

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2455-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.4.2 OSCILLATOR TRANSITIONS

PIC18F2455/2550/4455/4550 devices contain circuitry to prevent clock "glitches" when switching between clock sources. A short pause in the device clock occurs during the clock switch. The length of this pause is the

sum of two cycles of the old clock source and three to four cycles of the new clock source. This formula assumes that the new clock source is stable.

Clock transitions are discussed in greater detail in **Section 3.1.2 "Entering Power-Managed Modes"**.

REGISTER 2-2: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0	R/W-1	R/W-0	R/W-0	R ⁽¹⁾	R-0	R/W-0	R/W-0
IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IDLEN: Idle Enable bit
	1 = Device enters Idle mode on SLEEP instruction
	0 = Device enters Sleep mode on SLEEP instruction
bit 6-4	IRCF2:IRCF0: Internal Oscillator Frequency Select bits
	111 = 8 MHz (INTOSC drives clock directly)
	110 = 4 MHz
	101 = 2 MHz
	$100 = 1 \text{ MHz}^{(3)}$
	011 = 500 kHz 010 = 250 kHz
	0.10 = 250 kHz
	000 = 31 kHz (from either INTOSC/256 or INTRC directly) ⁽²⁾
bit 3	OSTS: Oscillator Start-up Time-out Status bit ⁽¹⁾
	1 = Oscillator Start-up Timer time-out has expired; primary oscillator is running
	0 = Oscillator Start-up Timer time-out is running; primary oscillator is not ready
bit 2	IOFS: INTOSC Frequency Stable bit
	1 = INTOSC frequency is stable
	0 = INTOSC frequency is not stable
bit 1-0	SCS1:SCS0: System Clock Select bits
	1x = Internal oscillator
	01 = Timer1 oscillator
	00 = Primary oscillator
Note 1: D	epends on the state of the IESO Configuration bit.

- 2: Source selected by the INTSRC bit (OSCTUNE<7>), see text.
 - 3: Default output frequency of INTOSC on Reset.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
EEADR	EEPROM Ad	dress Register							0000 0000	55, 91
EEDATA	EEPROM Da	ita Register							0000 0000	55, 91
EECON2	EEPROM Co	ntrol Register	2 (not a physic	cal register)					0000 0000	55, 82
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000	55, 83
IPR2	OSCFIP	CMIP	USBIP	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	1111 1111	56, 109
PIR2	OSCFIF	CMIF	USBIF	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	0000 0000	56, 105
PIE2	OSCFIE	CMIE	USBIE	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	0000 0000	56, 107
IPR1	SPPIP ⁽³⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	56, 108
PIR1	SPPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	56, 104
PIE1	SPPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	56, 106
OSCTUNE	INTSRC	_	_	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	56, 28
TRISE ⁽³⁾	_	_	_	_	_	TRISE2	TRISE1	TRISE0	111	56, 126
TRISD ⁽³⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	56, 124
TRISC	TRISC7	TRISC6	_	_	_	TRISC2	TRISC1	TRISC0	11111	56, 121
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	56, 118
TRISA	_	TRISA6 ⁽⁴⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	-111 1111	56, 115
LATE ⁽³⁾	_	_	_	_	_	LATE2	LATE1	LATE0	xxx	56, 126
LATD ⁽³⁾	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX XXXX	56, 124
LATC	LATC7	LATC6	_	_	_	LATC2	LATC1	LATC0	xxxxx	56, 121
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX XXXX	56, 118
LATA	_	LATA6 ⁽⁴⁾	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	-xxx xxxx	56, 115
PORTE	RDPU ⁽³⁾	_	_	_	RE3 ⁽⁵⁾	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	0 x000	56, 125
PORTD ⁽³⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	56, 124
PORTC	RC7	RC6	RC5 ⁽⁶⁾	RC4 ⁽⁶⁾	_	RC2	RC1	RC0	xxxx -xxx	56, 121
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	56, 118
PORTA	_	RA6 ⁽⁴⁾	RA5	RA4	RA3	RA2	RA1	RA0	-x0x 0000	56, 115
UEP15	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP14	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP13	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP12		_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP11		_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP10		_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP9		_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP8	_	_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP7	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP6	_	_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP5	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP4	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP3	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP2	_			EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP1	_	_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP0				EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172

TABLE 5-2:	REGISTER	FILE SUMMARY	(CONTINUED)

Legend:

x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.
Bit 21 of the TBLPTRU allows access to the device Configuration bits.

Note 1:

2: The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as '0'.

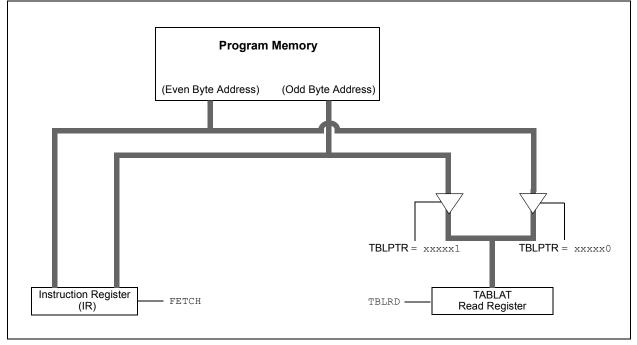
3: These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-'.

4: RA6 is configured as a port pin based on various primary oscillator modes. When the port pin is disabled, all of the associated bits read '0'.

5: RE3 is only available as a port pin when the MCLRE Configuration bit is clear; otherwise, the bit reads as '0'.

6: RC5 and RC4 are only available as port pins when the USB module is disabled (UCON<3> = 0).

7: I^2C^{TM} Slave mode only.


6.3 Reading the Flash Program Memory

The TBLRD instruction is used to retrieve data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation.

The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 6-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 6-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 6-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW MOVWF MOVWF MOVLW MOVLW	CODE_ADDR_UPPER TBLPTRU CODE_ADDR_HIGH TBLPTRH CODE_ADDR_LOW TBLPTRL	oad TBLPTR with ddress of the wo	
READ WORD				
—	TBLRD*+		ead into TABLAT	and increment
	MOVF	TABLAT, W	et data	
	MOVWF	WORD_EVEN		
	TBLRD*+		ead into TABLAT	and increment
	MOVF	TABLAT, W	et data	
	MOVF	WORD_ODD		

10.3 PORTC, TRISC and LATC Registers

PORTC is a 7-bit wide, bidirectional port. The corresponding Data Direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a high-impedance mode). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

The RC3 pin is not implemented in these devices.

The Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register read and write the latched output value for PORTC.

PORTC is primarily multiplexed with serial communication modules, including the EUSART, MSSP module and the USB module (Table 10-5). Except for RC4 and RC5, PORTC uses Schmitt Trigger input buffers.

Pins RC4 and RC5 are multiplexed with the USB module. Depending on the configuration of the module, they can serve as the differential data lines for the onchip USB transceiver, or the data inputs from an external USB transceiver. Both RC4 and RC5 have TTL input buffers instead of the Schmitt Trigger buffers on the other pins.

Unlike other PORTC pins, RC4 and RC5 do not have TRISC bits associated with them. As digital ports, they can only function as digital inputs. When configured for USB operation, the data direction is determined by the configuration and status of the USB module at a given time. If an external transceiver is used, RC4 and RC5 always function as inputs from the transceiver. If the on-chip transceiver is used, the data direction is determined by the operation being performed by the module at that time.

When the external transceiver is enabled, RC2 also serves as the output enable control to the transceiver. Additional information on configuring USB options is provided in Section 17.2.2.2 "External Transceiver".

When enabling peripheral functions on PORTC pins other than RC4 and RC5, care should be taken in defining the TRIS bits. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. The user should refer to the corresponding peripheral section for the correct TRIS bit settings.

Note:	On a Power-on Reset, these pins, except
	RC4 and RC5, are configured as digital
	inputs. To use pins RC4 and RC5 as
	digital inputs, the USB module must be
	disabled (UCON<3> = 0) and the on-chip
	USB transceiver must be disabled
	(UCFG<3> = 1).

The contents of the TRISC register are affected by peripheral overrides. Reading TRISC always returns the current contents, even though a peripheral device may be overriding one or more of the pins.

EXAMPLE 10-3: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	07h	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; RC<5:0> as outputs
		; RC<7:6> as inputs

Pin	Function	TRIS Setting	I/O	I/O Type	Description		
RC0/T1OSO/	RC0	0	OUT	DIG	LATC<0> data output.		
T13CKI		1	IN	ST	PORTC<0> data input.		
	T10S0	x	OUT	ANA	Timer1 oscillator output; enabled when Timer1 oscillator enabled. Disables digital I/O.		
	T13CKI	1	IN	ST	Timer1/Timer3 counter input.		
RC1/T <u>10SI</u> /	RC1	0	OUT	DIG	LATC<1> data output.		
CCP2/UOE		1	IN	ST	PORTC<1> data input.		
	T10SI	х	IN	ANA	Timer1 oscillator input; enabled when Timer1 oscillator enabled. Disables digital I/O.		
	CCP2 ⁽¹⁾	0	OUT	DIG	CCP2 compare and PWM output; takes priority over port data.		
		1	IN	ST	CCP2 capture input.		
	UOE	0	OUT	DIG	External USB transceiver OE output.		
RC2/CCP1/	RC2	0	OUT	DIG	LATC<2> data output.		
P1A		1	IN	ST	PORTC<2> data input.		
	CCP1	0	OUT	DIG	ECCP1 compare and PWM output; takes priority over port data.		
		1	IN	ST	ECCP1 capture input.		
	P1A ⁽³⁾	0	OUT	DIG	ECCP1 Enhanced PWM output, Channel A; takes priority over port data. May be configured for tri-state during Enhanced PWM shutdown events.		
RC4/D-/VM	RC4	(2)	IN	TTL	PORTC<4> data input; disabled when USB module or on-chip transceiver are enabled.		
	D-	(2)	OUT	XCVR	USB bus differential minus line output (internal transceiver).		
		(2)	IN	XCVR	USB bus differential minus line input (internal transceiver).		
	VM	(2)	IN	TTL	External USB transceiver VM input.		
RC5/D+/VP	RC5	(2)	IN	TTL	PORTC<5> data input; disabled when USB module or on-chip transceiver are enabled.		
	D+	(2)	OUT	XCVR	USB bus differential plus line output (internal transceiver).		
		(2)	IN	XCVR	USB bus differential plus line input (internal transceiver).		
	VP	(2)	IN	TTL	External USB transceiver VP input.		
RC6/TX/CK	RC6	0	OUT	DIG	LATC<6> data output.		
		1	IN	ST	PORTC<6> data input.		
	TX	0	OUT	DIG	Asynchronous serial transmit data output (EUSART module); takes priority over port data. User must configure as output.		
	СК	0	OUT	DIG	Synchronous serial clock output (EUSART module); takes priority over port data.		
		1	IN	ST	Synchronous serial clock input (EUSART module).		

TABLE 10-5: PORTC I/O SUMMARY

Legend: OUT = Output, IN = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input,

TTL = TTL Buffer Input, XCVR = USB transceiver, x = Don't care (TRIS bit does not affect port direction or is overridden for this option)

Note 1: Default pin assignment. Alternate pin assignment is RB3 (when CCP2MX = 0).

2: RC4 and RC5 do not have corresponding TRISC bits. In Port mode, these pins are input only. USB data direction is determined by the USB configuration.

3: 40/44-pin devices only.

Pin	Function	TRIS Setting	I/O	I/О Туре	Description		
RE0/AN5/	RE0	0	OUT	DIG	LATE<0> data output; not affected by analog input.		
CK1SPP		1	IN	ST	PORTE<0> data input; disabled when analog input enabled.		
	AN5	1	IN	ANA	A/D Input Channel 5; default configuration on POR.		
	CK1SPP	0	OUT	DIG	SPP clock 1 output (SPP enabled).		
RE1/AN6/	RE1	0	OUT	DIG	LATE<1> data output; not affected by analog input.		
CK2SPP		1	IN	ST	PORTE<1> data input; disabled when analog input enabled.		
	AN6	1	IN	ANA	A/D Input Channel 6; default configuration on POR.		
	CK2SPP	0	OUT	DIG	SPP clock 2 output (SPP enabled).		
RE2/AN7/	RE2	0	OUT	DIG	LATE<2> data output; not affected by analog input.		
OESPP		1	IN	ST	PORTE<2> data input; disabled when analog input enabled.		
	AN7	1	IN	ANA	A/D Input Channel 7; default configuration on POR.		
	OESPP	0	OUT	DIG	SPP enable output (SPP enabled).		
MCLR/VPP/ RE3	MCLR	_(1)	IN	ST	External Master Clear input; enabled when MCLRE Configuration bit is set.		
	VPP	(1)	IN	ANA	High-voltage detection, used for ICSP™ mode entry detection. Always available regardless of pin mode.		
	RE3	(1)	IN	ST	PORTE<3> data input; enabled when MCLRE Configuration bit is clear.		

TABLE 10-9: PORTE I/O SUMMARY

Legend: OUT = Output, IN = Input, ANA = Analog Signal, DIG = Digital Output, ST = Schmitt Buffer Input

Note 1: RE3 does not have a corresponding TRISE<3> bit. This pin is always an input regardless of mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTE	RDPU ⁽³⁾		_	_	RE3 ^(1,2)	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	56
LATE ⁽³⁾	_	_		_	_	LATE2	LATE1	LATE0	56
TRISE ⁽³⁾	—	_	—	—	_	TRISE2	TRISE1	TRISE0	56
ADCON1	—	_	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	54
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	55
SPPCON ⁽³⁾	_	_		_	_	_	SPPOWN	SPPEN	57
SPPCFG ⁽³⁾	CLKCFG1	CLKCFG0	CSEN	CLK1EN	WS3	WS2	WS1	WS0	57

TABLE 10-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTE.

Note 1: Implemented only when Master Clear functionality is disabled (MCLRE Configuration bit = 0).

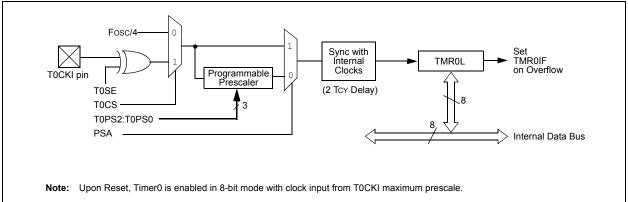
2: RE3 is the only PORTE bit implemented on both 28-pin and 40/44-pin devices. All other bits are implemented only when PORTE is implemented (i.e., 40/44-pin devices).

3: These registers or bits are unimplemented on 28-pin devices.

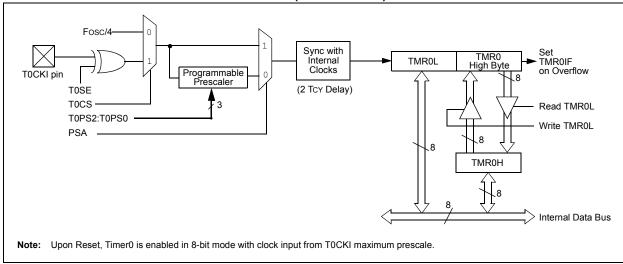
11.1 Timer0 Operation

Timer0 can operate as either a timer or a counter; the mode is selected by clearing the T0CS bit (T0CON<5>). In Timer mode, the module increments on every clock by default unless a different prescaler value is selected (see **Section 11.3 "Prescaler"**). If the TMR0 register is written to, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

The Counter mode is selected by setting the T0CS bit (= 1). In Counter mode, Timer0 increments either on every rising or falling edge of pin RA4/T0CKI/C1OUT/ RCV. The incrementing edge is determined by the Timer0 Source Edge Select bit, T0SE (T0CON<4>); clearing this bit selects the rising edge. Restrictions on the external clock input are discussed below.


An external clock source can be used to drive Timer0; however, it must meet certain requirements to ensure that the external clock can be synchronized with the internal phase clock (Tosc). There is a delay between synchronization and the onset of incrementing the timer/counter.

11.2 Timer0 Reads and Writes in 16-Bit Mode


TMR0H is not the actual high byte of Timer0 in 16-bit mode. It is actually a buffered version of the real high byte of Timer0 which is not directly readable nor writable (refer to Figure 11-2). TMR0H is updated with the contents of the high byte of Timer0 during a read of TMR0L. This provides the ability to read all 16 bits of Timer0 without having to verify that the read of the high and low byte were valid, due to a rollover between successive reads of the high and low byte.

Similarly, a write to the high byte of Timer0 must also take place through the TMR0H Buffer register. The high byte is updated with the contents of TMR0H when a write occurs to TMR0L. This allows all 16 bits of Timer0 to be updated at once.

FIGURE 11-1: TIMER0 BLOCK DIAGRAM (8-BIT MODE)

12.7 Considerations in Asynchronous Counter Mode

Following a Timer1 interrupt and an update to the TMR1 registers, the Timer1 module uses a falling edge on its clock source to trigger the next register update on the rising edge. If the update is completed after the clock input has fallen, the next rising edge will not be counted.

If the application can reliably update TMR1 before the timer input goes low, no additional action is needed. Otherwise, an adjusted update can be performed

following a later Timer1 increment. This can be done by monitoring TMR1L within the interrupt routine until it increments, and then updating the TMR1H:TMR1L register pair while the clock is low, or one-half of the period of the clock source. Assuming that Timer1 is being used as a Real-Time Clock, the clock source is a 32.768 kHz crystal oscillator; in this case, one-half period of the clock is 15.25 μ s.

The Real-Time Clock application code in Example 12-1 shows a typical ISR for Timer1, as well as the optional code required if the update cannot be done reliably within the required interval.

EXAMPLE 12-1: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

RTCinit			
	MOVLW	80h	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T1CON	; Asynchronous operation, external oscillator
	CLRF	secs	; Initialize timekeeping registers
	CLRF	mins	;
	MOVLW	.12	
	MOVWF	hours	
	BSF	PIE1, TMR1IE	; Enable Timerl interrupt
	RETURN		
RTCisr			
			; Insert the next 4 lines of code when TMR1
			; can not be reliably updated before clock pulse goes low
	BTFSC	TMR1L,0	; wait for TMR1L to become clear
	BRA	\$-2	; (may already be clear)
	BTFSS	TMR1L,0	; wait for TMR1L to become set
	BRA	\$-2	; TMR1 has just incremented
			; If TMR1 update can be completed before clock pulse goes low
			; Start ISR here
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVLW	.59	; 60 seconds elapsed?
	CPFSGT	secs	
	RETURN		; No, done
	CLRF	secs	; Clear seconds
	INCF	mins, F	; Increment minutes
	MOVLW	.59	; 60 minutes elapsed?
	CPFSGT	mins	
	RETURN		; No, done
	CLRF	mins	; clear minutes
	INCF	hours, F	; Increment hours
	MOVLW	.23	; 24 hours elapsed?
	CPFSGT	hours	
	RETURN		; No, done
	CLRF	hours	; Reset hours
	RETURN		; Done

17.2.2.8 Internal Regulator

The PIC18FX455/X550 devices have a built-in 3.3V regulator to provide power to the internal transceiver and provide a source for the internal/external pull-ups. An external 220 nF (±20%) capacitor is required for stability.

Note:	The drive from VUSB is sufficient to only
	drive an external pull-up in addition to the
	internal transceiver.

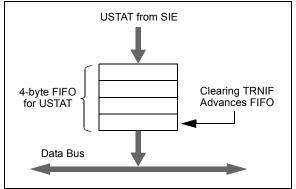
The regulator can be enabled or disabled through the VREGEN Configuration bit. When enabled, the voltage is visible on pin VUSB whenever the USBEN bit is also set. When the regulator is disabled (VREGEN = 0), a 3.3V source must be provided through the VUSB pin for the internal transceiver.

- **Note 1:** Do not enable the internal regulator if an external regulator is connected to VUSB.
 - 2: VDD must be equal to or greater than VUSB at all times, even with the regulator disabled.

17.2.3 USB STATUS REGISTER (USTAT)

The USB Status register reports the transaction status within the SIE. When the SIE issues a USB transfer complete interrupt, USTAT should be read to determine the status of the transfer. USTAT contains the transfer endpoint number, direction and Ping-Pong Buffer Pointer value (if used).

Note:	The data in the USB Status register is valid
	only when the TRNIF interrupt flag is
	asserted.


The USTAT register is actually a read window into a four-byte status FIFO, maintained by the SIE. It allows the microcontroller to process one transfer while the

SIE processes additional endpoints (Figure 17-4). When the SIE completes using a buffer for reading or writing data, it updates the USTAT register. If another USB transfer is performed before a transaction complete interrupt is serviced, the SIE will store the status of the next transfer into the status FIFO.

Clearing the transfer complete flag bit, TRNIF, causes the SIE to advance the FIFO. If the next data in the FIFO holding register is valid, the SIE will reassert the interrupt within 5 TCY of clearing TRNIF. If no additional data is present, TRNIF will remain clear; USTAT data will no longer be reliable.

Note: If an endpoint request is received while the USTAT FIFO is full, the SIE will automatically issue a NAK back to the host.

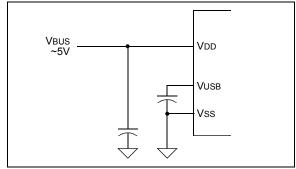
FIGURE 17-4: USTAT FIFO

17.6 USB Power Modes

Many USB applications will likely have several different sets of power requirements and configuration. The most common power modes encountered are Bus Power Only, Self-Power Only and Dual Power with Self-Power Dominance. The most common cases are presented here.

17.6.1 BUS POWER ONLY

In Bus Power Only mode, all power for the application is drawn from the USB (Figure 17-10). This is effectively the simplest power method for the device.

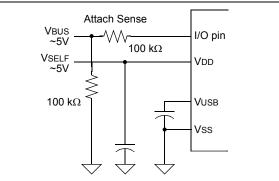

In order to meet the inrush current requirements of the USB 2.0 specifications, the total effective capacitance appearing across VBUS and ground must be no more than 10 μ F. If not, some kind of inrush limiting is required. For more details, see Section 7.2.4 of the USB 2.0 specification.

According to the USB 2.0 specification, all USB devices must also support a Low-Power Suspend mode. In the USB Suspend mode, devices must consume no more than 2.5 mA from the 5V VBUS line of the USB cable.

The host signals the USB device to enter the Suspend mode by stopping all USB traffic to that device for more than 3 ms. This condition will cause the IDLEIF bit in the UIR register to become set.

During the USB Suspend mode, the D+ or D- pull-up resistor must remain active, which will consume some of the allowed suspend current: 2.5 mA budget.

FIGURE 17-10: BUS POWER ONLY

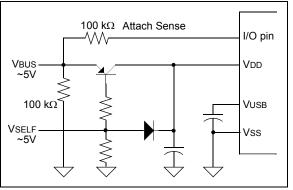

17.6.2 SELF-POWER ONLY

In Self-Power Only mode, the USB application provides its own power, with very little power being pulled from the USB. Figure 17-11 shows an example. Note that an attach indication is added to indicate when the USB has been connected and the host is actively powering VBUS.

In order to meet compliance specifications, the USB module (and the D+ or D- pull-up resistor) should not be enabled until the host actively drives VBUS high. One of the I/O pins may be used for this purpose.

The application should never source any current onto the 5V VBUS pin of the USB cable.

FIGURE 17-11: SELF-POWER ONLY


17.6.3 DUAL POWER WITH SELF-POWER DOMINANCE

Some applications may require a dual power option. This allows the application to use internal power primarily, but switch to power from the USB when no internal power is available. Figure 17-12 shows a simple Dual Power with Self-Power Dominance example, which automatically switches between Self-Power Only and USB Bus Power Only modes.

Dual power devices also must meet all of the special requirements for inrush current and Suspend mode current and must not enable the USB module until VBUS is driven high. For descriptions of those requirements, see Section 17.6.1 "Bus Power Only" and Section 17.6.2 "Self-Power Only".

Additionally, dual power devices must never source current onto the 5V VBUS pin of the USB cable.

FIGURE 17-12: DUAL POWER EXAMPLE

Note: Users should keep in mind the limits for devices drawing power from the USB. According to USB specification 2.0, this cannot exceed 100 mA per low-power device or 500 mA per high-power device.

PIC18F2455/2550/4455/4550

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Details on page
PIE2	OSCFIE	CMIE	USBIE	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	56
UCON	_	PPBRST	SE0	PKTDIS	USBEN	RESUME	SUSPND	_	57
UCFG	UTEYE	UOEMON	_	UPUEN	UTRDIS	FSEN	PPB1	PPB0	57
USTAT	—	ENDP3	ENDP2	ENDP1	ENDP0	DIR	PPBI	—	57
UADDR	_	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0	57
UFRML	FRM7	FRM6	FRM5	FRM4	FRM3	FRM2	FRM1	FRM0	57
UFRMH	—	—	_	_	—	FRM10	FRM9	FRM8	57
UIR	_	SOFIF	STALLIF	IDLEIF	TRNIF	ACTVIF	UERRIF	URSTIF	57
UIE	—	SOFIE	STALLIE	IDLEIE	TRNIE	ACTVIE	UERRIE	URSTIE	57
UEIR	BTSEF	—	_	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF	57
UEIE	BTSEE	—	_	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE	57
UEP0	—	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP1	—	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP2	—	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP3	—	—	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP4	—	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP5	—	—	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP6	—	—	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP7	—	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP8	—	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP9	—	—	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP10	—	—	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP11	—	—	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP12	—	—	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP13	_	—	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP14	_	_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57
UEP15	—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	57

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the USB module.

Note 1: This table includes only those hardware mapped SFRs located in Bank 15 of the data memory space. The Buffer Descriptor registers, which are mapped into Bank 4 and are not true SFRs, are listed separately in Table 17-5.

EXAMPLE 20-1: CALCULATING BAUD RATE ERROR

For a device with FOSC	of	6 MHz, desired baud rate of 9600, Asynchronous mode, 8-bit BRG:
Desired Baud Rate	=	Fosc/(64 ([SPBRGH:SPBRG] + 1))
Solving for SPBRGH:S	SPBI	RG:
Х	=	((FOSC/Desired Baud Rate)/64) – 1
	=	((16000000/9600)/64) - 1
	=	[25.042] = 25
Calculated Baud Rate	=	1600000/(64 (25 + 1))
	=	9615
Error	=	(Calculated Baud Rate - Desired Baud Rate)/Desired Baud Rate
	=	(9615 - 9600)/9600 = 0.16%

TABLE 20-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	55
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	55
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	—	WUE	ABDEN	55
SPBRGH	EUSART Baud Rate Generator Register High Byte								
SPBRG	EUSART B		55						

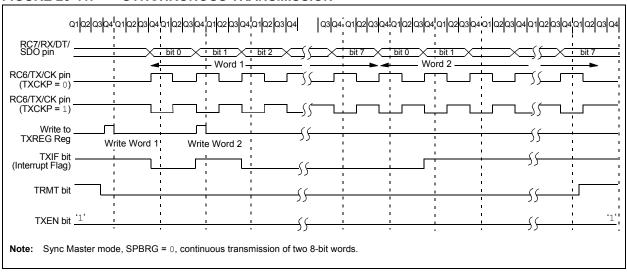
Legend: — = unimplemented, read as '0'. Shaded cells are not used by the BRG.

20.3 EUSART Synchronous Master Mode

The Synchronous Master mode is entered by setting the CSRC bit (TXSTA<7>). In this mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit, SYNC (TXSTA<4>). In addition, enable bit, SPEN (RCSTA<7>), is set in order to configure the TX and RX pins to CK (clock) and DT (data) lines, respectively.

The Master mode indicates that the processor transmits the master clock on the CK line.

Clock polarity (CK) is selected with the TXCKP bit (BAUDCON<4>). Setting TXCKP sets the Idle state on CK as high, while clearing the bit sets the Idle state as low. Data polarity (DT) is selected with the RXDTP bit (BAUDCON<5>). Setting RXDTP sets the Idle state on DT as high, while clearing the bit sets the Idle state as low. DT is sampled when CK returns to its idle state. This option is provided to support Microwire devices with this module.


20.3.1 EUSART SYNCHRONOUS MASTER TRANSMISSION

The EUSART transmitter block diagram is shown in Figure 20-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG is empty and the TXIF flag bit (PIR1<4>) is set. The interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXIE (PIE1<4>). TXIF is set regardless of the state of enable bit, TXIE; it cannot be cleared in software. It will reset only when new data is loaded into the TXREG register.

While flag bit, TXIF, indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 20-11: SYNCHRONOUS TRANSMISSION

24.0 HIGH/LOW-VOLTAGE DETECT (HLVD)

PIC18F2455/2550/4455/4550 devices have a High/Low-Voltage Detect module (HLVD). This is a programmable circuit that allows the user to specify both a device voltage trip point and the direction of change from that point. If the device experiences an excursion past the trip point in that direction, an interrupt flag is set. If the interrupt is enabled, the program execution will branch to the interrupt vector address and the software can then respond to the interrupt. The High/Low-Voltage Detect Control register (Register 24-1) completely controls the operation of the HLVD module. This allows the circuitry to be "turned off" by the user under software control which minimizes the current consumption for the device.

The block diagram for the HLVD module is shown in Figure 24-1.

REGISTER 24-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

			5	5444		5444	-
R/W-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
VDIRMAG	VDIRMAG — IRVS		HLVDEN	HLVDL3 ⁽¹⁾	HLVDL2 ⁽¹⁾	HLVDL1 ⁽¹⁾	HLVDL0 ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	VDIRMAG: V	oltage Directio	n Magnitude S	Select bit			
	1 = Event occ	urs when volta	ige equals or	exceeds trip po	oint (HLVDL3:HI	LDVL0)	
	0 = Event occ	urs when volta	ige equals or	falls below trip	point (HLVDL3:	HLVDL0)	
bit 6	Unimplemen	ted: Read as '	0'				
bit 5	IRVST: Interna	al Reference V	oltage Stable	Flag bit			
	1 = Indicates	that the voltag	e detect logic	will generate th	e interrupt flag	at the specified	voltage range
				-	ate the interrup	t flag at the spe	ecified voltage
	0		•	not be enabled	1		
bit 4	0	h/Low-Voltage	Detect Powe	r Enable bit			
	1 = HLVD ent						
	0 = HLVD dis			(1)			
bit 3-0		DL0: Voltage [
		0 1	it is used (inp	ut comes from	the HLVDIN pin	1)	
	1110 = Maxin	num setting					
	•						
	0000 = Minim	um setting					

Note 1: See Table 28-6 in Section 28.0 "Electrical Characteristics" for specifications.

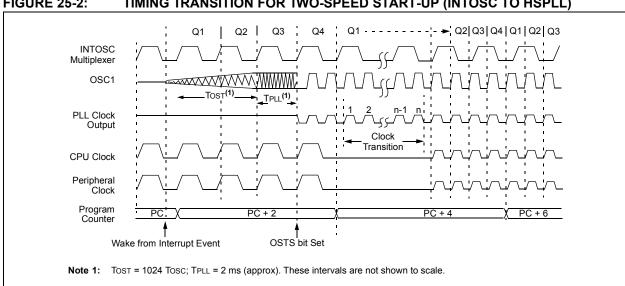
25.3 **Two-Speed Start-up**

The Two-Speed Start-up feature helps to minimize the latency period, from oscillator start-up to code execution, by allowing the microcontroller to use the INTRC oscillator as a clock source until the primary clock source is available. It is enabled by setting the IESO Configuration bit.

Two-Speed Start-up should be enabled only if the primary oscillator mode is XT, HS, XTPLL or HSPLL (Crystal-Based modes). Other sources do not require an OST start-up delay; for these, Two-Speed Start-up should be disabled.

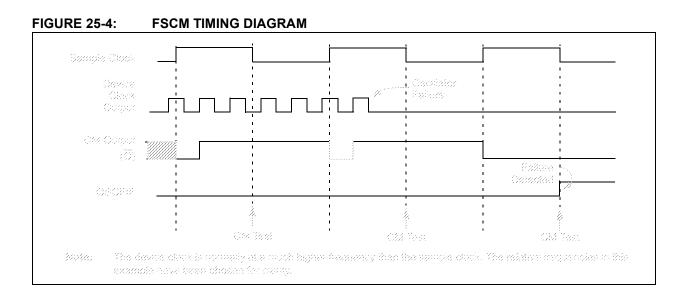
When enabled, Resets and wake-ups from Sleep mode cause the device to configure itself to run from the internal oscillator block as the clock source, following the time-out of the Power-up Timer after a Power-on Reset is enabled. This allows almost immediate code execution while the primary oscillator starts and the OST is running. Once the OST times out, the device automatically switches to PRI RUN mode.

Because the OSCCON register is cleared on Reset events, the INTOSC (or postscaler) clock source is not initially available after a Reset event; the INTRC clock is used directly at its base frequency. To use a higher clock speed on wake-up, the INTOSC or postscaler clock sources can be selected to provide a higher clock speed by setting bits, IRCF2:IRCF0, immediately after


Reset. For wake-ups from Sleep, the INTOSC or postscaler clock sources can be selected by setting IRCF2:IRCF0 prior to entering Sleep mode.

In all other power-managed modes, Two-Speed Start-up is not used. The device will be clocked by the currently selected clock source until the primary clock source becomes available. The setting of the IESO bit is ignored.

25.3.1 SPECIAL CONSIDERATIONS FOR USING TWO-SPEED START-UP


While using the INTRC oscillator in Two-Speed Start-up, the device still obeys the normal command sequences for entering power-managed modes, including serial SLEEP instructions (refer to Section 3.1.4 "Multiple Sleep Commands"). In practice, this means that user code can change the SCS1:SCS0 bit settings or issue SLEEP instructions before the OST times out. This would allow an application to briefly wake-up, perform routine "housekeeping" tasks and return to Sleep before the device starts to operate from the primary oscillator.

User code can also check if the primary clock source is currently providing the device clocking by checking the status of the OSTS bit (OSCCON<3>). If the bit is set, the primary oscillator is providing the clock. Otherwise, the internal oscillator block is providing the clock during wake-up from Reset or Sleep mode.

FIGURE 25-2: TIMING TRANSITION FOR TWO-SPEED START-UP (INTOSC TO HSPLL)

PIC18F2455/2550/4455/4550

25.4.3 FSCM INTERRUPTS IN POWER-MANAGED MODES

By entering a power-managed mode, the clock multiplexer selects the clock source selected by the OSCCON register. Fail-Safe Clock Monitoring of the power-managed clock source resumes in the power-managed mode.

If an oscillator failure occurs during power-managed operation, the subsequent events depend on whether or not the oscillator failure interrupt is enabled. If enabled (OSCFIF = 1), code execution will be clocked by the INTOSC multiplexer. An automatic transition back to the failed clock source will not occur.

If the interrupt is disabled, subsequent interrupts while in Idle mode will cause the CPU to begin executing instructions while being clocked by the INTOSC source.

25.4.4 POR OR WAKE-UP FROM SLEEP

The FSCM is designed to detect oscillator failure at any point after the device has exited Power-on Reset (POR) or low-power Sleep mode. When the primary device clock is either EC or INTRC, monitoring can begin immediately following these events.

For oscillator modes involving a crystal or resonator (HS, HSPLL or XT), the situation is somewhat different. Since the oscillator may require a start-up time considerably longer than the FCSM sample clock time, a false clock failure may be detected. To prevent this, the internal oscillator block is automatically configured as the device clock and functions until the primary clock is stable (the OST and PLL timers have timed out). This is identical to Two-Speed Start-up mode. Once the primary clock is stable, the INTRC returns to its role as the FSCM source.

Note:	The same logic that prevents false oscilla- tor failure interrupts on POR or wake from Sleep will also prevent the detection of the oscillator's failure to start at all following these events. This can be avoided by monitoring the OSTS bit and using a timing routine to determine if the oscillator is taking too long to start. Even so, no
	oscillator failure interrupt will be flagged.

As noted in Section 25.3.1 "Special Considerations for Using Two-Speed Start-up", it is also possible to select another clock configuration and enter an alternate power-managed mode while waiting for the primary clock to become stable. When the new power-managed mode is selected, the primary clock is disabled. 28.2

DC Characteristics: Power-Down and Supply Current PIC18F2455/2550/4455/4550 (Industrial) PIC18LF2455/2550/4455/4550 (Industrial) (Continued)

(Industrial) PIC18F2455/2550/4455/4550			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrialStandard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
		Supply Current (IDD) ⁽²⁾									
		PIC18LFX455/X550	2.9	8	μA	-40°C					
			3.1	8	μA	+25°C	VDD = 2.0V				
			3.6	11	μA	+85°C					
		PIC18LFX455/X550	4.5	11	μΑ	-40°C		Fosc = 31 kHz			
			4.8	11	μΑ	+25°C	VDD = 3.0V	(RC_IDLE mode,			
			5.8	15	μΑ	+85°C		INTRC source)			
		All devices	9.2	16	μΑ	-40°C					
			9.8	16	μA	+25°C	VDD = 5.0V				
			11.4	36	μΑ	+85°C					
		PIC18LFX455/X550	165	350	μA	-40°C					
			175	350	μΑ	+25°C	VDD = 2.0V				
			190	350	μA	+85°C					
		PIC18LFX455/X550	250	500	μΑ	-40°C		Fosc = 1 MHz			
			270	500	μA	+25°C	VDD = 3.0V	(RC_IDLE mode,			
			290	500	μA	+85°C		INTOSC source)			
		All devices	0.50	1	mA	-40°C					
			0.52	1	mA	+25°C	VDD = 5.0V				
			0.55	1	mA	+85°C					
		PIC18LFX455/X550	340	500	μA	-40°C					
			350	500	μA	+25°C	VDD = 2.0V				
			360	500	μA	+85°C					
		PIC18LFX455/X550	520	900	μA	-40°C	_	Fosc = 4 MHz			
			540	900	μA	+25°C	VDD = 3.0V	(RC_IDLE mode,			
			580	900	μA	+85°C		INTOSC source)			
		All devices	1.0	1.6	mA	-40°C					
			1.1	1.5	mA	+25°C	VDD = 5.0V				
			1.1	1.4	mA	+85°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

PIC18F2455/2550/4455/4550

28.2

DC Characteristics: Power-Down and Supply Current PIC18F2455/2550/4455/4550 (Industrial) PIC18LF2455/2550/4455/4550 (Industrial) (Continued)

(Industrial) PIC18F2455/2550/4455/4550				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrialStandard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
		Supply Current (IDD) ⁽²⁾										
		PIC18LFX455/X550	65	130	μΑ	-40°C						
			65	120	μA	+25°C	VDD = 2.0V					
			70	115	μA	+85°C						
		PIC18LFX455/X550	120	270	μA	-40°C		Fosc = 1 MHz				
			120	250	μΑ	+25°C	VDD = 3.0V	(PRI_IDLE mode,				
			130	240	μA	+85°C]	EC oscillator)				
		All devices	230	480	μΑ	-40°C						
			240	450	μA	+25°C	VDD = 5.0V					
			250	430	μA	+85°C						
		PIC18LFX455/X550	255	475	μΑ	-40°C		Fosc = 4 MHz (PRI_IDLE mode, EC oscillator)				
			260	450	μΑ	+25°C	VDD = 2.0V					
			270	430	μA	+85°C						
		PIC18LFX455/X550	420	900	μA	-40°C						
			430	850	μA	+25°C	VDD = 3.0V					
			450	810	μA	+85°C						
		All devices	0.9	1.5	mA	-40°C						
			0.9	1.4	mA	+25°C	VDD = 5.0V					
			0.9	1.3	mA	+85°C						
		All devices	6.0	16	mA	-40°C						
			6.2	16	mA	+25°C	VDD = 4.2V					
			6.6	16	mA	+85°C]	Fosc = 40 MHz				
		All devices	8.1	18	mA	-40°C		(PRI_IDLE mode, EC oscillator)				
			8.3	18	mA	+25°C	VDD = 5.0V					
			9.0	18	mA	+85°C]					
		All devices	8.0	18	mA	-40°C						
			8.1	18	mA	+25°C	VDD = 4.2V					
			8.2	18	mA	+85°C]	Fosc = 48 MHz				
		All devices	9.8	21	mA	-40°C		(PRI_IDLE mode, EC oscillator)				
			10.0	21	mA	+25°C	VDD = 5.0V					
			10.5	21	mA	+85°C]					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS; MCLR = VDD; WDT enabled/disabled as specified.
- 3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	—	48	MHz	With PLL prescaler
F11	Fsys	On-Chip VCO System Frequency	—	96	_	MHz	
F12	t _{rc}	PLL Start-up Time (Lock Time)	—	—	2	ms	
F13	ΔCLK	CLKO Stability (Jitter)	-0.25	—	+0.25	%	

TABLE 28-9: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 5.5V)

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 28-10:AC CHARACTERISTICS: INTERNAL RC ACCURACYPIC18F2455/2550/4455/4550 (INDUSTRIAL)PIC18LF2455/2550/4455/4550 (INDUSTRIAL)

PIC18LF (Indu	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
			tandard Operating Conditions (unless otherwise stated) operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
Param No.	Min	Тур	Max	Units	Cond	litions				
	INTOSC Accuracy @ Freq = 8 M	1Hz, 4 M	Hz, 2 M	Hz, 1 MH	z, 500 l	(Hz, 250 kHz, 125 k	Hz ⁽¹⁾			
F14	PIC18LF2455/2550/4455/4550	-2	+/-1	2	%	+25°C	VDD = 2.7-3.3V			
F15		-5		5	%	-10°C to +85°C	VDD = 2.7-3.3V			
F16		-10	+/-1	10	%	-40°C to +85°C	VDD = 2.7-3.3V			
F17	PIC18F2455/2550/4455/4550	-2	+/-1	2	%	+25°C	VDD = 4.5-5.5V			
F18		-5		5	%	-10°C to +85°C	VDD = 4.5-5.5V			
F19		-10	+/-1	10	%	-40°C to +85°C	VDD = 4.5-5.5V			
	INTRC Accuracy @ Freq = 31 k	Hz ⁽²⁾								
F20	PIC18LF2455/2550/4455/4550	26.562		35.938	kHz	-40°C to +85°C	VDD = 2.7-3.3V			
F21	PIC18F2455/2550/4455/4550	26.562		35.938	kHz	-40°C to +85°C	VDD = 4.5-5.5V			

Legend: Shading of rows is to assist in readability of the table.

Note 1: Frequency calibrated at 25°C. OSCTUNE register can be used to compensate for temperature drift.

2: INTRC frequency after calibration.

3: Change of INTRC frequency as VDD changes.

APPENDIX A: REVISION HISTORY

Revision A (May 2004)

Original data sheet for PIC18F2455/2550/4455/4550 devices.

Revision B (October 2004)

This revision includes updates to the Electrical Specifications in **Section 28.0 "Electrical Characteristics"** and includes minor corrections to the data sheet text.

Revision C (February 2006)

This revision includes updates to Section 19.0 "Master Synchronous Serial Port (MSSP) Module", Section 20.0 "Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)" and the Electrical Specifications in Section 28.0 "Electrical Characteristics" and includes minor corrections to the data sheet text.

Revision D (January 2007)

This revision includes updates to the packaging diagrams.

Revision E (August 2008)

This revision includes minor corrections to the data sheet text. In **Section 30.2 "Package Details"**, added land pattern drawings for both 44-pin packages.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices listed in this data sheet are shown in Table B-1.

Features	PIC18F2455	PIC18F2550	PIC18F4455	PIC18F4550
Program Memory (Bytes)	24576	32768	24576	32768
Program Memory (Instructions)	12288	16384	12288	16384
Interrupt Sources	19	19	20	20
I/O Ports	Ports A, B, C, (E)	Ports A, B, C, (E)	Ports A, B, C, D, E	Ports A, B, C, D, E
Capture/Compare/PWM Modules	2	2	1	1
Enhanced Capture/Compare/ PWM Modules	0	0	1	1
Parallel Communications (SPP)	No	No	Yes	Yes
10-Bit Analog-to-Digital Module	10 Input Channels	10 Input Channels	13 Input Channels	13 Input Channels
Packages	28-Pin PDIP 28-Pin SOIC	28-Pin PDIP 28-Pin SOIC	40-Pin PDIP 44-Pin TQFP 44-Pin QFN	40-Pin PDIP 44-Pin TQFP 44-Pin QFN

TABLE B-1: DEVICE DIFFERENCES