

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f2550t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Dia Mara	Pi	n Numl	ber	Pin	Buffer	Description
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTA is a bidirectional I/O port.
RA0/AN0 RA0 AN0	2	19	19	I/O I	TTL Analog	Digital I/O. Analog input 0.
RA1/AN1 RA1 AN1	3	20	20	I/O I	TTL Analog	Digital I/O. Analog input 1.
RA2/AN2/VREF-/ CVREF RA2 AN2 VREF- CVREF	4	21	21	I/O I I O	TTL Analog Analog Analog	Digital I/O. Analog input 2. A/D reference voltage (low) input. Analog comparator reference output.
RA3/AN3/VREF+ RA3 AN3 VREF+	5	22	22	I/O I I	TTL Analog Analog	Digital I/O. Analog input 3. A/D reference voltage (high) input.
RA4/T0CKI/C1OUT/ RCV RA4 T0CKI C1OUT RCV	6	23	23	I/O I O I	ST ST — TTL	Digital I/O. Timer0 external clock input. Comparator 1 output. External USB transceiver RCV input.
RA5/AN4/SS/ HLVDIN/C2OUT RA5 AN4 SS HLVDIN C2OUT	7	24	24	I/O I I O	TTL Analog TTL Analog —	Digital I/O. Analog input 4. SPI slave select input. High/Low-Voltage Detect input. Comparator 2 output.
RA6	<u> </u>	—		_		See the OSC2/CLKO/RA6 pin.
Legend: TTL = TTL c ST = Schm O = Outpu	ompatib itt Trigg it	er input	t with CN	/IOS le	C vels I P	MOS = CMOS compatible input or output = Input = Power

TABLE 1-3: PIC18F4455/4550 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

4.0 RESET

The PIC18F2455/2550/4455/4550 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 5.1.2.4 "Stack Full and Underflow Resets". WDT Resets are covered in Section 25.2 "Watchdog Timer (WDT)". A simplified block diagram of the on-chip Reset circuit is shown in Figure 4-1.

4.1 RCON Register

Device Reset events are tracked through the RCON register (Register 4-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 4.6 "Reset State of Registers"**.

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 9.0 "Interrupts". BOR is covered in Section 4.4 "Brown-out Reset (BOR)".

5.4.3.2 FSR Registers and POSTINC, POSTDEC, PREINC and PLUSW

In addition to the INDF operand, each FSR register pair also has four additional indirect operands. Like INDF, these are "virtual" registers that cannot be indirectly read or written to. Accessing these registers actually accesses the associated FSR register pair, but also performs a specific action on it stored value. They are:

- POSTDEC: accesses the FSR value, then automatically decrements it by '1' afterwards
- POSTINC: accesses the FSR value, then automatically increments it by '1' afterwards
- PREINC: increments the FSR value by '1', then uses it in the operation
- PLUSW: adds the signed value of the W register (range of -127 to 128) to that of the FSR and uses the new value in the operation.

In this context, accessing an INDF register uses the value in the FSR registers without changing them. Similarly, accessing a PLUSW register gives the FSR value offset by that in the W register; neither value is actually changed in the operation. Accessing the other virtual registers changes the value of the FSR registers.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register, from FFh to 00h, carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of Indexed Addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

5.4.3.3 Operations by FSRs on FSRs

Indirect Addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of INDF1, using INDF0 as an operand, will return 00h. Attempts to write to INDF1, using INDF0 as the operand, will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to INDF2 or POSTDEC2 will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses Indirect Addressing.

Similarly, operations by Indirect Addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device. NOTES:

9.3 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Request (Flag) registers (PIR1 and PIR2).

- Note 1: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE (INTCON<7>).
 - 2: User software should ensure the appropriate interrupt flag bits are cleared prior to enabling an interrupt and after servicing that interrupt.

REGISTER 9-4: PIR1: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 1

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0		
SPPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF		
bit 7					•		bit 0		
Legend:									
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	lown		
bit 7	SPPIF: Strea	ming Parallel Po	ort Read/Wri	te Interrupt Flag	g bit ⁽¹⁾				
	1 = A read o 0 = No read	r a write operati or write has occ	on has taker :urred	n place (must be	e cleared in sof	ware)			
bit 6	ADIF: A/D Co	onverter Interrup	ot Flag bit						
	1 = An A/D o	conversion com	pleted (must	be cleared in s	oftware)				
	0 = The A/D	conversion is n	ot complete						
bit 5	RCIF: EUSA	RT Receive Inte	rrupt Flag bi	t					
	1 = The EUS	SART receive bu	Iffer, RCREG	G, is full (cleared ,	when RCREG	is read)			
hit 4		RT Transmit Inte	errunt Flag hi	t					
bit 4	1 = The FUS	SART transmit b	uffer. TXRF(G is empty (clea	ared when TXR	FG is written)			
	0 = The EUS	SART transmit b	uffer is full	, ie enipty (eie					
bit 3	SSPIF: Mast	er Synchronous	Serial Port I	iterrupt Flag bit					
	1 = The trans 0 = Waiting to	smission/recepti o transmit/receiv	on is comple /e	te (must be cle	ared in software	;)			
bit 2	CCP1IF: CC	P1 Interrupt Flag	g bit						
	Capture mod	<u>e:</u>							
	1 = A TMR1 0 = No TMR1	register capture 1 register captur	occurred (m e occurred	ust be cleared	in software)				
	Compare mo	de:							
	1 = A TMR1	register compar	e match occu	urred (must be	cleared in softw	are)			
	0 = NO TWR P\//M mode:	r register compa	are match oc	curred					
	Unused in thi	is mode.							
bit 1	TMR2IF: TM	R2 to PR2 Matc	h Interrupt F	lag bit					
	1 = TMR2 to	PR2 match occ	urred (must	be cleared in s	oftware)				
	0 = No TMR	2 to PR2 match	occurred						
bit 0	TMR1IF: TM	R1 Overflow Inte	errupt Flag b	it					
	1 = TMR1 re	egister overflowe	ed (must be c	cleared in softw	are)				
			THOW						

Note 1: This bit is reserved on 28-pin devices; always maintain this bit clear.

Pin	Function	Setting	1/0	І/О Туре	Description
RD0/SPP0	RD0	0	OUT	DIG	LATD<0> data output.
		1	IN	ST	PORTD<0> data input.
	SPP0	1	OUT	DIG	SPP<0> output data; takes priority over port data.
		1	IN	TTL	SPP<0> input data.
RD1/SPP1	RD1	0	OUT	DIG	LATD<1> data output.
		1	IN	ST	PORTD<1> data input.
	SPP1	1	OUT	DIG	SPP<1> output data; takes priority over port data.
		1	IN	TTL	SPP<1> input data.
RD2/SPP2	RD2	0	OUT	DIG	LATD<2> data output.
		1	IN	ST	PORTD<2> data input.
	SPP2	1	OUT	DIG	SPP<2> output data; takes priority over port data.
		1	IN	TTL	SPP<2> input data.
RD3/SPP3	RD3	0	OUT	DIG	LATD<3> data output.
		1	IN	ST	PORTD<3> data input.
	SPP3	1	OUT	DIG	SPP<3> output data; takes priority over port data.
		1	IN	TTL	SPP<3> input data.
RD4/SPP4	RD4	0	OUT	DIG	LATD<4> data output.
		1	IN	ST	PORTD<4> data input.
	SPP4	1	OUT	DIG	SPP<4> output data; takes priority over port data.
		1	IN	TTL	SPP<4> input data.
RD5/SPP5/P1B	RD5	0	OUT	DIG	LATD<5> data output
		1	IN	ST	PORTD<5> data input
	SPP5	1	OUT	DIG	SPP<5> output data; takes priority over port data.
		1	IN	TTL	SPP<5> input data.
	P1B	0	OUT	DIG	ECCP1 Enhanced PWM output, Channel B; takes priority over port and SPP data. ⁽¹⁾
RD6/SPP6/P1C	RD6	0	OUT	DIG	LATD<6> data output.
		1	IN	ST	PORTD<6> data input.
	SPP6	1	OUT	DIG	SPP<6> output data; takes priority over port data.
		1	IN	TTL	SPP<6> input data.
	P1C	0	OUT	DIG	ECCP1 Enhanced PWM output, Channel C; takes priority over port and SPP data. ⁽¹⁾
RD7/SPP7/P1D	RD7	0	OUT	DIG	LATD<7> data output.
		1	IN	ST	PORTD<7> data input.
	SPP7	1	OUT	DIG	SPP<7> output data; takes priority over port data.
		1	IN	TTL	SPP<7> input data.
	P1D	0	OUT	DIG	ECCP1 Enhanced PWM output, Channel D; takes priority over port and SPP data. ⁽¹⁾

TABLE 10-7: PORTD I/O SUMMARY

Legend: OUT = Output, IN = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input

Note 1: May be configured for tri-state during Enhanced PWM shutdown events.

11.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- Readable and writable registers
- Dedicated 8-bit, software programmable
 prescaler
- Selectable clock source (internal or external)
- Edge select for external clock
- · Interrupt on overflow

The T0CON register (Register 11-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 11-1. Figure 11-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR00N	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
TMR0ON: T	imer0 On/Off Control bit		
1 = Enables	Timer0		
0 = Stops Til	mer0		
T08BIT: Tim	er0 8-Bit/16-Bit Control bit		
1 = Timer0 is 0 = Timer0 is	s configured as an 8-bit timer/ s configured as a 16-bit timer/	counter counter	
TOCS: Timer	r0 Clock Source Select bit		
1 = Transitio	n on T0CKI pin		
0 = Internal	instruction cycle clock (CLKO))	
T0SE: Timer	O Source Edge Select bit		
1 = Increme	nt on high-to-low transition on	TOCKI pin	
	nt on Iow-to-nign transition on		
PSA: Timer	Prescaler Assignment bit		
1 = 1 Imer0 p 0 = Timer0 p	orescaler is NOT assigned. The orescaler is assigned. The orescaler is assigned.	mer0 clock input bypasses pre clock input comes from presca	escaler. Aler output.
T0PS2:T0PS	SO : Timer0 Prescaler Select b	its	
111 = 1:256	Prescale value		
110 = 1:128	Prescale value		
101 = 1:64	Prescale value		
011 = 1:16	Prescale value		
010 = 1:8	Prescale value		
001 = 1:4	Prescale value		
000 = 1:2	Prescale value		
	bit OR TMR0ON: T 1 = Enables 0 = Stops Tit T08BIT: Tim 1 = Timer0 is 0 = Timer0 is 0 = Timer0 is TOCS: Timer 1 = Transitic 0 = Internal TOSE: Timer 1 = Increme 0 = Increme PSA: Timer0 1 = TImer0 p 0 = Timer0 p TOPS2:TOPS 111 = 1:256 110 = 1:128 101 = 1:64 100 = 1:32 011 = 1:4 000 = 1:2	bit W = Writable bit OR '1' = Bit is set TMR0ON: Timer0 On/Off Control bit 1 = Enables Timer0 0 = Stops Timer0 T08BIT: Timer0 8-Bit/16-Bit Control bit 1 = Timer0 is configured as an 8-bit timer/ 0 = Timer0 is configured as an 16-bit timer/ TOCS: Timer0 Clock Source Select bit 1 = Transition on TOCKI pin 0 = Internal instruction cycle clock (CLKO) TOSE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on 0 = Increment on low-to-high transition on 0 = Increment on low-to-high transition on PSA: Timer0 Prescaler Assignment bit 1 = TImer0 prescaler is NOT assigned. Timer0 TOPS2:TOPS0: Timer0 Prescaler Select b 111 = 1:256 Prescale value 101 = 1:128 Prescale value 101 = 1:164 Prescale value 101 = 1:32 Prescale value 101 = 1:4 Prescale value 011 = 1:2 Prescale value	bit W = Writable bit U = Unimplemented bit, read OR '1' = Bit is set '0' = Bit is cleared TMROON: Timer0 On/Off Control bit 1 = Enables Timer0 0 = Stops Timer0 TO8BIT: Timer0 8-Bit/16-Bit Control bit 1 = Timer0 is configured as an 8-bit timer/counter 0 = Timer0 is configured as an 8-bit timer/counter TOCS: Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKO) TOSE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin PSA: Timer0 Prescaler Assignment bit 1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses pre 0 = Timer0 prescaler is assigned. Timer0 clock input toppasses pre 0 = Timer0 prescaler value 110 = 1:128 Prescale value 110 = 1:128 Prescale value 110 = 1:32 Prescale value 111 = 1:25 Prescale value 112 = 1:4 Prescale value 113 = Timer0 Prescaler value 114 = Prescale value 1154 Prescale value 1154 Prescale value 1155 Prescale value 115

12.2 Timer1 16-Bit Read/Write Mode

Timer1 can be configured for 16-bit reads and writes (see Figure 12-2). When the RD16 control bit (T1CON<7>) is set, the address for TMR1H is mapped to a buffer register for the high byte of Timer1. A read from TMR1L will load the contents of the high byte of Timer1 into the Timer1 high byte buffer. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer1 must also take place through the TMR1H Buffer register. The Timer1 high byte is updated with the contents of TMR1H when a write occurs to TMR1L. This allows a user to write all 16 bits to both the high and low bytes of Timer1 at once.

The high byte of Timer1 is not directly readable or writable in this mode. All reads and writes must take place through the Timer1 High Byte Buffer register. Writes to TMR1H do not clear the Timer1 prescaler. The prescaler is only cleared on writes to TMR1L.

12.3 Timer1 Oscillator

An on-chip crystal oscillator circuit is incorporated between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting the Timer1 Oscillator Enable bit, T1OSCEN (T1CON<3>). The oscillator is a low-power circuit rated for 32 kHz crystals. It will continue to run during all power-managed modes. The circuit for a typical LP oscillator is shown in Figure 12-3. Table 12-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper start-up of the Timer1 oscillator.

FIGURE 12-3: EXTERNAL COMPONENTS FOR THE TIMER1 LP OSCILLATOR

TABLE 12-1: **CAPACITOR SELECTION FOR** THETIMEROSCILLATOR^(2,3,4)

Osc Type	Freq	C1	C2
LP	32 kHz	27 pF ⁽¹⁾	27 pF ⁽¹⁾
Note 1:	Microchip sug starting point circuit.	gests these in validating	values as a the oscillator
2:	Higher capacita of the oscillate start-up time.	ance increase or but also ir	s the stability creases the
3:	Since each res characteristics the resonator	sonator/crysta , the user sh /crystal man	l has its own ould consult ufacturer for

values components. 4: Capacitor values are for design guidance

of

external

12.3.1 **USING TIMER1 AS A CLOCK** SOURCE

appropriate

only.

The Timer1 oscillator is also available as a clock source in power-managed modes. By setting the clock select bits, SCS1:SCS0 (OSCCON<1:0>), to '01', the device switches to SEC RUN mode. Both the CPU and peripherals are clocked from the Timer1 oscillator. If the IDLEN bit (OSCCON<7>) is cleared and a SLEEP instruction is executed, the device enters SEC IDLE mode. Additional details are available in Section 3.0 "Power-Managed Modes".

Whenever the Timer1 oscillator is providing the clock source, the Timer1 system clock status flag, T1RUN (T1CON<6>), is set. This can be used to determine the controller's current clocking mode. It can also indicate the clock source being currently used by the Fail-Safe Clock Monitor. If the Clock Monitor is enabled and the Timer1 oscillator fails while providing the clock, polling the T1RUN bit will indicate whether the clock is being provided by the Timer1 oscillator or another source.

LOW-POWER TIMER1 OPTION 12.3.2

The Timer1 oscillator can operate at two distinct levels of power consumption based on device configuration. When the LPT1OSC Configuration bit is set, the Timer1 oscillator operates in a low-power mode. When LPT1OSC is not set, Timer1 operates at a higher power level. Power consumption for a particular mode is relatively constant, regardless of the device's operating mode. The default Timer1 configuration is the higher power mode.

As the low-power Timer1 mode tends to be more sensitive to interference, high noise environments may cause some oscillator instability. The low-power option is, therefore, best suited for low noise applications where power conservation is an important design consideration.

FIGURE 16-7: EXAMPLE OF FULL-BRIDGE APPLICATION

16.4.5.1 Direction Change in Full-Bridge Mode

In the Full-Bridge Output mode, the P1M1 bit in the CCP1CON register allows the user to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will assume the new direction on the next PWM cycle.

Just before the end of the current PWM period, the modulated outputs (P1B and P1D) are placed in their inactive state, while the unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction. This occurs in a time interval of (4 Tosc * (Timer2 Prescale Value) before the next PWM period begins. The Timer2 prescaler will be either 1, 4 or 16, depending on the value of the T2CKPS1:T2CKPS0 bits (T2CON<1:0>). During the interval from the switch of the unmodulated outputs to the beginning of the next period, the modulated outputs (P1B and P1D) remain inactive. This relationship is shown in Figure 16-8.

Note that in the Full-Bridge Output mode, the ECCP module does not provide any dead-band delay. In general, since only one output is modulated at all times, dead-band delay is not required. However, there is a situation where a dead-band delay might be required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn-off time of the power switch, including the power device and driver circuit, is greater than the turn-on time.

Figure 16-9 shows an example where the PWM direction changes from forward to reverse at a near 100% duty cycle. At time t1, the outputs, P1A and P1D, become inactive, while output P1C becomes active. In this example, since the turn-off time of the power devices is longer than the turn-on time, a shoot-through current may flow through power devices, QC and QD, (see Figure 16-7) for the duration of 't'. The same phenomenon will occur to power devices, QA and QB, for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, one of the following requirements must be met:

- 1. Reduce PWM for a PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾
bit 7			•		•		bit 0
Legend:							
R = Reada	Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 7	GCEN: Gene	ral Call Enable	bit (Slave mo	de only)			
	Unused in Ma	aster mode.		• /			
bit 6	ACKSTAT: A	cknowledge Sta	atus bit (Maste	er Transmit mo	de only)		
	1 = Acknowle	dge was not re	ceived from s	lave			
	0 = Acknowle	dge was receiv	ed from slave	•	(4)		
bit 5	ACKDT: Ackr	nowledge Data	bit (Master Re	eceive mode o	nly) ⁽¹⁾		
	1 = Not Acknowle	owledge					
bit 4		iuye nowlodgo Sogi	ionco Enablo	hit(2)			
DIL 4	1 = Initiate A	cknowledge Sequ	quence on SD	A and SCL nin	s and transmit	ACKDT data bit	Automatically
	cleared b	y hardware.					ratomatioally
	0 = Acknowle	edge sequence	ldle				
bit 3	RCEN: Recei	ve Enable bit (Master Receiv	/e mode only) ⁽	2)		
	1 = Enables F	Receive mode t	for I ² C				
hit 2	PEN: Stop Co	ondition Enable	hit(2)				
Dit 2	1 = Initiate St	op condition or	SDA and SC	L pins, Autom	atically cleared	by hardware.	
	0 = Stop conc	dition Idle		- p		2)	
bit 1	RSEN: Repea	ated Start Cond	dition Enable b	oit ⁽²⁾			
	1 = Initiate R 0 = Repeated	epeated Start o d Start conditio	condition on S n Idle	DA and SCL p	ins. Automatica	ally cleared by h	ardware.
bit 0	SEN: Start Co	ondition Enable	/Stretch Enab	le bit ⁽²⁾			
	1 = Initiate Sta 0 = Start cond	art condition or dition Idle	n SDA and SC	L pins. Autom	atically cleared	by hardware.	
Note 1:	Value that will be t	ransmitted who	on the user init	iatos an Ackry	wledge segue	nce at the end o	of a receive

REGISTER 19-5: SSPCON2: MSSP CONTROL REGISTER 2 (I²C[™] MASTER MODE)

- **Note 1:** Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.
 - 2: If the I²C module is active, these bits may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

TABLE 20-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
PIR1	SPPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	56
PIE1	SPPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	56
IPR1	SPPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	56
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	55
TXREG	EUSART T	ransmit Reg	ister						55
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	55
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	55
SPBRGH	SPBRGH EUSART Baud Rate Generator Register High Byte								55
SPBRG	EUSART E	Baud Rate G	enerator Re	gister Low	Byte				55

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Reserved in 28-pin devices; always maintain these bits clear.

22.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that occurred. The CMIF bit (PIR2<6>) is the Comparator Interrupt Flag. The CMIF bit must be reset by clearing it. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

Both the CMIE bit (PIE2<6>) and the PEIE bit (INT-CON<6>) must be set to enable the interrupt. In addition, the GIE bit (INTCON<7>) must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change	in	the	CMCON	register			
	(C1OUT or C	20U	T) sh	ould occu	r when a			
	read operatio	n is I	being	executed	(start of			
	the Q2 cycle), then the CMIF (PIR2<6>)							
	interrupt flag	may	not g	et set.				

The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of CMCON will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

22.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode, when enabled. Each operational comparator will consume additional current, as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators (CM2:CM0 = 111) before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

22.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state, causing the comparator modules to be turned off (CM2:CM0 = 111). However, the input pins (RA0 through RA3) are configured as analog inputs by default on device Reset. The I/O configuration for these pins is determined by the setting of the PCFG3:PCFG0 bits (ADCON1<3:0>). Therefore, device current is minimized when analog inputs are present at Reset time.

	• =		0=1 (0)						
Mnem	onic,	Description	Civalaa	16-Bit Instruction Word				Status	Notoo
Opera	ands	Description	Cycles	MSb			LSb	Affected	Notes
LITERAL OPERATIONS									
ADDLW	k	Add Literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND Literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR Literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move Literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move Literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move Literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply Literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with Literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from Literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR Literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEI	$MORY \leftrightarrow$	PROGRAM MEMORY OPERATI	ONS						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with Post-Increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with Post-Decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with Pre-Increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with Post-Increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with Post-Decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with Pre-Increment		0000	0000	0000	1111	None	

TABLE 26-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

BCF	Bit Clear f	BN	Branch if	Negative		
Syntax:	BCF f, b {,a}	Syntax:	BN n			
Operands:	$0 \le f \le 255$	Operands:	-128 ≤ n ≤	$-128 \le n \le 127$		
	$\begin{array}{l} 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	Operation:	if Negative bit is '1', (PC) + 2 + 2n \rightarrow PC			
Operation:	$0 \rightarrow f \le b >$	Status Affected:	None			
Status Affected:	None	Encodina [.]	1110	0110 ppr	מממת מר	
Encoding:	1001 bbba ffff ffff	Description:	If the Nega	tive bit is '1' th		
Description:	Bit 'b' in register 'f' is cleared. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing made with provide (SE) (SE).		program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.			
	mode whenever t ≤ 95 (5Fn). See Section 26 2 3 "Byte-Oriented and	Words:	1			
	Bit-Oriented Instructions in Indexed	Cycles:	1(2)			
Words:	Literal Offset Mode" for details.	Q Cycle Activity: If Jump:				
Cvcles:	1	Q1	Q2	Q3	Q4	
Q Cycle Activity:		Decode	Read literal 'n'	Process Data	Write to PC	
Q1	Q2 Q3 Q4	No	No	No	No	
Decode	Read Process Write	operation	operation	operation	operation	
		If No Jump:			<i>.</i>	
Example:	BCE FLAG REG. 7. 0	Q1	Q2	Q3	Q4	
Before Instruc	tion	Decode	read literal	Data	operation	
FLAG_R After Instructio	EG = C7h				operation	
FLAG_R	EG = 47h	Example:	HERE	BN Jump		
		Before Instruc PC After Instructio	ction = ac on	Idress (HERE)		
		If Negati PC If Negati PC	ve = 1; = ac ve = 0; = ac	ldress (Jump) ldress (HERE	+ 2)	

BNC	:	Branch if N	lot Carry		BNN		Branch if N	lot Negative		
Synt	ax:	BNC n			Synta	ax:	BNN n			
Ope	rands:	-128 ≤ n ≤ 1	27		Oper	ands:	-128 ≤ n ≤ 1			
Operation:		if Carry bit i (PC) + 2 + 2	s '0', 2n → PC		Oper	ation:	if Negative bit is '0', (PC) + 2 + 2n \rightarrow PC			
Statu	us Affected:	None			Statu	is Affected:	None	None		
Enco	oding:	1110	0011 nni	nn nnnn	Enco	Encoding: 1110 0111 nnnn		nn nnnn		
Description:		If the Carry will branch. The 2's con added to the incremented instruction, PC + 2 + 2r two-cycle in	bit is '0', then aplement num e PC. Since th d to fetch the r the new addre n. This instruct struction.	the program ber '2n' is e PC will have next ess will be ion is then a	/e a		If the Negat program wil The 2's con added to the incremente instruction, PC + 2 + 2r two-cycle in	If the Negative bit is '0', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a two-cycle instruction.		
Wor	ds:	1			Word	ls:	1			
Cycl	es:	1(2)			Cycle	es:	1(2)			
Q C lf Ju	ycle Activity: ump:				Q C If Ju	ycle Activity: imp:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC	
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operation	
lf N	o Jump:				lf No	o Jump:				
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4	
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation	
<u>Exar</u>	nple: Before Instruc PC After Instructio If Carry If Carry PC	HERE etion = add on = 0; = add = 1; = add	BNC Jump dress (HERE dress (Jump) dress (HERE) + 2)	<u>Exar</u>	nple: PC After Instructi If Negati PC If Negati PC	HERE ction = ad on = 0; = ad ve = 0; = ad ve = 1; = ad	BNN Jump dress (HERE dress (Jump dress (HERE)) + 2)	

CPFSGT	Compare f	with W, Skip if f > W						
Syntax:	CPFSGT	f {,a}						
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$						
Operation:	(f) – (W), skip if (f) > ((unsigned c	(f) - (W), skip if $(f) > (W)$ (unsigned comparison)						
Status Affected:	None							
Encoding:	0110	0110 010a ffff ffff						
Description:	the contents of o the contents an unsigned si- nts of 'f' are gro WREG, then ti- s discarded ar stead, making istruction. the Access Bar he BSR is used (default). and the extended ed, this instruc- Literal Offset A rever $f \le 95$ (5F .2.3 "Byte-Ori d Instructions set Mode" for	data memory of the W by ubtraction. eater than the he fetched hd a NOP is this a hk is selected. d to select the ed instruction etion operates addressing Fh). See ented and s in Indexed details.						
Words:	1							
Cycles:	1(2) Note: 3 cy by a	cles if skip and 2-word instrue	d followed ction.					
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read	Process	No					
lf skin [.]	register i	Dala	operation					
Q1	Q2	Q3	Q4					
No	No	No	No					
operation	operation	operation	operation					
If skip and followe	d by 2-word in	struction:						
Q1	Q2	Q3	Q4					
No	No	No	No					
operation	operation	operation	operation					
operation	operation	operation	operation					
operation	opolation	oporation	operation					
Example:	HERE NGREATER	CPFSGT RE :	G, 0					
	GREATER	:						
Before Instruc PC	tion = Ad	dress (HERE))					
VV After Instructio	= ?							
If REG	> W:							
PC	= Ad	dress (GREAT	TER)					
PC	≤ w; = Ad	dress (NGREA	ATER)					

CPF	SLT	Compare f	Compare f with W, Skip if f < W						
Synta	ax:	CPFSLT	CPFSLT f {,a}						
Oper	ands:	0 ≤ f ≤ 255 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$						
Oper	ation:	(f) – (W), skip if (f) < (unsigned o	(f) - (W), skip if $(f) < (W)$ (unsigned comparison)						
Statu	s Affected:	None	None						
Enco	oding:	0110	0110 000a fff						
Desc	ription:	Compares to location 'f' to performing If the contection in contents of instruction in executed in two-cycle in If 'a' is '0', to If 'a' is '1', to GPR bank	Compares the contents of data memory location 'f' to the contents of W by performing an unsigned subtraction. If the contents of 'f are less than the contents of W, then the fetched instruction is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default)						
Word	ls:	1	1						
	es:	1(2) Note: 3 c by	1(2) Note: 3 cycles if skip and followed by a 2-word instruction.						
QU	Q1	Q2	Q3	Q4					
	Decode	Read	Process	No					
		register 'f'	Data	operation					
lt sk	.ip: 01	02	03	04					
	No	No	No	No No					
	operation	operation	operation	operation					
lf sk	ip and followed	d by 2-word in	struction:						
	Q1	Q2	Q3	Q4					
	No	No	No	No					
	operation	operation	operation	operation					
	operation	operation	operation	operation					
Example: Before Instruction		HERE (NLESS LESS tion = Ad	CPFSLT REG : : dress (herf	, 1					
	Ŵ	= ?	UICOO (HEKE	.,					
	After Instructio	on							
	IT REG PC	< W; = Ad	dress (LESS	5)					
	If REG PC	≥ W; = Ad	dress (NLES	S)					

DAW	ı	Decimal A	djust W Regis	ster	DEC	F	Decrement	tf		
Synt	ax:	DAW			Synt	ax:	DECF f {,d {,a}}			
Oper	ands:	None			Ope	rands:	$0 \le f \le 255$			
Oper	ation:	If [W<3:0> > 9] or [DC = 1] then,			·		d ∈ [0,1]			
•		(W<3:0>) +	$6 \rightarrow W < 3:0>;$. /			a ∈ [0,1]			
		else, (W<3:0>) → W<3:0>; If [W<7:4> + DC > 9] or [C = 1] then,			Ope	ration:	$(f) - 1 \rightarrow dest$			
					Statu	Status Affected: Encoding:		DV, Z		
					Enco			01da ff	ff ffff	
		(W<7:4>) +	$(W<7:4>)+6+DC\rightarrowW<7:4>;$			Description:		Decrement register 'f'. If 'd' is '0', the		
		else, (W<7·4>) + DC → W<7·4>						red in W. If 'd'	is '1', the	
Statua Affaatad:		((((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	DO / W 1.4				(default).	red back in re	gister f	
Chait	din av						lf 'a' is '0', t	he Access Ba	nk is selected.	
Enco	aing:	0000	0000 000				lf 'a' is '1', t	he BSR is use	d to select the	
Desc	cription:	DAW adjust	is the eight-bit	value in W,			GPR bank	(default).	ed instruction	
		variables (each in packed BCD format) and produces a correct packed BCD result.				set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See				
Word	ls:	1					Bit-Oriente	d Instruction	s in Indexed	
Cycle	es:	1					Literal Offs	set Mode" for	details.	
QC	ycle Activity:				Word	ds:	1			
	Q1	Q2	Q3	Q4	Cycl	es:	1			
	Decode	Read	Process	Write	QC	vcle Activity:				
		register w	Data	vv		Q1	Q2	Q3	Q4	
Exar	nple 1:	D A W				Decode	Read	Process	Write to	
	Before Instruc	tion					register 'f'	Data	destination	
	W	= A5h								
	C	= 0			Exar	<u>nple:</u>	DECF (CNT, 1, 0		
	After Instruction	= 0 on				Before Instruction				
	W	= 05h				CNI Z	= 01h = 0			
	C DC	= 1 = 0				After Instructi	on			
Eve		-				CNT	= 00h = 1			
Exar	<u>npie 2:</u> Roforo Instruc	tion				2	- 1			
	W	= CEh								
	C	= 0								
	After Instruction	– u on								
	W	= 34h								
	C DC	= 1 = 0								

Synta Opera Opera Status	ax: ands: ation:	GOTO k $0 \le k \le 104$ $k \rightarrow PC < 20$	8575								
Opera Opera Status	ands: ation:	$0 \le k \le 104$ $k \rightarrow PC < 20$	8575								
Opera Status	ation:	$k \rightarrow PC < 20$				0 ≤ k ≤ 1048575					
Status):1>								
	s Affected:	None	None								
Encoo 1st wo 2nd w	ding: ord (k<7:0>) vord(k<19:8>)	1110 1111	1111 k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈						
Descr	ription:	GOTO allow anywhere 2-Mbyte m value 'k' is is always a	GOTO allows an unconditional branch anywhere within the entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a two-cycle instruction.								
Word	s:	2	2								
Cycles:		2									
Q Cy	cle Activity:										
-	Q1	Q2	Q3		Q4						
	Decode	Read literal 'k'<7:0>,	No operat	ion 'k Wr	ad literal <19:8>, ite to PC						
	No	No	No		No						
	operation	operation	operation		operation						
Exam /	nple: After Instructio	GOTO THE n Address (T	RE HERE)								

INCF	Increment	f	
Syntax:	INCF f{,c	l {,a}}	
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]		
Operation:	(f) + 1 \rightarrow de	est	
Status Affected:	C, DC, N,	OV, Z	
Encoding:	0010	10da ff	ff ffff
	placed in W placed bacl If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enabl in Indexed mode wher Section 26 Bit-Oriente	A if 'd' is '1', the in register 'f' he Access Ba he BSR is use (default). Ind the extend led, this instru- Literal Offset / never $f \le 95$ (5 .2.3 "Byte-Or ed Instruction set Mode" for	the result is (default). nk is selected. ed to select the ed instruction ction operates Addressing Fh). See tiented and tis in Indexed
Words:	1		dotano.
Cvcles:	1		
Q Cvcle Activity:			
Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	register 'f'	Data	destination
Example:	INCF	CNT, 1, 0	
Before Instruc CNT Z DC After Instructio CNT Z C DC	tion = FFh = 0 = ? = ? on = 00h = 1 = 1 = 1		

	10 10.				1002,		
Param. No.	Symbol	Charact	eristic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	—	μS	PIC18FXXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	PIC18FXXXX must operate at a minimum of 10 MHz
			MSSP Module	1.5 TCY	_		
101	TLOW	V Clock Low Time	100 kHz mode	4.7	—	μS	PIC18FXXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	PIC18FXXXX must operate at a minimum of 10 MHz
			MSSP Module	1.5 TCY	_		
102	TR	SDA and SCL Rise	100 kHz mode	—	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA	Start Condition	100 kHz mode	4.7	_	μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	_	μS	Start condition
91	THD:STA	Start Condition	100 kHz mode	4.0	-	μs	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μS	clock pulse is generated
106	THD:DAT	Data Input Hold	100 kHz mode	0	—	ns	
		Time	400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup	100 kHz mode	250	—	ns	(Note 2)
		lime	400 kHz mode	100	—	ns	
92	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μs	
		Setup Time	400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from	100 kHz mode		3500	ns	(Note 1)
		Clock	400 kHz mode		—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
D102	Св	Bus Capacitive Load	ding	—	400	pF	

TABLE 28-20: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C [™] bus device can be used in a Standard mode I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

Program Memory
and the Extended Instruction Set
Code Protection
Instructions64
Two-Word64
Interrupt Vector
Look-up Tables62
Map and Stack (diagram)
Reset Vector
Approximated Projection
Programming Device Instructions 313
Programming, Device instructions
and PWM (ECCP Module)
PUSH 342
PUSH and POP Instructions
PUSHL
PWM (CCP Module)
Associated Registers150
Auto-Shutdown (CCP1 Only)149
Duty Cycle148
Example Frequencies/Resolutions149
Period148
Setup for PWM Operation
IMR2 to PR2 Match
PWM (ECCP Module)
CUPRIH:CUPRIL Registers
Direction Change in Fuil-Bhoge Output Mode
Effects of a Deset 163
Enhanced PWM Auto-Shutdown 160
Enhanced PWM Mode 153
Example Frequencies/Resolutions
Full-Bridge Application Example
Full-Bridge Mode
Half-Bridge Mode156
Half-Bridge Output Mode
Applications Example156
Operation in Power-Managed Modes163
Operation with Fail-Safe Clock Monitor
Output Configurations154
Output Relationships (Active-High)155
Output Relationships (Active-Low)
Period
Programmable Dead-Band Delay
Start up Considerations 162
TMR2 to PR2 Match 153
Q
Q Clock
D
RAM. See Data Memory.
KU_IDLE Mode
RU_RUN Mode
RUALL
Rit Status During Initialization 52
Reader Response 434

Registers	
ADCON0 (A/D Control 0)	. 265
ADCON1 (A/D Control 1)	. 266
ADCON2 (A/D Control 2)	. 267
BAUDCON (Baud Rate Control)	. 246
BDnSTAT (Buffer Descriptor n Status,	
CPU Mode)	. 176
BDnSTAT (Buffer Descriptor n Status,	
SIE Mode)	. 177
CCP1CON (ECCP Control)	. 151
CCPxCON (Standard CCPx Control)	. 143
CMCON (Comparator Control)	. 275
CONFIG1H (Configuration 1 High)	. 294
CONFIG1L (Configuration 1 Low)	. 293
CONFIG2H (Configuration 2 High)	. 296
CONFIG2L (Configuration 2 Low)	. 295
CONFIG3H (Configuration 3 High)	. 297
CONFIG4L (Configuration 4 Low)	. 298
CONFIG5H (Configuration 5 High)	. 299
CONFIG5L (Configuration 5 Low)	. 299
CONFIG6H (Configuration 6 High)	. 300
CONFIG6L (Configuration 6 Low)	. 300
CONFIG7H (Configuration 7 High)	. 301
CONFIG7L (Configuration 7 Low)	. 301
CVRCON (Comparator Voltage	
Reference Control)	. 281
DEVID1 (Device ID 1)	. 302
DEVID2 (Device ID 2)	. 302
ECCP1AS (Enhanced Capture/Compare/PWM	
Auto-Shutdown Control)	. 161
ECCP1DEL (PWM Dead-Band Delay)	. 160
EECON1 (Data EEPROM Control 1) 8	3, 92
HLVDCON (High/Low-Voltage Detect Control)	. 285
INTCON (Interrupt Control)	. 101
INTCON2 (Interrupt Control 2)	. 102
INTCON3 (Interrupt Control 3)	. 103
IPR1 (Peripheral Interrupt Priority 1)	. 108
IPR2 (Peripheral Interrupt Priority 2)	. 109
OSCCON (Oscillator Control)	33
OSCTUNE (Oscillator Tuning)	28
PIE1 (Peripheral Interrupt Enable 1)	. 106
PIE2 (Peripheral Interrupt Enable 2)	. 107
PIR1 (Peripheral Interrupt Request (Flag) 1)	. 104
PIR2 (Peripheral Interrupt Request (Flag) 2)	. 105
PORTE	
RCON (Reset Control) 46	. 125
RCSTA (Receive Status and Control)	. 125 , 110
	. 125 , 110 . 245
SPPCFG (SPP Configuration)	. 125 , 110 . 245 . 192
SPPCFG (SPP Configuration) SPPCON (SPP Control)	. 125 , 110 . 245 . 192 . 191
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status)	. 125 , 110 . 245 . 192 . 191 . 195
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status) SSPCON1 (MSSP Control 1, I ² C Mode)	125 110 245 192 191 195 209
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status) SSPCON1 (MSSP Control 1, I ² C Mode) SSPCON1 (MSSP Control 1, SPI Mode)	. 125 , 110 . 245 . 192 . 191 . 195 . 209 . 199
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status) SSPCON1 (MSSP Control 1, I ² C Mode) SSPCON1 (MSSP Control 1, SPI Mode) SSPCON2 (MSSP Control 2,	. 125 , 110 . 245 . 192 . 191 . 195 . 209 . 199
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status) SSPCON1 (MSSP Control 1, I ² C Mode) SSPCON1 (MSSP Control 1, SPI Mode) SSPCON2 (MSSP Control 2, I ² C Master Mode)	. 125 , 110 . 245 . 192 . 191 . 195 . 209 . 199 . 210
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status) SSPCON1 (MSSP Control 1, I ² C Mode) SSPCON1 (MSSP Control 1, SPI Mode) SSPCON2 (MSSP Control 2, I ² C Master Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode)	. 125 , 110 . 245 . 192 . 191 . 195 . 209 . 199 . 210 . 211
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status) SSPCON1 (MSSP Control 1, I ² C Mode) SSPCON1 (MSSP Control 1, SPI Mode) SSPCON2 (MSSP Control 2, I ² C Master Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPSTAT (MSSP Status, I ² C Mode)	. 125 , 110 . 245 . 192 . 191 . 195 . 209 . 199 . 210 . 211 . 208
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status) SSPCON1 (MSSP Control 1, I ² C Mode) SSPCON1 (MSSP Control 1, SPI Mode) SSPCON2 (MSSP Control 2, I ² C Master Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPSTAT (MSSP Status, I ² C Mode) SSPSTAT (MSSP Status, SPI Mode)	. 125 , 110 . 245 . 192 . 191 . 195 . 209 . 199 . 210 . 211 . 208 . 198
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status) SSPCON1 (MSSP Control 1, I ² C Mode) SSPCON1 (MSSP Control 1, SPI Mode) SSPCON2 (MSSP Control 2, I ² C Master Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPSTAT (MSSP Status, I ² C Mode) SSPSTAT (MSSP Status, SPI Mode) STATUS	. 125 , 110 . 245 . 192 . 191 . 195 . 209 . 199 . 210 . 211 . 208 . 198 73
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status) SSPCON1 (MSSP Control 1, I ² C Mode) SSPCON1 (MSSP Control 1, SPI Mode) SSPCON2 (MSSP Control 2, I ² C Master Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPSTAT (MSSP Status, I ² C Mode) SSPSTAT (MSSP Status, SPI Mode) STATUS STKPTR (Stack Pointer)	. 125 , 110 . 245 . 192 . 191 . 195 . 209 . 209 . 199 . 210 . 211 . 208 . 198 73 61
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status) SSPCON1 (MSSP Control 1, I ² C Mode) SSPCON1 (MSSP Control 1, SPI Mode) SSPCON2 (MSSP Control 2, I ² C Master Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPSTAT (MSSP Status, I ² C Mode) SSPSTAT (MSSP Status, SPI Mode) STATUS STKPTR (Stack Pointer) T0CON (Timer0 Control)	. 125 , 110 . 245 . 192 . 191 . 195 . 209 . 210 . 210 . 211 . 208 . 198 73 61 . 127
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status) SSPCON1 (MSSP Control 1, I ² C Mode) SSPCON1 (MSSP Control 1, SPI Mode) SSPCON2 (MSSP Control 2, I ² C Master Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPSTAT (MSSP Status, I ² C Mode) SSPSTAT (MSSP Status, SPI Mode) STATUS STKPTR (Stack Pointer) T0CON (Timer0 Control) T1CON (Timer1 Control)	. 125 , 110 . 245 . 192 . 191 . 195 . 209 . 199 . 210 . 211 . 208 . 198 73 61 . 127 . 131
SPPCFG (SPP Configuration) SPPCON (SPP Control) SPPEPS (SPP Endpoint Address and Status) SSPCON1 (MSSP Control 1, I ² C Mode) SSPCON1 (MSSP Control 1, SPI Mode) SSPCON2 (MSSP Control 2, I ² C Master Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPCON2 (MSSP Control 2, I ² C Slave Mode) SSPSTAT (MSSP Status, I ² C Mode) SSPSTAT (MSSP Status, SPI Mode) STATUS STKPTR (Stack Pointer) T0CON (Timer0 Control) T1CON (Timer1 Control) T2CON (Timer2 Control)	. 125 , 110 . 245 . 192 . 191 . 195 . 209 . 199 . 210 . 211 . 208 . 198 73 61 . 127 . 131 . 137