

Welcome to E-XFL.COM

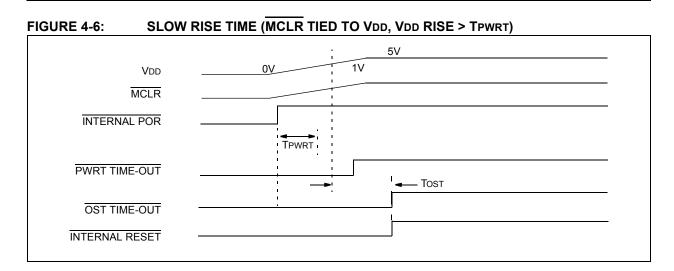
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

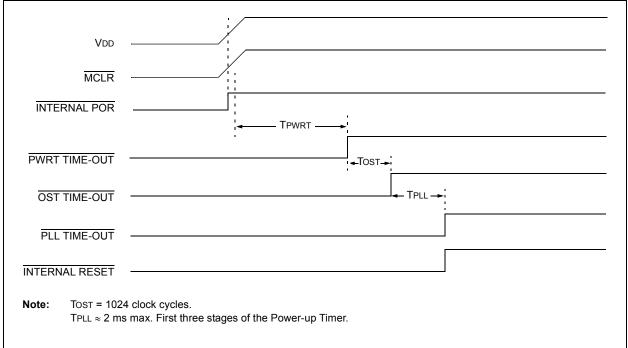
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2550-i-so


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


R/W-0	R/W-1 ⁽¹⁾	U-0	R/W-1	R-1	R-1	R/W-0 ⁽²⁾	R/W-0				
IPEN	SBOREN	_	RI	TO	PD	POR	BOR				
oit 7	•			•			bit				
Legend:			. 1. 1								
R = Readable		W = Writable		-	mented bit, rea						
-n = Value at	POR	'1' = Bit is se	et	'0' = Bit is cle	eared	x = Bit is unkn	own				
bit 7	IPEN: Interru	pt Priority Ena	able bit								
	1 = Enable pr										
				IC16CXXX Co	mpatibility mod	de)					
bit 6	SBOREN: BO	OR Software E	Enable bit ⁽¹⁾								
	If BOREN1:B										
	1 = BOR is er										
	0 = BOR is di	sabled									
	If BOREN1:BOREN0 = 00, 10 or 11:										
	Bit is disabled	d and read as	ʻ0'.								
bit 5	Unimplemen	ted: Read as	'0'								
bit 4	RI: RESET Instruction Flag bit										
	1 = The RESET instruction was not executed (set by firmware only)										
		ET instruction ut Reset occu		d causing a de	evice Reset (m	nust be set in so	ftware after				
bit 3											
	TO: Watchdog Time-out Flag bit 1 = Set by power-up, CLRWDT instruction or SLEEP instruction										
	0 = A WDT time-out occurred										
bit 2	PD: Power-D	own Detectior	n Flag bit								
	1 = Set by power-up or by the CLRWDT instruction										
	0 = Set by ex	kecution of the	e SLEEP instru	ction							
bit 1	POR: Power-on Reset Status bit ⁽²⁾										
				(set by firmwar							
	0 = A Power	-on Reset occ	urred (must be	e set in softwar	e after a Powe	r-on Reset occur	s)				
bit 0	BOR: Brown-	out Reset Sta	itus bit								
	1 = A Brown-out Reset has not occurred (set by firmware only)										
	0 = A Brown	-out Reset oc	curred (must b	e set in softwa	re after a Brow	n-out Reset occu	urs)				
Note 1: If	SBOREN is enal	bled, its Rese	t state is '1'; of	therwise, it is 'd)'.						
						See the notes foll	owing this				
	gister and Section						-				
Note 1: It	is recommended	d that the \overline{POF}	R bit be set aft	er a Power-on	Reset has bee	n detected so that	at subseque				
	ower-on Resets										

REGISTER 4-1: RCON: RESET CONTROL REGISTER

2: Brown-out Reset is said to have occurred when BOR is '0' and POR is '1' (assuming that POR was set to '1' by software immediately after POR).

5.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Flash program memory is provided in **Section 6.0 "Flash Program Memory"**. Data EEPROM is discussed separately in **Section 7.0 "Data EEPROM Memory"**.

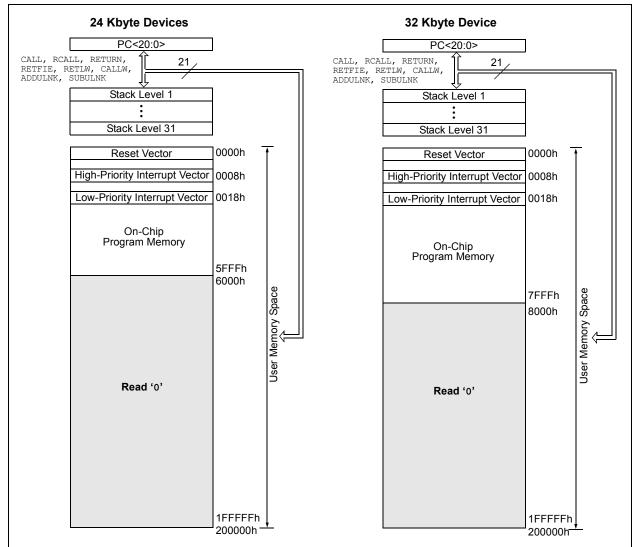
5.1 Program Memory Organization

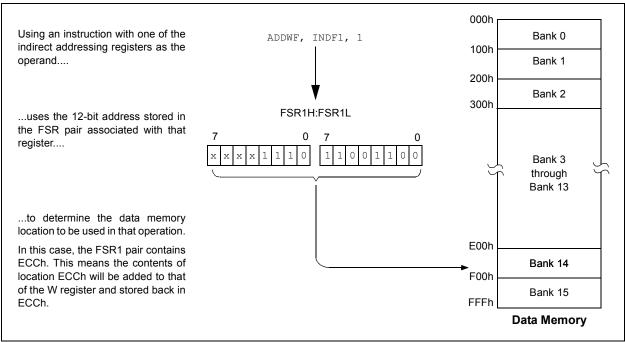
PIC18 microcontrollers implement a 21-bit program counter which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

The PIC18F2455 and PIC18F4455 each have 24 Kbytes of Flash memory and can store up to 12,288 single-word instructions. The PIC18F2550 and PIC18F4550 each have 32 Kbytes of Flash memory and can store up to 16,384 single-word instructions.

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory maps for PIC18FX455 and PIC18FX550 devices are shown in Figure 5-1.




FIGURE 5-1: PROGRAM MEMORY MAP AND STACK

5.4.3.1 FSR Registers and the INDF Operand

At the core of Indirect Addressing are three sets of registers: FSR0, FSR1 and FSR2. Each represents a pair of 8-bit registers: FSRnH and FSRnL. The four upper bits of the FSRnH register are not used, so each FSR pair holds a 12-bit value. This represents a value that can address the entire range of the data memory in a linear fashion. The FSR register pairs, then, serve as pointers to data memory locations.

Indirect Addressing is accomplished with a set of Indirect File Operands, INDF0 through INDF2. These can be thought of as "virtual" registers; they are mapped in the SFR space but are not physically implemented. Reading or writing to a particular INDF register actually accesses its corresponding FSR register pair. A read from INDF1, for example, reads the data at the address indicated by FSR1H:FSR1L. Instructions that use the INDF registers as operands actually use the contents of their corresponding FSR as a pointer to the instruction's target. The INDF operand is just a convenient way of using the pointer.

Because Indirect Addressing uses a full 12-bit address, data RAM banking is not necessary. Thus, the current contents of the BSR and the Access RAM bit have no effect on determining the target address.

FIGURE 5-7: INDIRECT ADDRESSING

9.2 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x			
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾			
bit 7 bit 0										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked interrupts 0 = Disables all interrupts <u>When IPEN = 1:</u>
	 1 = Enables all high-priority interrupts 0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit
	<u>When IPEN = 0:</u> 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
	<u>When IPEN = 1:</u> 1 = Enables all low-priority peripheral interrupts (if GIE/GIEH = 1) 0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt
bit 4	INT0IE: INT0 External Interrupt Enable bit
	 1 = Enables the INT0 external interrupt 0 = Disables the INT0 external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit
	 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INT0IF: INT0 External Interrupt Flag bit
	 1 = The INT0 external interrupt occurred (must be cleared in software) 0 = The INT0 external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾
	 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state
N - 4 -	

Note 1: A mismatch condition will continue to set this bit. Reading PORTB, and then waiting one additional instruction cycle, will end the mismatch condition and allow the bit to be cleared.

11.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS2:T0PS0 bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256, in power-of-2 increments, are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count but will not change the prescaler assignment.

11.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

11.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before reenabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

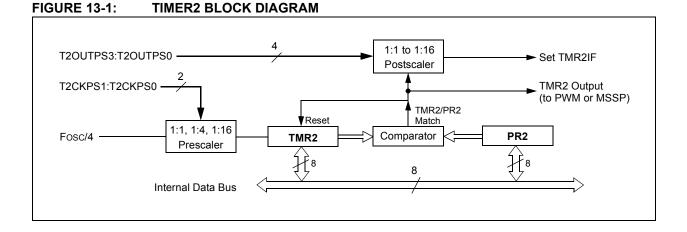
Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TMR0L	Timer0 Reg	ister Low By	te						54
TMR0H	Timer0 Reg	ister High By	/te						54
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	—	RBIP	53
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	54
TRISA	_	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	56

Legend: — = unimplemented locations, read as '0'. Shaded cells are not used by Timer0.

Note 1: RA6 is configured as a port pin based on various primary oscillator modes. When the port pin is disabled, all of the associated bits read '0'.

13.2 Timer2 Interrupt


Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2 to PR2 match) provides the input for the 4-bit output counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF (PIR1<1>). The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE (PIE1<1>).

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS3:T2OUTPS0 (T2CON<6:3>).

13.3 TMR2 Output

The unscaled output of TMR2 is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in Section 19.0 "Master Synchronous Serial Port (MSSP) Module".

TABLE 13-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53	
PIR1	SPPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	56	
PIE1	SPPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	56	
IPR1	SPPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	56	
TMR2	Timer2 Register									
T2CON	_	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	54	
PR2	Timer2 Peri	od Register							54	

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: These bits are unimplemented on 28-pin devices; always maintain these bits clear.

15.2 Capture Mode

In Capture mode, the CCPRxH:CCPRxL register pair captures the 16-bit value of the TMR1 or TMR3 registers when an event occurs on the corresponding CCPx pin. An event is defined as one of the following:

- · every falling edge
- · every rising edge
- every 4th rising edge
- · every 16th rising edge

The event is selected by the mode select bits, CCPxM3:CCPxM0 (CCPxCON<3:0>). When a capture is made, the interrupt request flag bit, CCPxIF, is set; it must be cleared in software. If another capture occurs before the value in register CCPRx is read, the old captured value is overwritten by the new captured value.

15.2.1 CCP PIN CONFIGURATION

In Capture mode, the appropriate CCPx pin should be configured as an input by setting the corresponding TRIS direction bit.

Note:	If RB3/CCP2 or RC1/CCP2 is configured
	as an output, a write to the port can cause
	a capture condition.

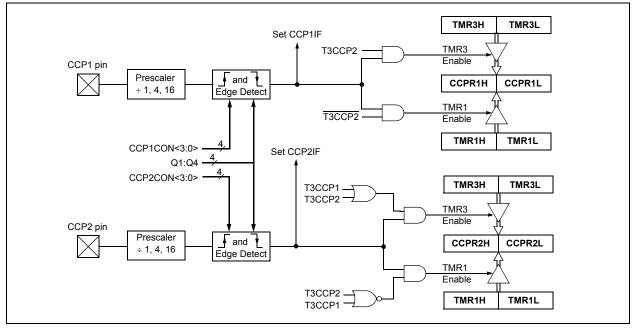
15.2.2 TIMER1/TIMER3 MODE SELECTION

The timers that are to be used with the capture feature (Timer1 and/or Timer3) must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation will not work. The timer to be used with each CCP module is selected in the T3CON register (see Section 15.1.1 "CCP Modules and Timer Resources").

15.2.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep the CCPxIE interrupt enable bit clear to avoid false interrupts. The interrupt flag bit, CCPxIF, should also be cleared following any such change in operating mode.

15.2.4 CCP PRESCALER


There are four prescaler settings in Capture mode. They are specified as part of the operating mode selected by the mode select bits (CCPxM3:CCPxM0). Whenever the CCP module is turned off or Capture mode is disabled, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 15-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 15-1: CHANGING BETWEEN CAPTURE PRESCALERS (CCP2 SHOWN)

CLRF	CCP2CON	;	Turn CCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and CCP ON
MOVWF	CCP2CON	;	Load CCP2CON with
		;	this value

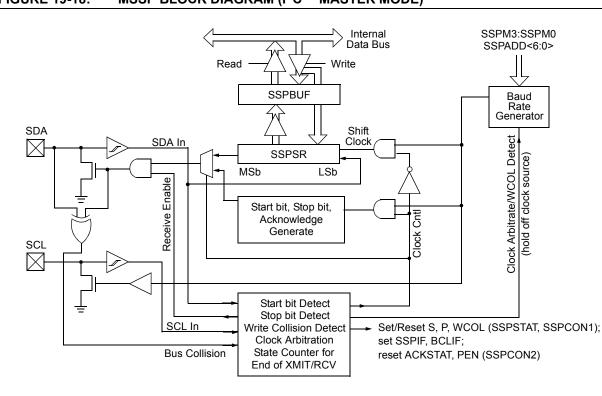
FIGURE 15-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

19.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware if the TRIS bits are set.

Master mode operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all ${\sf I}^2{\sf C}$ bus operations based on Start and Stop bit conditions.


Once Master mode is enabled, the user has six options:

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I^2C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPIF, to be set (and MSSP interrupt, if enabled):

- · Start condition
- Stop condition
- · Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

FIGURE 19-18: MSSP BLOCK DIAGRAM (I²C[™] MASTER MODE)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
PIR1	SPPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	56
PIE1	SPPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	56
IPR1	SPPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	56
PIR2	OSCFIF	CMIF	USBIF	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	56
PIE2	OSCFIE	CMIE	USBIE	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	56
IPR2	OSCFIP	CMIP	USBIP	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	56
TRISC	TRISC7	TRISC6	_	_	_	TRISC2	TRISC1	TRISC0	56
TRISD ⁽¹⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	56
SSPBUF	MSSP Rec	eive Buffer/T	ransmit Reg	gister					54
SSPADD		ress Registe d Rate Reloa			er mode.				54
TMR2	Timer2 Reg	gister							54
PR2	Timer2 Per	iod Register							54
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	54
SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	54
SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	54

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the MSSP in I^2C^{TM} mode.

Note 1: These registers or bits are not implemented in 28-pin devices.

20.2.4 AUTO-WAKE-UP ON SYNC BREAK CHARACTER

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper byte reception cannot be performed. The auto-wake-up feature allows the controller to wake-up due to activity on the RX/DT line while the EUSART is operating in Asynchronous mode.

The auto-wake-up feature is enabled by setting the WUE bit (BAUDCON<1>). Once set, the typical receive sequence on RX/DT is disabled and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a Wake-up Signal character for the LIN protocol.)

Following a wake-up event, the module generates an RCIF interrupt. The interrupt is generated synchronously to the Q clocks in normal operating modes (Figure 20-8) and asynchronously, if the device is in Sleep mode (Figure 20-9). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared once a low-tohigh transition is observed on the RX line following the wake-up event. At this point, the EUSART module is in Idle mode and returns to normal operation. This signals to the user that the Sync Break event is over.

20.2.4.1 Special Considerations Using Auto-Wake-up

Since auto-wake-up functions by sensing rising edge transitions on RX/DT, information with any state changes before the Stop bit may signal a false End-Of-

Character and cause data or framing errors. To work properly, therefore, the initial character in the transmission must be all '0's. This can be 00h (8 bits) for standard RS-232 devices or 000h (12 bits) for LIN bus.

Oscillator start-up time must also be considered, especially in applications using oscillators with longer start-up intervals (i.e., XT or HS mode). The Sync Break (or Wake-up Signal) character must be of sufficient length and be followed by a sufficient interval to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

20.2.4.2 Special Considerations Using the WUE Bit

The timing of WUE and RCIF events may cause some confusion when it comes to determining the validity of received data. As noted, setting the WUE bit places the EUSART in an Idle mode. The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared after this when a rising edge is seen on RX/DT. The interrupt condition is then cleared by reading the RCREG register. Ordinarily, the data in RCREG will be dummy data and should be discarded.

The fact that the WUE bit has been cleared (or is still set) and the RCIF flag is set should not be used as an indicator of the integrity of the data in RCREG. Users should consider implementing a parallel method in firmware to verify received data integrity.

To assure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

FIGURE 20-8:	AUTO-WAKE-UP BIT (WUE) TIMINGS DURING NORMAL OPERATION
--------------	--

	(edoziesios		lados(ados)	e doziecijos	jagacjada.	(orioriori	nejorijosijo	sjekjonjenjes	iedodosiosia	ados(ociosias)
OSC:	punununu	punununu	pununuru	ww.	yndhumum.	inon indi	upunun.	ing ang ang ang ang ang ang ang ang ang a	nyununun	upununun.
12.) – Stalest by	2000 ·····	· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	2		4 4	* : * :	1	nijjelennet 👘 🗍
Vece ber	((· · · · · · · · · · · · · · · · · · ·	2	,	2 1 2 1			× 3 × 3		
ANAT USA	<u>.</u>				· · · · · · · · · · · · · · · · · · ·	1	5		jegekonen on	
				3000000000 :	9770a		····à·····			
340.041	; ;		;					······		····\$
l					<		Affecter 33	a saillean saon	Ge∰CR€C →	······ * :
Mada 31 Ma	SECENSION	Deste di Fact	Andre son SVAR	E Ros de la const			*		,	,

FIGURE 20-9: AUTO-WAKE-UP BIT (WUE) TIMINGS DURING SLEEP

25.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFh), which can only be accessed using table reads and table writes.

Programming the Configuration registers is done in a manner similar to programming the Flash memory. The WR bit in the EECON1 register starts a self-timed write to the Configuration register. In normal operation mode, a TBLWT instruction, with the TBLPTR pointing to the Configuration register, sets up the address and the data for the Configuration register write. Setting the WR bit starts a long write to the Configuration register. The Configuration registers are written a byte at a time. To write or erase a configuration cell, a TBLWT instruction can write a '1' or a '0' into the cell. For additional details on Flash programming, refer to Section 6.5 "Writing to Flash Program Memory".

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h	CONFIG1L		_	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000
300001h	CONFIG1H	IESO	FCMEN	—	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0101
300002h	CONFIG2L	_	_	VREGEN	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	01 1111
300003h	CONFIG2H	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT1OSC	PBADEN	CCP2MX	1011
300006h	CONFIG4L	DEBUG	XINST	ICPRT ⁽³⁾	_	_	LVP		STVREN	1001-1
300008h	CONFIG5L	_		_		CP3 ⁽¹⁾	CP2	CP1	CP0	1111
300009h	CONFIG5H	CPD	CPB	_	_	_	—	—	_	11
30000Ah	CONFIG6L	_	_	—	_	WRT3 ⁽¹⁾	WRT2	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	_	—		_	111
30000Ch	CONFIG7L	—	_	—	_	EBTR3 ⁽¹⁾	EBTR2	EBTR1	EBTR0	1111
30000Dh	CONFIG7H	_	EBTRB	—	_	—	—	—	_	-1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	×××× ×××××(2)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0001 0010(2)

TABLE 25-1: CONFIGURATION BITS AND DEVICE IDs

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Unimplemented in PIC18FX455 devices; maintain this bit set.

2: See Register 25-13 and Register 25-14 for DEVID values. DEVID registers are read-only and cannot be programmed by the user.

3: Available only on PIC18F4455/4550 devices in 44-pin TQFP packages. Always leave this bit clear in all other devices.

REGISTER 25-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	_	VREGEN	BORV1 ⁽¹⁾	BORV0 ⁽¹⁾	BOREN1 ⁽²⁾	BOREN0 ⁽²⁾	PWRTEN ⁽²⁾
bit 7	ŀ		•			•	bit 0
Legend:							
R = Readab	le bit	P = Program	nable bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value w	hen device is un	orogrammed		u = Unchang	ed from progran	nmed state	
bit 7-6	Unimplemen	ted: Read as '	0'				
bit 5	VREGEN: US	B Internal Volt	age Regulato	r Enable bit			
		age regulator e					
		age regulator d					
bit 4-3	BORV1:BOR	V0: Brown-out	Reset Voltage	e bits ⁽¹⁾			
	11 = Minimun	n setting					
	•						
	•						
	00 = Maximu	m setting					
bit 2-1	BOREN1:BO	REN0: Brown-	out Reset Ena	able bits ⁽²⁾			
	11 = Brown-c	out Reset enab	led in hardwai	re only (SBOR	EN is disabled)		
				•	abled in Sleep r	•	N is disabled)
		out Reset enab out Reset disab			re (SBOREN is	enabled)	
bit 0		ower-up Timer		Te and soltwar	e		
	1 = PWRT dis	•					
	1 = PWRT dis 0 = PWRT en						
Note 1: S	ee Section 28.0	"Electrical Ch	aracteristics	" for the specif	ications.		

2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

REGISTER 25-7: CONFIG5L: CONFIGURATION REGISTER 5 LOW (BYTE ADDRESS 300008h)

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
—	—	—	—	CP3 ⁽¹⁾	CP2	CP1	CP0
bit 7							bit 0
Legend:							
Legend: R = Readable I	bit	C = Clearable	bit	U = Unimplem	nented bit, reac	l as '0'	

bit 7-4	Unimplemented: Read as '0'
bit 3	CP3: Code Protection bit ⁽¹⁾
	 1 = Block 3 (006000-007FFFh) is not code-protected 0 = Block 3 (006000-007FFFh) is code-protected
bit 2	CP2: Code Protection bit
	 1 = Block 2 (004000-005FFFh) is not code-protected 0 = Block 2 (004000-005FFFh) is code-protected
bit 1	CP1: Code Protection bit
	1 = Block 1 (002000-003FFFh) is not code-protected0 = Block 1 (002000-003FFFh) is code-protected
bit 0	CP0: Code Protection bit
	1 = Block 0 (000800-001FFFh) is not code-protected 0 = Block 0 (000800-001FFFh) is code-protected

Note 1: Unimplemented in PIC18FX455 devices; maintain this bit set.

REGISTER 25-8: CONFIG5H: CONFIGURATION REGISTER 5 HIGH (BYTE ADDRESS 300009h)

R/C-1	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
CPD	СРВ	—	_	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device is un	programmed	u = Unchanged from programmed state

bit 7	CPD: Data EEPROM Code Protection bit
	1 = Data EEPROM is not code-protected
	0 = Data EEPROM is code-protected
bit 6	CPB: Boot Block Code Protection bit
	 1 = Boot block (000000-0007FFh) is not code-protected 0 = Boot block (000000-0007FFh) is code-protected
bit 5-0	Unimplemented: Read as '0'

BNOV	Branch if N	Not Overflow		BNZ		Branch if I	Not Zero			
Syntax:	BNOV n			Synta	ax:	BNZ n				
Operands:	-128 ≤ n ≤ ′	127		Oper	ands:	-128 ≤ n ≤	$-128 \le n \le 127$			
Operation:		if Overflow bit is '0', (PC) + 2 + 2n \rightarrow PC		Oper	ation:		if Zero bit is '0', (PC) + 2 + 2n \rightarrow PC			
Status Affected:	None		Statu	s Affected:	None					
Encoding:	1110 0101 nnnn nnnn		Enco	ding:	1110	0001 nr	inn nnnn			
Description:	program wi The 2's cor added to th incremente instruction,	nplement num e PC. Since th d to fetch the the new addr n. This instruc	, then the Description: Imber '2n' is the PC will have e next		ription:	will branch. The 2's cor added to th incremente instruction,	nplement nun e PC. Since th d to fetch the the new addr n. This instruc	nber '2n' is ne PC will have next		
Words:	1			Word	ls:	1				
Cycles:	1(2)			Cycle	es:	1(2)				
Q Cycle Activity If Jump:				Q C If Ju	ycle Activity: mp:					
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4		
Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC		
No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operation		
If No Jump:				lf No	o Jump:					
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4		
Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation		
Example: Before Instr PC After Instruc If Over P If Over	= ad tion flow = 0; C = ad	BNOV Jump dress (HERE dress (Jump)		nple: PC PC After Instructi If Zero If Zero	= ad on = 0;	BNZ Jump dress (HERE)		

BRA		onal Bran	ch					
Synta	ax:	BRA n						
Oper	ands:	-1024 ≤ n ≤	1023					
Oper	ation:	(PC) + 2 + 2	$2n \rightarrow PC$					
Statu	s Affected:	None						
Enco	ding:	1101	0nnn	nnnn	nnnn			
Desc	ription:	Add the 2's the PC. Sin incrementer instruction, PC + 2 + 2r two-cycle in	ce the PC d to fetch the new a n. This ins	will have the next ddress v	e vill be			
Word	ls:	1	1					
Cycle	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read literal 'n'	Proces Data	s Wr	ite to PC			
	No	No	No		No			
	operation	operation	operatio	on op	peration			
<u>Exan</u>	nple:	HERE	BRA J	ump				
	Before Instruc PC After Instructio	= ad	dress (HI	ERE)				
	PC	= ad	dress (J	ump)				

BSF	Bit Set f			
Syntax:	BSF f, b {	,a}		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$			
Operation:	$1 \rightarrow f \le b >$			
Status Affected:	None			
Encoding:	1000	bbba	ffff	ffff
Description:	Bit 'b' in reg If 'a' is '0', tl If 'a' is '1', tl GPR bank (If 'a' is '0' a set is enabl in Indexed I mode when Section 26 Bit-Oriente Literal Offs	he Acces he BSR i (default). nd the ex ed, this i Literal Of Literal Of ever f ≤ .2.3 "By d Instru	ss Bank is s used to a ktended in nstruction ffset Addre 95 (5Fh). te-Oriente ctions in	select the struction operates essing See ed and Indexed
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Proce Data		Write gister 'f'
Example:	BSF F	'LAG_RE	G, 7, 1	
Before Instruct FLAG_RI After Instructio FLAG_RI	EG = 0A n			

CPF	SGT	Compare f	with W, Skip	if f > W				
Synta	ax:	CPFSGT	CPFSGT f {,a}					
Operands:		$0 \leq f \leq 255$						
		a ∈ [0,1]	a ∈ [0,1]					
Oper	ation:	(f) - (W),						
		skip if (f) >						
		(unsigned c	comparison)					
Statu	s Affected:	None	<u> </u>					
Enco	ding:	0110	010a fff	ff ffff				
Word	ription: Is:	location 'f' t performing If the conte contents of instruction i executed in two-cycle ir If 'a' is '0', t If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enabl in Indexed mode when Section 26 Bit-Oriente	Compares the contents of data memory location 'f' to the contents of the W by performing an unsigned subtraction. If the contents of 'f' are greater than the contents of WREG, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Cycle	es.	1(2)						
0,010			cles if skip and	d followed				
		by a	2-word instru	ction.				
QC	ycle Activity:			_				
	Q1	Q2	Q3	Q4 No				
	Decode	Read register 'f'	Process Data	operation				
lf sk	ip:	regiotor i	Dulu	oporation				
	Q1	Q2	Q3	Q4				
	No	No	No	No				
	operation	operation	operation	operation				
lf sk	ip and followed	•		<u>.</u>				
	Q1		Q3	Q4				
	No operation	No operation	No operation	No operation				
	No	No	No	No				
	operation	operation	operation	operation				
Exan	nple:	HERE		G, 0				
		NGREATER GREATER	:					
	Refore Instruc		•					
	Before Instruc PC		dress (HERE))				
	Ŵ	= ?	(IIII(E)	,				
	After Instructio							
	If REG PC	> W; = Ad	dress (GREAT	TER)				
	If REG	≤ W;						
	PC	= Ad	dress (NGREA	ATER)				

CPFSLT	Compare f	Compare f with W, Skip if f < W					
Syntax:	CPFSLT	CPFSLT f {,a}					
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]						
Operation:	(f) – (W), skip if (f) <						
Status Affected:	None						
Encoding:	0110	0110 000a ffi					
Description:	location 'f' t performing If the conte contents of instruction executed in two-cycle in If 'a' is '0', t	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f' are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the CRB heat (default)					
Words:	1	. ,					
Cycles:	by	ycles if skip ar a 2-word instru					
Q Cycle Activity: Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	No operation				
If skip:	l'ogiotoi i	2010	oporation				
Q1	Q2	Q3	Q4				
No	No	No	No				
operation If skip and follow	operation	operation	operation				
Q1	Q2	Q3	Q4				
No	No	No	No				
operation	operation	operation	operation				
No operation	No operation	No operation	No operation				
Example: HERE CPFSLT REG, 1 NLESS : LESS :							
Before Instru PC W After Instruc	= Ad = ?	dress (HERE)				
If REG PC If REG PC	≥ W;	dress (LESS					

28.2 DC Characteristics:

Power-Down and Supply Current PIC18F2455/2550/4455/4550 (Industrial) PIC18LF2455/2550/4455/4550 (Industrial)

			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param No.	Symbol	Device	Тур	Max	Units	Condit	Conditions		
		Power-Down Current (IPD)	(1)						
		PIC18LFX455/X550	0.1	0.95	μΑ	-40°C			
			0.1	1.0	μΑ	+25°C	VDD = 2.0V (Sleep mode)		
			0.2	5	μΑ	+85°C	(Oleep mode)		
		PIC18LFX455/X550	0.1	1.4	μΑ	-40°C			
			0.1	2	μΑ	+25°C	VDD = 3.0V (Sleep mode)		
			0.3	8	μΑ	+85°C	(Sleep mode)		
		All devices	0.1	1.9	μΑ	-40°C			
			0.1	2.0	μΑ	+25°C	VDD = 5.0V (Sleep mode)		
			0.4	15	μΑ	+85°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or Vss;

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

Param. No.	Symbol	Charact	eristic	Min	Мах	Units	Conditions
100	Thigh	Clock High Time	100 kHz mode	4.0	—	μS	PIC18FXXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	_	μS	PIC18FXXXX must operate at a minimum of 10 MHz
			MSSP Module	1.5 Tcy	_		
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	PIC18FXXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	PIC18FXXXX must operate at a minimum of 10 MHz
			MSSP Module	1.5 Tcy	—		
102	TR	SDA and SCL Rise	100 kHz mode	—	1000	ns	
	Time	Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103 TF	TF	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90 Tsu:sta	Tsu:sta	Start Condition Setup Time	100 kHz mode	4.7	—	μS	Only relevant for Repeated Start condition
	S		400 kHz mode	0.6	—	μS	
91 THD:STA	THD:STA		100 kHz mode	4.0	_	μS	After this period, the first
	Hold Tim	Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated
106 Thd:dat	THD:DAT	D:DAT Data Input Hold Time	100 kHz mode	0		ns	
			400 kHz mode	0	0.9	μS	
107	TSU:DAT	AT Data Input Setup Time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μS	
			400 kHz mode	0.6	—	μS	
109 T/	ΤΑΑ	Output Valid from Clock	100 kHz mode	_	3500	ns	(Note 1)
			400 kHz mode			ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
D102	Св	Bus Capacitive Load	ding	—	400	pF	

TABLE 28-20: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C [™] bus device can be used in a Standard mode I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

244
168
166
185
184
172
183
181
171
304
343
52
45, 291
291
291
291
291
344
344
345
60
60
61
419
345
346
346
347

S

SCK	197
SDI	197
SDO	197
SEC_IDLE Mode	41
SEC_RUN Mode	
Serial Clock, SCK	197
Serial Data In (SDI)	197
Serial Data Out (SDO)	197
Serial Peripheral Interface. See SPI Mode.	
SETF	347
Slave Select (SS)	197
SLEEP	348
Sleep	
OSC1 and OSC2 Pin States	34
Sleep Mode	40
Software Simulator (MPLAB SIM)	364
Special Event Trigger. See Compare (CCP Module).	
Special Event Trigger. See Compare (ECCP Module).	
Special Features of the CPU	291
Special ICPORT Features	311
SPI Mode (MSSP)	
Associated Registers	206
Bus Mode Compatibility	206
Effects of a Reset	206
Enabling SPI I/O	201
Master Mode	202
Master/Slave Connection	201
Operation	200
Operation in Power-Managed Modes	206
Serial Clock	197
Serial Data In	197
Serial Data Out	197
Slave Mode	204
Slave Select	197
Slave Select Synchronization	204
SPI Clock	

Typical Connection	201
SPP. See Streaming Parallel Port	
SS SSPOV	
SSPOV	
0	232
SSPSTAT Register	014
R/W Bit	214
	040
R/W Bit	
Stack Full/Underflow Resets	
STATUS Register	
Streaming Parallel Port	
Associated Registers	
Clocking Data	
Configuration	
Internal Pull-ups	
Interrupts	
Microcontroller Control Setup	
Reading from (Microcontroller Mode)	195
Transfer of Data Between USB SIE	
and SPP (diagram)	194
USB Control Setup	194
Wait States	192
Writing to (Microcontroller Mode)	194
SUBFSR	359
SUBFWB	348
SUBLW	349
SUBULNK	359
SUBWF	
SUBWFB	
SWAPF	

Т

T0CON Register	
PSA Bit	 129
T0CS Bit	 128
T0PS2:T0PS0 Bits	 129
T0SE Bit	 128
Table Pointer Operations (table)	 84
Table Reads/Table Writes	 62
TBLRD	 351
TBLWT	
Time-out in Various Situations (table)	 49
Timer0	 127
16-Bit Mode Timer Reads and Writes	 128
Associated Registers	 129
Clock Source Edge Select (T0SE Bit)	
Clock Source Select (T0CS Bit)	
Operation	
Overflow Interrupt	
Prescaler	 129
Switching Assignment	 129
Prescaler. See Prescaler, Timer0.	
Timer1	 131
16-Bit Read/Write Mode	 133
Associated Registers	 136
Interrupt	
Operation	
Öscillator	
Layout Considerations	
Low-Power Option	
Using Timer1 as a Clock Source	
Overflow Interrupt	
Resetting, Using a Special Event	
Trigger Output (CCP)	 134
Special Event Trigger (ECCP)	