

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4455-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nome	Pi	n Numl	ber	Pin Buffer	Description	
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTE is a bidirectional I/O port.
RE0/AN5/CK1SPP RE0 AN5 CK1SPP	8	25	25	I/O I O	ST Analog	Digital I/O. Analog input 5. SPP clock 1 output.
RE1/AN6/CK2SPP RE1 AN6 CK2SPP	9	26	26	I/O I O	ST Analog —	Digital I/O. Analog input 6. SPP clock 2 output.
RE2/AN7/OESPP RE2 AN7 OESPP	10	27	27	I/O I O	ST Analog —	Digital I/O. Analog input 7. SPP output enable output.
RE3	_	_	_		_	See MCLR/VPP/RE3 pin.
Vss	12, 31	6, 30, 31	6, 29	Ρ	_	Ground reference for logic and I/O pins.
Vdd	11, 32	7, 8, 28, 29	7, 28	Р	—	Positive supply for logic and I/O pins.
Vusb	18	37	37	Р	—	Internal USB 3.3V voltage regulator output, positive supply for the USB transceiver.
NC/ICCK/ICPGC ⁽³⁾ ICCK ICPGC	-	—	12	I/O I/O	ST ST	No Connect or dedicated ICD/ICSP™ port clock. In-Circuit Debugger clock. ICSP programming clock.
NC/ICDT/ICPGD ⁽³⁾ ICDT ICPGD	-	—	13	I/O I/O	ST ST	No Connect or dedicated ICD/ICSP port clock. In-Circuit Debugger data. ICSP programming data.
NC/ICRST/ICVPP ⁽³⁾ ICRST ICVPP	-		33	I P	_	No Connect or dedicated ICD/ICSP port Reset. Master Clear (Reset) input. Programming voltage input.
NC/ICPORTS ⁽³⁾ ICPORTS	—	—	34	Ρ	—	No Connect or 28-pin device emulation. Enable 28-pin device emulation when connected to Vss.
NC		13				No Connect.
Legend: TTL = TTL o ST = Schn O = Outp	nitt Trigg			/IOS le		MOS = CMOS compatible input or output = Input = Power

TABLE 1-3: PIC18F4455/4550 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.


2.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In HS, HSPLL, XT and XTPLL Oscillator modes, a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation. Figure 2-2 shows the pin connections.

The oscillator design requires the use of a parallel cut crystal.

Note:	Use of a series cut crystal may give a fre- quency out of the crystal manufacturer's
	specifications.

FIGURE 2-2: CRYSTAL/CERAMIC RESONATOR OPERATION (XT, HS OR HSPLL CONFIGURATION)

3: RF varies with the oscillator mode chosen.

TABLE 2-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

-	Typical Capacitor Values Used:								
Mode	Freq	Freq OSC1 OSC2							
XT	4.0 MHz	33 pF	33 pF						
HS	8.0 MHz 16.0 MHz	27 pF 22 pF	27 pF 22 pF						

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. **These values are not optimized**.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following Table 2-2 for additional information.

Resonators Used:
4.0 MHz
8.0 MHz
16.0 MHz

When using ceramic resonators with frequencies above 3.5 MHz, HS mode is recommended over XT mode. HS mode may be used at any VDD for which the controller is rated. If HS is selected, the gain of the oscillator may overdrive the resonator. Therefore, a series resistor should be placed between the OSC2 pin and the resonator. As a good starting point, the recommended value of RS is 330Ω .

3.0 POWER-MANAGED MODES

PIC18F2455/2550/4455/4550 devices offer a total of seven operating modes for more efficient power management. These modes provide a variety of options for selective power conservation in applications where resources may be limited (i.e., battery-powered devices).

There are three categories of power-managed modes:

- Run modes
- Idle modes
- · Sleep mode

These categories define which portions of the device are clocked and sometimes, what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block); the Sleep mode does not use a clock source.

The power-managed modes include several power-saving features offered on previous PIC[®] devices. One is the clock switching feature, offered in other PIC18 devices, allowing the controller to use the Timer1 oscillator in place of the primary oscillator. Also included is the Sleep mode, offered by all PIC devices, where all device clocks are stopped.

3.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires two decisions: if the CPU is to be clocked or not and the selection of a clock source. The IDLEN bit (OSCCON<7>) controls CPU clocking, while the SCS1:SCS0 bits (OSCCON<1:0>) select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 3-1.

3.1.1 CLOCK SOURCES

The SCS1:SCS0 bits allow the selection of one of three clock sources for power-managed modes. They are:

- The primary clock, as defined by the FOSC3:FOSC0 Configuration bits
- The secondary clock (the Timer1 oscillator)
- The internal oscillator block (for RC modes)

3.1.2 ENTERING POWER-MANAGED MODES

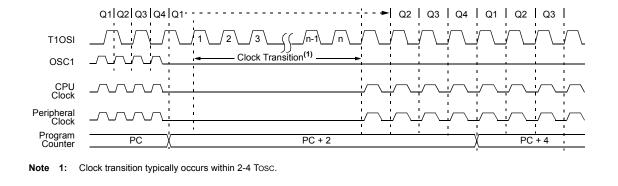
Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS1:SCS0 bits select the clock source and determine which Run or Idle mode is to be used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. These are discussed in **Section 3.1.3 "Clock Transitions and Status Indicators"** and subsequent sections.

Entry to the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit.

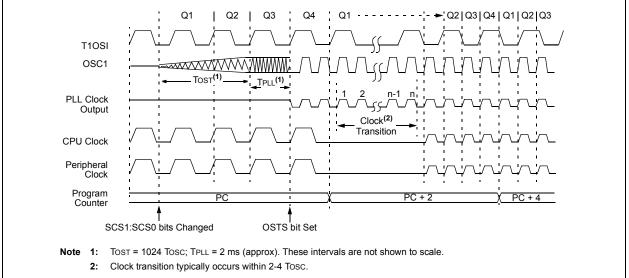
Depending on the current mode and the mode being switched to, a change to a power-managed mode does not always require setting all of these bits. Many transitions may be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured correctly, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

TADLE 3-1.	E 3-1. FOWER-MANAGED MODES									
Mode -	osco	CON<7,1:0>	Modul	e Clocking	Augilable Cleak and Casillater Source					
	IDLEN ⁽¹⁾	SCS1:SCS0	CPU	Peripherals	Available Clock and Oscillator Source					
Sleep	0	N/A	Off	Off	None – all clocks are disabled					
PRI_RUN	N/A	00	Clocked	Clocked	Primary – all oscillator modes. This is the normal full-power execution mode.					
SEC_RUN	N/A	01	Clocked	Clocked	Secondary – Timer1 oscillator					
RC_RUN	N/A	lx	Clocked	Clocked	Internal oscillator block ⁽²⁾					
PRI_IDLE	1	00	Off	Clocked	Primary – all oscillator modes					
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 oscillator					
RC_IDLE	1	lx	Off	Clocked	Internal oscillator block ⁽²⁾					

TABLE 3-1: POWER-MANAGED MODES


Note 1: IDLEN reflects its value when the SLEEP instruction is executed.

2: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.


SEC_RUN mode is entered by setting the SCS1:SCS0 bits to '01'. The device clock source is switched to the Timer1 oscillator (see Figure 3-1), the primary oscillator is shut down, the T1RUN bit (T1CON<6>) is set and the OSTS bit is cleared.

Note: The Timer1 oscillator should already be running prior to entering SEC_RUN mode. If the T1OSCEN bit is not set when the SCS1:SCS0 bits are set to '01', entry to SEC_RUN mode will not occur. If the Timer1 oscillator is enabled but not yet running, device clocks will be delayed until the oscillator has started. In such situations, initial oscillator operation is far from stable and unpredictable operation may result. On transitions from SEC_RUN mode to PRI_RUN, the peripherals and CPU continue to be clocked from the Timer1 oscillator while the primary clock is started. When the primary clock becomes ready, a clock switch back to the primary clock occurs (see Figure 3-2). When the clock switch is complete, the T1RUN bit is cleared, the OSTS bit is set and the primary clock is providing the clock. The IDLEN and SCS bits are not affected by the wake-up; the Timer1 oscillator continues to run.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
TOSU	_	_	_	Top-of-Stack	Upper Byte (T	OS<20:16>)			0 0000	53, 60
TOSH	Top-of-Stack	High Byte (TO	S<15:8>)						0000 0000	53, 60
TOSL	Top-of-Stack	Low Byte (TO	6<7:0>)						0000 0000	53, 60
STKPTR	STKFUL	STKUNF	_	SP4	SP3	SP2	SP1	SP0	00-0 0000	53, 61
PCLATU	_	-	_	Holding Regi	ster for PC<20	:16>	•	•	0 0000	53, 60
PCLATH	Holding Regis	ster for PC<15	:8>						0000 0000	53, 60
PCL	PC Low Byte	(PC<7:0>)							0000 0000	53, 60
TBLPTRU	—	—	bit 21 ⁽¹⁾	Program Mer	nory Table Poi	nter Upper By	te (TBLPTR<2	20:16>)	00 0000	53, 84
TBLPTRH	Program Men	nory Table Poi	nter High Byte	e (TBLPTR<15	:8>)				0000 0000	53, 84
TBLPTRL	Program Men	nory Table Poi	nter Low Byte	(TBLPTR<7:0)>)				0000 0000	53, 84
TABLAT	AT Program Memory Table Latch								0000 0000	53, 84
PRODH	Product Register High Byte								XXXX XXXX	53, 97
PRODL	Product Regi	ster Low Byte							XXXX XXXX	53, 97
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	0000 000x	53, 101
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	1111 -1-1	53, 102
INTCON3	INT2IP	INT1IP	_	INT2IE	INT1IE	_	INT2IF	INT1IF	11-0 0-00	53, 103
INDF0	Uses content	s of FSR0 to a	ddress data m	nemory – value	e of FSR0 not	changed (not a	a physical regi	ster)	N/A	53, 75
POSTINC0	Uses contents of FSR0 to address data memory – value of FSR0 not changed (not a physical register) Uses contents of FSR0 to address data memory – value of FSR0 post-incremented (not a physical register)								N/A	53, 76
POSTDEC0	Uses contents of FSR0 to address data memory – value of FSR0 post-decremented (not a physical register)							al register)	N/A	53, 76
PREINC0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register)							register)	N/A	53, 76
PLUSW0	Uses contents of FSR0 to address data memory – value of FSR0 pre-incremented (not a physical register) – value of FSR0 offset by W						register) –	N/A	53, 76	
FSR0H	— — — Indirect Data Memory Address Pointer 0 High Byte						High Byte	0000	53, 75	
FSR0L	Indirect Data Memory Address Pointer 0 Low Byte								XXXX XXXX	53, 75
WREG	Working Regi	ster							XXXX XXXX	53
INDF1	Uses contents	s of FSR1 to a	ddress data m	nemory – value	e of FSR1 not	changed (not a	a physical regi	ster)	N/A	53, 75
POSTINC1	Uses contents	s of FSR1 to a	ddress data m	nemory – value	e of FSR1 post	-incremented	(not a physica	l register)	N/A	53, 76
POSTDEC1	Uses contents	s of FSR1 to a	ddress data m	nemory – value	e of FSR1 post	-decremented	(not a physica	al register)	N/A	53, 76
PREINC1	Uses contents	s of FSR1 to a	ddress data m	nemory – value	e of FSR1 pre-	incremented (not a physical	register)	N/A	53, 76
PLUSW1	Uses contents value of FSR		ddress data m	nemory – value	e of FSR1 pre-	incremented (not a physical	register) –	N/A	53, 76
FSR1H	—	_	—	—	Indirect Data	Memory Addr	ess Pointer 1 I	High Byte	0000	53, 75
FSR1L	Indirect Data	Memory Addre	ess Pointer 1 L	_ow Byte					XXXX XXXX	53, 75
BSR	—	_	_	_	Bank Select F	Register			0000	54, 65
INDF2	Uses contents	s of FSR2 to a	ddress data m	nemory – value	e of FSR2 not	changed (not a	a physical regi	ster)	N/A	54, 75
POSTINC2	Uses contents	s of FSR2 to a	ddress data m	nemory – value	e of FSR2 post	-incremented	(not a physica	l register)	N/A	54, 76
POSTDEC2	Uses contents	s of FSR2 to a	ddress data m	nemory – value	e of FSR2 post	t-decremented	(not a physica	al register)	N/A	54, 76
PREINC2	Uses contents	s of FSR2 to a	ddress data m	nemory – value	e of FSR2 pre-	incremented (not a physical	register)	N/A	54, 76
PLUSW2	Uses contents value of FSR		ddress data m	nemory – value	e of FSR2 pre-	incremented (not a physical	register) –	N/A	54, 76
FSR2H	—	—	—	—	Indirect Data	Memory Addr	ess Pointer 2 I	High Byte	0000	54, 75
FSR2L	Indirect Data	Memory Addre	ess Pointer 2 l	_ow Byte	1	1	1		XXXX XXXX	54, 75
STATUS	—	—	_	Ν	OV	Z	DC	С	x xxxx	54, 73
TMR0H	Timer0 Regis	ter High Byte							0000 0000	54, 129
TMR0L	Timer0 Regis	ter Low Byte							XXXX XXXX	54, 129

DECISTED EILE SLIMMADY

Note 1: Bit 21 of the TBLPTRU allows access to the device Configuration bits.

The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as '0'. 2:

3: These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-'.

4: RA6 is configured as a port pin based on various primary oscillator modes. When the port pin is disabled, all of the associated bits read '0'.

5: RE3 is only available as a port pin when the MCLRE Configuration bit is clear; otherwise, the bit reads as '0'.

6: RC5 and RC4 are only available as port pins when the USB module is disabled (UCON<3> = 0).

7: I²C[™] Slave mode only.

13.0 TIMER2 MODULE

The Timer2 module timer incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- · Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP module

The module is controlled through the T2CON register (Register 13-1) which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 13-1.

13.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (Fosc/4). A 2-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options. These are selected by the prescaler control bits, T2CKPS1:T2CKPS0 (T2CON<1:0>). The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 13.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

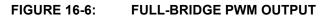
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

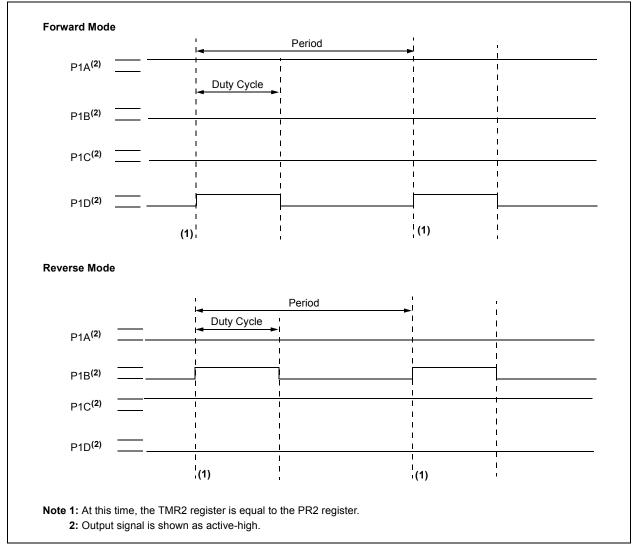
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

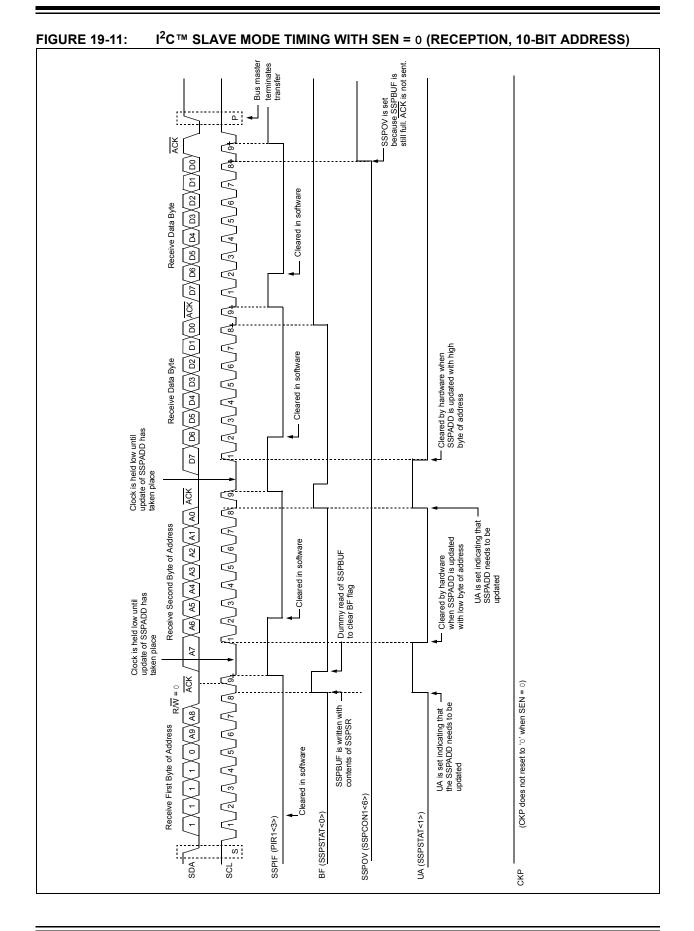
Unimplemented: Read as '0'
T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits
0000 = 1:1 Postscale
0001 = 1:2 Postscale
•
•
•
1111 = 1:16 Postscale
TMR2ON: Timer2 On bit
1 = Timer2 is on
0 = Timer2 is off
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits
00 = Prescaler is 1
01 = Prescaler is 4
1x = Prescaler is 16

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
RCON	IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR	BOR	54
PIR1	SPPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	56
PIE1	SPPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	56
IPR1	SPPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	56
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	56
TRISC	TRISC7	TRISC6	_	_	_	TRISC2	TRISC1	TRISC0	56
TMR2	Timer2 Reg	jister							54
PR2	Timer2 Peri	iod Register							54
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	54
CCPR1L	Capture/Co	mpare/PWM	Register 1 L	ow Byte					55
CCPR1H	Capture/Co	mpare/PWM	Register 1 H	ligh Byte					55
CCP1CON	P1M1 ⁽²⁾	P1M0 ⁽²⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	55
CCPR2L	Capture/Co	mpare/PWM	Register 2 l	ow Byte					55
CCPR2H	Capture/Compare/PWM Register 2 High Byte								
CCP2CON	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	55
ECCP1AS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽²⁾	PSSBD0 ⁽²⁾	55
ECCP1DEL	PRSEN	PDC6 ⁽²⁾	PDC5 ⁽²⁾	PDC4 ⁽²⁾	PDC3 ⁽²⁾	PDC2 ⁽²⁾	PDC1 ⁽²⁾	PDC0 ⁽²⁾	55

TABLE 15-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2


Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.


Note 1: The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as '0'.


2: These bits are unimplemented on 28-pin devices; always maintain these bits clear.

16.4.5 FULL-BRIDGE MODE

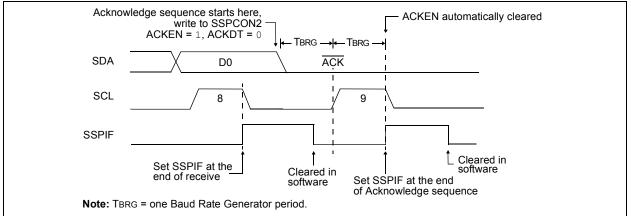
In Full-Bridge Output mode, four pins are used as outputs; however, only two outputs are active at a time. In the Forward mode, pin P1A is continuously active and pin P1D is modulated. In the Reverse mode, pin P1C is continuously active and pin P1B is modulated. These are illustrated in Figure 16-6. P1A, P1B, P1C and P1D outputs are multiplexed with the PORTC<2>, PORTD<5>, PORTD<6> and PORTD<7> data latches. The TRISC<2>, TRISD<5>, TRISD<6> and TRISD<7> bits must be cleared to make the P1A, P1B, P1C and P1D pins outputs.

19.4.12 ACKNOWLEDGE SEQUENCE TIMING

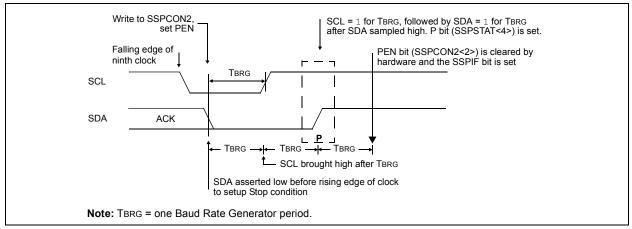
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit. ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into an inactive state (Figure 19-25).

19.4.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).


19.4.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Enable bit, PEN (SSPCON2<2>). At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to 0. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit (SSPSTAT<4>) is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 19-26).


19.4.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 19-25: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 19-26: STOP CONDITION RECEIVE OR TRANSMIT MODE

R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16		WUE	ABDEN		
bit 7	•						bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, re	ad as '0'			
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is c	leared	x = Bit is unk	nown		
bit 7	1 = A BRG	Auto-Baud Acqu rollover has oc G rollover has o	curred during		te Detect mode	e (must be cleare	ed in software		
bit 6	RCIDL: Receive Operation Idle Status bit 1 = Receive operation is Idle 0 = Receive operation is active								
bit 5	Asynchrono 1 = RX data 0 = RX data Synchrono 1 = Receive	a is inverted a received is not	inverted	tate is a low l					
bit 4	TXCKP : Cle <u>Asynchrono</u> 1 = TX data 0 = TX data <u>Synchrono</u> 1 = Clock (f	ock and Data Po ous mode: a is inverted a is not inverted	larity Select b	it high level.					
bit 3	BRG16: 16 1 = 16-bit E	-Bit Baud Rate I Baud Rate Gene	Register Enab rator – SPBR0	le bit GH and SPBR	G	BRGH value ign	ored		
bit 2	Unimplem	ented: Read as	' 0 '		-	-			
bit 1	Asynchrono 1 = EUSAF hardwa	RT will continue are on following not monitored o us mode:	rising edge	-	errupt generate	d on falling edge	; bit cleared i		
bit 0	ABDEN: Au Asynchrono 1 = Enable cleared	uto-Baud Detect ous mode: baud rate mea d in hardware up ate measuremen us mode:	surement on t	I.	cter. Requires	reception of a Sy	/nc field (55h		

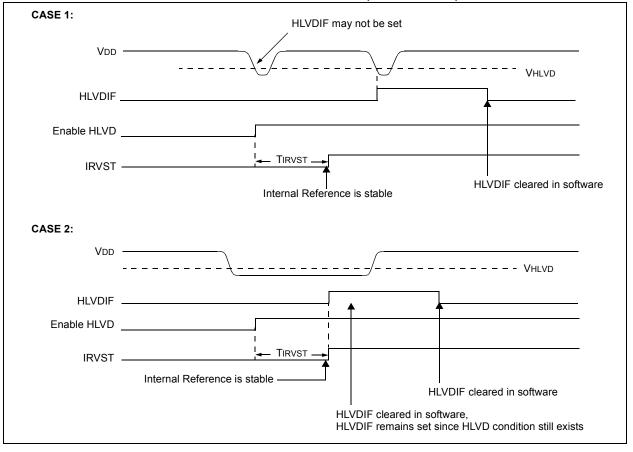
REGISTER 20-3: BAUDCON: BAUD RATE CONTROL REGISTER

24.2 HLVD Setup

The following steps are needed to set up the HLVD module:

- 1. Disable the module by clearing the HLVDEN bit (HLVDCON<4>).
- 2. Write the value to the HLVDL3:HLVDL0 bits that selects the desired HLVD trip point.
- Set the VDIRMAG bit to detect high voltage (VDIRMAG = 1) or low voltage (VDIRMAG = 0).
- 4. Enable the HLVD module by setting the HLVDEN bit.
- Clear the HLVD Interrupt Flag, HLVDIF (PIR2<2>), which may have been set from a previous interrupt.
- Enable the HLVD interrupt, if interrupts are desired, by setting the HLVDIE and GIE/GIEH bits (PIE2<2> and INTCON<7>). An interrupt will not be generated until the IRVST bit is set.

24.3 Current Consumption


When the module is enabled, the HLVD comparator and voltage divider are enabled and will consume static current. The total current consumption, when enabled, is specified in electrical specification parameter D022 (Section 28.2 "DC Characteristics"). Depending on the application, the HLVD module does not need to be operating constantly. To decrease the current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After doing the check, the HLVD module may be disabled.

24.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification parameter D420 (see Table 28-6 in **Section 28.0 "Electrical Characteristics"**), may be used by other internal circuitry, such as the Programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TIRVST, is an interval that is independent of device clock speed. It is specified in electrical specification parameter 36 (Table 28-12).

The HLVD interrupt flag is not enabled until TIRVST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval. Refer to Figure 24-2 or Figure 24-3.

ANDWF	AND W wi	th f		BC		Branch if (Carry		
Syntax:	ANDWF	f {,d {,a}}		Synta	ax:	BC n			
Operands:	$0 \leq f \leq 255$			Oper	ands:	-128 ≤ n ≤	127		
	$\begin{array}{l} d \in [0,1] \\ a \in [0,1] \end{array}$			Oper	ation:	if Carry bit (PC) + 2 +			
Operation:	(W) .AND.	(f) \rightarrow dest		Statu	s Affected:	None			
Status Affected	: N, Z			Enco	oding:	1110	0010	nnnn	nnnn
Encoding:	0001	01da ff	ff ffff		cription:	If the Carry			
Description:	register f ² . in W. If 'd' i in register If 'a' is '0', If 'a' is '1', f GPR bank If 'a' is '0' a set is enab in Indexed mode when Section 26 Bit-Oriente	f' (default). the Access Ba the BSR is use (default). and the extend led, this instruct Literal Offset A never $f \le 95$ (5) 5.2.3 "Byte-Or ed Instruction	result is stored is stored back is stored back d to select the ed instruction ction operates Addressing Fh). See iented and s in Indexed			will branch. The 2's cor added to th incremente instruction, PC + 2 + 2 two-cycle in 1 1(2) Q2	mplement e PC. Sin d to fetch the new a n. This ins	ce the F the nex address structior	PC will have t will be
Words:		set Mode" for	detalls.		Decode	Read literal	Proces		/rite to PC
	1				Nia	ʻn'	Data		Nie
Cycles:	1				No operation	No operation	No operati	on	No operation
Q Cycle Activi Q1	uy. Q2	Q3	Q4	lf No	Jump:	1 1			
Decode		Process	Write to		Q1	Q2	Q3		Q4
	register 'f'	Data	destination		Decode	Read literal 'n'	Proces Data		No operation
Example:	ANDWF	REG, 0, 0		Exan	nnle [.]	HERE	BC 5		
Before Ins W REG	= 17h = C2h				Before Instruc PC	ction = ad	dress (H		
After Instr W REG	= 02h				After Instructi If Carry PC If Carry PC	= 1; = ad = 0;	dress (H		,

BCF	Bit Clear f		BN	Branch if M	legative	
Syntax:	BCF f, b {,a}		Syntax:	BN n		
Operands:	$0 \leq f \leq 255$		Operands:	-128 ≤ n ≤ ′	127	
	$0 \le b \le 7$ a $\in [0,1]$		Operation:	if Negative (PC) + 2 +		
Operation:	$0 \rightarrow f \le b >$		Status Affected:	None		
Status Affected:	None		Encoding:	1110	0110 nn	nn nnnn
Encoding: Description:	1001bbbaffffBit 'b' in register 'f' is clearedIf 'a' is '0', the Access Bank iIf 'a' is '1', the BSR is used toGPR bank (default).If 'a' is '0' and the extended iset is enabled, this instructioin Indexed Literal Offset Addmode whenever $f \le 95$ (5Fh)Section 26.2.3 "Byte-Orien	is selected. o select the instruction n operates ressing . See	Description: Words:	program wi The 2's cor added to th incremente instruction,	nplement num e PC. Since th d to fetch the the new addro n. This instruc	nber '2n' is ne PC will have next ess will be
	Bit-Oriented Instructions in		Cycles:	1(2)		
Words:	Literal Offset Mode" for det 1	tails.	Q Cycle Activity If Jump:	:		
Cycles:	1		Q1	Q2	Q3	Q4
Q Cycle Activity:			Decode	Read literal 'n'	Process Data	Write to PC
Q1 Decode	Q2 Q3 Read Process	Q4 Write	No operation	No operation	No operation	No operation
	register 'f' Data r	egister 'f'	If No Jump:			
			Q1	Q2	Q3	Q4
Example: Before Instruc FLAG_F		0	Decode	Read literal 'n'	Process Data	No operation
After Instructi FLAG_F	on		Example:	HERE	BN Jump)
			Before Instr PC After Instruc If Nega If Nega P	= ad ative = 1; C = ad ative = 0;	dress (HERE) dress (Jump) dress (HERE	

LFSF	र		Load FSF	R			
Synta	ax:		LFSR f, l	ĸ			
Oper	ands:		$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 40 \end{array}$	95			
Oper	ation:		$k\toFSRf$				
Statu	s Affected:		None				
Enco	ding:		1110 1111	1110 0000	-	0ff ₇ kkk	k ₁₁ kkk kkkk
Desc	ription:		The 12-bit File Selec				
Word	ls:		2				
Cycle	es:		2				
QC	ycle Activity:						
	Q1		Q2	Q3		-	Q4
	Decode		ad literal k' MSB	Process Data	3	literal	/rite 'k' MSB SRfH
	Decode		ad literal k' LSB	Process Data	6		literal 'k' ⁻ SRfL
		L		Dala		101	UNL
<u>Exan</u>	•	lion	LFSR 2,	3ABh			
	After Instruct FSR2H FSR2L			3h Bh			

MOVF	Move f		
Syntax:	MOVF f{,	d {,a}}	
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$		
Operation:	$f \to \text{dest}$		
Status Affected:	N, Z		
Encoding:	0101	00da ff	ff ffff
	placed in W placed back Location 'f' 256-byte ba If 'a' is '0', tl If 'a' is '1', tl GPR bank (If 'a' is '0' al set is enabl in Indexed I mode when Section 26 Bit-Oriente	the Access Ba the BSR is use (default). and the extend ed, this instru- Literal Offset / ever $f \le 95$ (5 2.3 "Byte-Or	ne result is (default). here in the nk is selected. d to select the ed instruction ction operates Addressing Fh). See iented and is in Indexed
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Process Data	Write W
Example:	MOVF RE	EG, 0, 0	
Before Instruc REG W	tion = 22 = FF		

= = 22h 22h

After Instruction REG W

MOVFF	Move f to	f			
Syntax:	MOVFF f	s,f _d			
Operands:	$\begin{array}{l} 0 \leq f_s \leq 40 \\ 0 \leq f_d \leq 40 \end{array}$				
Operation:	$(f_{\text{s}}) \to f_{\text{d}}$				
Status Affected:	None				
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d	
Description:	The conter moved to a Location o in the 4096 FFFh) and can also b FFFh. Either sou (a useful s MOVFF is p transferring peripheral buffer or a The MOVFT PCL, TOS destination	destinatio f source " 6-byte dat l location e anywhe rce or des pecial situ particularly g a data n register (s n I/O port F instructi U, TOSH	n register f_s ' can be a space (of destina re from 0 stination c uation). y useful for hemory lo such as th). on canno	'f _d '. anywhere 000h to tition 'f _d ' 00h to an be W or cation to a he transmit t use the	
Words:	2				
Cycles:	2				
Q Cycle Activity:					
Q1	Q2	Q3	8	Q4	7
Decode	Read	Droce		No	

MOVLB	Move Liter	al to Lo	w Nibb	ole iı	n BSR
Syntax:	MOVLW k	Ι.			
Operands:	$0 \le k \le 255$				
Operation:	$k \to BSR$				
Status Affected:	None				
Encoding:	0000	0001	kkk	k	kkkk
Description:	The eight-b Bank Selec of BSR<7:4 regardless	t Registe I> always	er (BSF s rema	R). T iins '	he value 0'
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3			Q4
Decode	Read literal 'k'	Proce Data			te literal to BSR
Example:	MOVLB	5			
Example: Before Instruc BSR Reg	tion	-			

05h

After Instruction

BSR Register =

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example:	MOVFF	REG1,	REG2
Externiorer	110 1 1 1	imor,	1000

Before Instruction		
REG1	=	33h
REG2	=	11h
After Instruction		
REG1	=	33h
REG2	=	33h

SUBFSR	Subtract	Literal fr	om FSF	1
Syntax:	SUBFSR	f, k		
Operands:	$0 \le k \le 63$			
	f ∈ [0, 1,	2]		
Operation:	FSRf – k	\rightarrow FSRf		
Status Affected:	None			
Encoding:	1110	1001	ffkk	kkkk
Description:	The 6-bit I	iteral 'k' is	subtra	cted from
	the conter	nts of the	FSR spe	ecified by
	ʻf'.			
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read	Proce	SS	Write to
	register 'f'	Data	ı d	estination
Example:	SUBFSR 2	2 23h		

Example:	SUBFSR	2,	23h
Before Instruction	า		
FSR2 =	03FFh	1	
After Instruction			
FSR2 =	03DCI	า	

Syntax:	SL	JBULNK	k				
Operands:	0 ≤	≤ k ≤ 63					
Operation:	FS	SR2 – k –	→ FSF	R 2,			
	(T($OS) \rightarrow P$	С	-			
Status Affected:	•	one					
Encoding:	1	1110	100)1	11kk	Ī	kkkk
Description:	co ex Th ex se	e 6-bit lif ntents of ecuted b e instruc ecute; a cond cyc	the F y load tion ta	SR2. ding th akes t	A RETUR RE PC with wo cycle	RN is th th s to	s then ne TOS.
Words:	the	iis may b e SUBFSI L'); it ope	r instr	ructior	, where	f = 3	
Words: Cycles:	the '11	SUBFSI	r instr	ructior	, where	f = 3	
	the '11 1 2	SUBFSI	r instr	ructior	, where	f = 3	
Cycles:	the '11 1 2	SUBFSI	R instr erates	only o	, where	f = 3	
Cycles: Q Cycle Activit	the '11 1 2 ty:	e SUBFSI L'); it ope	R instr erates	Prc	n, where on FSR2	f = 3	3 (binar <u>)</u>
Cycles: Q Cycle Activit Q1	the '11 1 2 ty:	e SUBFSI L'); it ope Q2 Read	R instr erates	Prc	n, where on FSR2 Q3 ocess	f = 3	3 (binary Q4 Write to
Cycles: Q Cycle Activit Q1 Decode	the '11 1 2 ty:	e SUBFSI L'); it ope Q2 Read registe	R instr erates d r 'f'	Pro	a, where on FSR2 Q3 ocess ata	f = :	3 (binar Q4 Write to estinatio

•					
Before Instruction					
FSR2	=	03FFh			
PC	=	0100h			
After Instructi	on				
FSR2	=	03DCh			
PC	=	(TOS)			

28.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR) (Note 3)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, liк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

- **Note 1:** Power dissipation is calculated as follows: Pdis = VDD x {IDD $- \sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)
 - 2: Voltage spikes below Vss at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/ RE3 pin, rather than pulling this pin directly to Vss.
 - **3:** When the internal USB regulator is enabled or VUSB is powered externally, RC4 and RC5 are limited to -0.3V to (VUSB + 0.3V) with respect to VSS.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

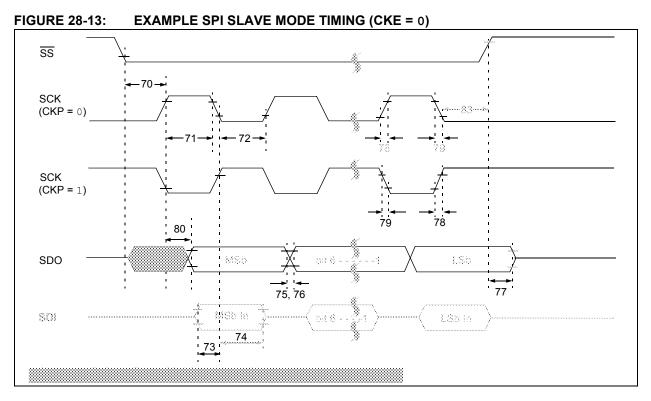
28.2 DC Characteristics:

Power-Down and Supply Current PIC18F2455/2550/4455/4550 (Industrial) PIC18LF2455/2550/4455/4550 (Industrial)

PIC18LF2455/2550/4455/4550 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F2455/2550/4455/4550 (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param No.	Symbol	Device	Тур	Max	Units	Condit	Conditions		
		Power-Down Current (IPD) ⁽¹⁾							
		PIC18LFX455/X550	0.1	0.95	μΑ	-40°C			
			0.1	1.0	μΑ	+25°C	VDD = 2.0V (Sleep mode)		
			0.2	5	μΑ	+85°C	(Oleep mode)		
		PIC18LFX455/X550	0.1	1.4	μΑ	-40°C			
			0.1	2	μΑ	+25°C	VDD = 3.0V (Sleep mode)		
			0.3	8	μΑ	+85°C	(Sleep mode)		
		All devices	0.1	1.9	μΑ	-40°C			
			0.1	2.0	μΑ	+25°C	VDD = 5.0V (Sleep mode)		
			0.4	15	μΑ	+85°C			

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).


2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or Vss;

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

TABLE 28-17: EX	(AMPLE SPI MODE REQUIREMENTS	(SLAVE MODE TIMING, CKE = 0)
-----------------	------------------------------	------------------------------

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		3 Тсү	-	ns	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30	—	ns	
71A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40	_	ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input to SCK E	20	_	ns		
73A	Tb2b	Last Clock Edge of Byte 1 to the First Cloc	1.5 Tcy + 40	_	ns	(Note 2)	
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edg	35		ns		
75	5 TdoR SDO Data Output Rise Time		PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	_	45	ns	VDD = 2.0V
76	TdoF	SDO Data Output Fall Time	DO Data Output Fall Time		25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedance		10	50	ns	
78 Tso	TscR	SCK Output Rise Time (Master mode)	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time (Master mode)		—	25	ns	
80	TscH2doV, SDO Data Output Valid after SCK Edge		PIC18FXXXX	—	50	ns	
	TscL2doV		PIC18LFXXXX	—	100	ns	VDD = 2.0V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5 Tcy + 40	—	ns	

Note 1: Requires the use of Parameter 73A.

2: Only if Parameter 71A and 72A are used.