bits
bit 7-5	Unimplemented: Read as '0'
bit 4-0	IC1R<4:0>: Assign Input Capture 1 (IC1) to Corresponding RPn or RPIn Pin bits

REGISTER 10-6: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

-n = Value at POR '1'		'1' = Bit is set	= Bit is set		'0' = Bit is cleared		x = Bit is unknown	
R = Readable	e bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
Legend:								
bit 7				•			bit 0	
_	—	—	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
bit 15				•			bit 8	
_	_	—	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	

bit 15-13 **Unimplemented:** Read as '0'

bit 12-8 IC4R<4:0>: Assign Input Capture 4 (IC4) to Corresponding RPn or RPIn Pin bits

bit 7-5 Unimplemented: Read as '0'

bit 4-0 IC3R<4:0>: Assign Input Capture 3 (IC3) to Corresponding RPn or RPIn Pin bits

REGISTER 10-27: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	—	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is clea	= Bit is cleared		own

bit 15-13 Unimplemented: Read as '0'

- bit 12-8 **RP25R<5:0>:** RP25 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP25 (see Table 10-3 for peripheral function numbers).
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP24R<5:0>:** RP24 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP24 (see Table 10-3 for peripheral function numbers).

Note 1: This register is unimplemented in 28-pin devices; all bits read as '0'.

REGISTER 15-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- bit 4-2 SPRE<2:0>: Secondary Prescale bits (Master mode)
 - 111 = Secondary prescale 1:1
 - 110 = Secondary prescale 2:1
 - ... 000 = Secondary prescale 8:1
- bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)
 - 11 = Primary prescale 1:1
 - 10 = Primary prescale 4:1
 - 01 = Primary prescale 16:1
 - 00 = Primary prescale 64:1
- Note 1: If DISSCK = 0, SCKx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - 2: If DISSDO = 0, SDOx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - **3:** The CKE bit is not used in the Framed SPI modes. The user should program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 4: If SSEN = 1, SSx must be configured to an available RPn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2

	D 444.0	D 444 A						
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	SPIFPOL	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	—	—	—	—	—	SPIFE	SPIBEN	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'		
-n = Value at f	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown	
							,	
bit 15	FRMEN: Fran	ned SPIx Supp	ort bit					
	1 = Framed S	Plx support en	abled					
	0 = Framed S	Plx support dis	abled					
bit 14	SPIFSD: Fran	ne Sync Pulse	Direction Cont	rol on SSx Pin	bit			
	1 = Frame syr	nc pulse input (slave)					
	0 = Frame syr	nc pulse output	(master)					
bit 13	SPIFPOL: Fra	ame Sync Puls	e Polarity bit (F	rame mode on	ıly)			
	1 = Frame syr	nc pulse is activ	/e-high					
	0 = Frame syr	nc pulse is activ	/e-low					
bit 12-2	Unimplement	ted: Read as ')'					
bit 1	SPIFE: Frame Sync Pulse Edge Select bit							
	1 = Frame sync pulse coincides with first bit clock							
	0 = Frame syr	nc puise preced	des first bit cloo	СК				
bit 0	SPIBEN: Enh	anced Buffer E	nable bit					
	1 = Enhanced	I buffer enabled						
			а (сеуасу тюо					

18.7.2 USB INTERRUPT REGISTERS

REGISTER 18-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	K = Write '1' to clear bit					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	IDIF: ID State Change Indicator bit
	1 = Change in ID state is detected
	0 = No ID state change
bit 6	T1MSECIF: 1 Millisecond Timer bit
	1 = The 1 millisecond timer has expired
	0 = The 1 millisecond timer has not expired
bit 5	LSTATEIF: Line State Stable Indicator bit
	 1 = USB line state (as defined by the SE0 and JSTATE bits) has been stable for 1 ms, but different from last time
	0 = USB line state has not been stable for 1 ms
bit 4	ACTVIF: Bus Activity Indicator bit
	1 = Activity on the D+/D- lines or VBUS is detected
	0 = No activity on the D+/D- lines or VBUS is detected
bit 3	SESVDIF: Session Valid Change Indicator bit
	1 = VBUS has crossed VA_SESS_END (as defined in the USB OTG Specification) ⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 2	SESENDIF: B-Device VBUS Change Indicator bit
	 1 = VBUS change on B-device is detected; VBUS has crossed VB_SESS_END (as defined in the USB OTG Specification)⁽¹⁾
	0 = VBUS has not crossed VA_SESS_END
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVDIF A-Device VBUS Change Indicator bit
	1 = VBUS change on A-device is detected; VBUS has crossed VA_VBUS_VLD (as defined in the USB OTG Specification) ⁽¹⁾
	0 = No VBUS change on A-device is detected
Note 1:	VBUS threshold crossings may be either rising or falling.

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

REGISTER 20-6: WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0, HSC	R/W-x, HSC	R/W-x, HSC	R/W-x, HSC				
—	—	—	—	—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0, HSC	U-0, HSC	R/W-x, HSC					
—	—	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared	x = Bit is unknown		

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 20-7: MINSEC: MINUTES AND SECONDS VALUE REGISTER

U-0, HSC	R/W-x, HSC						
—	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8

U-0, HSC	R/W-x, HSC						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

REGISTER 26-1: CW1: FLASH CONFIGURATION WORD 1

U-1	U-1	U-1	U-1	U-1	U-1	U-1	U-1
_	—		—	—	—	—	—
bit 23							bit 16

r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1
r	JTAGEN ⁽¹⁾	GCP	GWRP	DEBUG	—	ICS1	ICS0
bit 15							bit 8

R/PO-1	R/PO-1	U-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	/DTEN WINDIS —		FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

Legend:	r = Reserved bit			
R = Readable bit PO = Program Once bit		U = Unimplemented bit, read as '0'		
-n = Value when device is ur	programmed	'1' = Bit is set	'0' = Bit is cleared	

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: The value is unknown; program as '0'
bit 14	JTAGEN: JTAG Port Enable bit ⁽¹⁾
	1 = JTAG port is enabled0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	1 = Code protection is disabled0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	1 = Writes to program memory are allowed0 = Writes to program memory are disabled
bit 11	DEBUG: Background Debugger Enable bit
	1 = Device resets into Operational mode0 = Device resets into Debug mode
bit 10	Unimplemented: Read as '1'
bit 9-8	ICS<1:0>: Emulator Pin Placement Select bits
	 11 = Emulator functions are shared with PGEC1/PGED1 10 = Emulator functions are shared with PGEC2/PGED2 01 = Emulator functions are shared with PGEC3/PGED3 00 = Reserved; do not use
bit 7	FWDTEN: Watchdog Timer Enable bit
	1 - Matabalan Timar is anablad
	0 = Watchdog Timer is disabled
bit 6	 Watchdog Timer is disabled WINDIS: Windowed Watchdog Timer Disable bit
bit 6	 a = Watchdog Timer is enabled b = Watchdog Timer is disabled WINDIS: Windowed Watchdog Timer Disable bit 1 = Standard Watchdog Timer is enabled 0 = Windowed Watchdog Timer is enabled; FWDTEN must be '1'
bit 6 bit 5	 a = Watchdog Timer is enabled b = Watchdog Timer is disabled WINDIS: Windowed Watchdog Timer Disable bit 1 = Standard Watchdog Timer is enabled b = Windowed Watchdog Timer is enabled; FWDTEN must be '1' Unimplemented: Read as '1'
bit 6 bit 5 bit 4	 a = Watchdog Timer is enabled b = Watchdog Timer is disabled WINDIS: Windowed Watchdog Timer Disable bit a = Standard Watchdog Timer is enabled b = Windowed Watchdog Timer is enabled; FWDTEN must be '1' Unimplemented: Read as '1' FWPSA: WDT Prescaler Ratio Select bit b = Prescaler ratio of 1:128 c = Prescaler ratio of 1:32

Note 1: The JTAGEN bit can only be modified using In-Circuit Serial Programming[™] (ICSP[™]). It cannot be modified while connected through the JTAG interface.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

DC CHARACTERISTICS			$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$				
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions			
Idle Current (I	IDLE) ⁽²⁾			•			
DC41	67	100	μA	-40°C			
DC41a	68	100	μA	+25°C	a a) (3)		
DC41b	74	100	μΑ	+85°C	2.00(*)		
DC41f	102	120	μΑ	+125C		0.5.14100	
DC41c	166	265	μΑ	-40°C		- 0.5 MIPS	
DC41d	167	265	μΑ	+25°C	0 0) (4)		
DC41e	177	265	μΑ	+85°C	3.30(1)		
DC41g	225	285	μΑ	+125C			
DC40	125	180	μΑ	-40°C			
DC40a	125	180	μΑ	+25°C	0 0) (³)		
DC40b	125	180	μΑ	+85°C	2.00(*)	1 MIPS	
DC40c	167	200	μΑ	+125C			
DC40d	210	350	μΑ	-40°C			
DC40e	210	350	μΑ	+25°C	a av (4)		
DC40f	210	350	μΑ	+85°C	3.30(1)		
DC40g	305	370	μΑ	+125C			
DC43	0.5	0.6	mA	-40°C			
DC43a	0.5	0.6	mA	+25°C	0 0) (³)	4 14/20	
DC43b	0.5	0.6	mA	+85°C	2.00		
DC43c	0.54	0.62	mA	+125C			
DC43d	0.75	0.95	mA	-40°C		4 MIPS	
DC43e	0.75	0.95	mA	+25°C	2 2) (4)		
DC43f	0.75	0.95	mA	+85°C	3.30(1)		
DC43g	0.80	0.97	mA	+125C			
DC47	2.6	3.3	mA	-40°C			
DC47a	2.6	3.3	mA	+25°C	2 EV(3)		
DC47b	2.6	3.3	mA	+85°C	2.50(-)		
DC47f	2.7	3.3	mA	+125C			
DC47c	2.9	3.5	mA	-40°C			
DC47d	2.9	3.5	mA	+25°C	2 2 4		
DC47e	2.9	3.5	mA	+85°C	3.3V\''		
DC47g	3.0	3.6	mA	+125C			

TABLE 29-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with the core off, OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.

3: On-chip voltage regulator disabled (DISVREG tied to VDD).

4: On-chip voltage regulator enabled (DISVREG tied to Vss). Low-Voltage Detect (LVD) and Brown-out Detect (BOD) are enabled.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimension	n Limits	MIN	NOM	MAX			
Number of Pins	Ν		28				
Pitch		.100 BSC					
Top to Seating Plane	А	-	-	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	-	-			
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eB	-	-	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

NOTES: