

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4455-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

2.0 OSCILLATOR CONFIGURATIONS

2.1 Overview

Devices in the PIC18F2455/2550/4455/4550 family incorporate a different oscillator and microcontroller clock system than previous PIC18F devices. The addition of the USB module, with its unique requirements for a stable clock source, make it necessary to provide a separate clock source that is compliant with both USB low-speed and full-speed specifications.

To accommodate these requirements, PIC18F2455/ 2550/4455/4550 devices include a new clock branch to provide a 48 MHz clock for full-speed USB operation. Since it is driven from the primary clock source, an additional system of prescalers and postscalers has been added to accommodate a wide range of oscillator frequencies. An overview of the oscillator structure is shown in Figure 2-1.

Other oscillator features used in PIC18 enhanced microcontrollers, such as the internal oscillator block and clock switching, remain the same. They are discussed later in this chapter.

2.1.1 OSCILLATOR CONTROL

The operation of the oscillator in PIC18F2455/2550/ 4455/4550 devices is controlled through two Configuration registers and two control registers. Configuration registers, CONFIG1L and CONFIG1H, select the oscillator mode and USB prescaler/postscaler options. As Configuration bits, these are set when the device is programmed and left in that configuration until the device is reprogrammed.

The OSCCON register (Register 2-2) selects the Active Clock mode; it is primarily used in controlling clock switching in power-managed modes. Its use is discussed in **Section 2.4.1** "Oscillator Control **Register**".

The OSCTUNE register (Register 2-1) is used to trim the INTRC frequency source, as well as select the low-frequency clock source that drives several special features. Its use is described in **Section 2.2.5.2 "OSCTUNE Register"**.

2.2 Oscillator Types

PIC18F2455/2550/4455/4550 devices can be operated in twelve distinct oscillator modes. In contrast with previous PIC18 enhanced microcontrollers, four of these modes involve the use of two oscillator types at once. Users can program the FOSC3:FOSC0 Configuration bits to select one of these modes:

- 1. XT Crystal/Resonator
- 2. HS High-Speed Crystal/Resonator
- 3. HSPLL High-Speed Crystal/Resonator with PLL Enabled
- 4. EC External Clock with Fosc/4 Output
- 5. ECIO External Clock with I/O on RA6
- 6. ECPLL External Clock with PLL Enabled and Fosc/4 Output on RA6
- 7. ECPIO External Clock with PLL Enabled, I/O on RA6
- 8. INTHS Internal Oscillator used as Microcontroller Clock Source, HS Oscillator used as USB Clock Source
- 9. INTIO Internal Oscillator used as Microcontroller Clock Source, EC Oscillator used as USB Clock Source, Digital I/O on RA6
- 10. INTCKO Internal Oscillator used as Microcontroller Clock Source, EC Oscillator used as USB Clock Source, Fosc/4 Output on RA6

2.2.1 OSCILLATOR MODES AND USB OPERATION

Because of the unique requirements of the USB module, a different approach to clock operation is necessary. In previous PIC[®] devices, all core and peripheral clocks were driven by a single oscillator source; the usual sources were primary, secondary or the internal oscillator. With PIC18F2455/2550/4455/4550 devices, the primary oscillator becomes part of the USB module and cannot be associated to any other clock source. Thus, the USB module must be clocked from the primary clock source; however, the microcontroller core and other peripherals can be separately clocked from the secondary or internal oscillators as before.

Because of the timing requirements imposed by USB, an internal clock of either 6 MHz or 48 MHz is required while the USB module is enabled. Fortunately, the microcontroller and other peripherals are not required to run at this clock speed when using the primary oscillator. There are numerous options to achieve the USB module clock requirement and still provide flexibility for clocking the rest of the device from the primary oscillator source. These are detailed in **Section 2.3 "Oscillator Settings for USB"**.

2.2.4 PLL FREQUENCY MULTIPLIER

PIC18F2455/2550/4255/4550 devices include a Phase Locked Loop (PLL) circuit. This is provided specifically for USB applications with lower speed oscillators and can also be used as a microcontroller clock source.

The PLL is enabled in HSPLL, XTPLL, ECPLL and ECPIO Oscillator modes. It is designed to produce a fixed 96 MHz reference clock from a fixed 4 MHz input. The output can then be divided and used for both the USB and the microcontroller core clock. Because the PLL has a fixed frequency input and output, there are eight prescaling options to match the oscillator input frequency to the PLL.

There is also a separate postscaler option for deriving the microcontroller clock from the PLL. This allows the USB peripheral and microcontroller to use the same oscillator input and still operate at different clock speeds. In contrast to the postscaler for XT, HS and EC modes, the available options are 1/2, 1/3, 1/4 and 1/6 of the PLL output.

The HSPLL, ECPLL and ECPIO modes make use of the HS mode oscillator for frequencies up to 48 MHz. The prescaler divides the oscillator input by up to 12 to produce the 4 MHz drive for the PLL. The XTPLL mode can only use an input frequency of 4 MHz which drives the PLL directly.

FIGURE 2-6: PLL BLOCK DIAGRAM (HS MODE)

2.2.5 INTERNAL OSCILLATOR BLOCK

The PIC18F2455/2550/4455/4550 devices include an internal oscillator block which generates two different clock signals; either can be used as the microcontroller's clock source. If the USB peripheral is not used, the internal oscillator may eliminate the need for external oscillator circuits on the OSC1 and/or OSC2 pins.

The main output (INTOSC) is an 8 MHz clock source which can be used to directly drive the device clock. It also drives the INTOSC postscaler which can provide a range of clock frequencies from 31 kHz to 4 MHz. The INTOSC output is enabled when a clock frequency from 125 kHz to 8 MHz is selected.

The other clock source is the internal RC oscillator (INTRC) which provides a nominal 31 kHz output. INTRC is enabled if it is selected as the device clock source; it is also enabled automatically when any of the following are enabled:

- Power-up Timer
- Fail-Safe Clock Monitor
- · Watchdog Timer
- Two-Speed Start-up

These features are discussed in greater detail in **Section 25.0 "Special Features of the CPU"**.

The clock source frequency (INTOSC direct, INTRC direct or INTOSC postscaler) is selected by configuring the IRCF bits of the OSCCON register (page 33).

2.2.5.1 Internal Oscillator Modes

When the internal oscillator is used as the microcontroller clock source, one of the other oscillator modes (External Clock or External Crystal/Resonator) must be used as the USB clock source. The choice of the USB clock source is determined by the particular internal oscillator mode.

There are four distinct modes available:

- 1. INTHS mode: The USB clock is provided by the oscillator in HS mode.
- 2. INTXT mode: The USB clock is provided by the oscillator in XT mode.
- INTCKO mode: The USB clock is provided by an external clock input on OSC1/CLKI; the OSC2/ CLKO pin outputs FOSC/4.
- INTIO mode: The USB clock is provided by an external clock input on OSC1/CLKI; the OSC2/ CLKO pin functions as a digital I/O (RA6).

Of these four modes, only INTIO mode frees up an additional pin (OSC2/CLKO/RA6) for port I/O use.

2.2.5.2 OSCTUNE Register

The internal oscillator's output has been calibrated at the factory but can be adjusted in the user's application. This is done by writing to the OSCTUNE register (Register 2-1). The tuning sensitivity is constant throughout the tuning range.

The INTOSC clock will stabilize within 1 ms. Code execution continues during this shift. There is no indication that the shift has occurred.

The OSCTUNE register also contains the INTSRC bit. The INTSRC bit allows users to select which internal oscillator provides the clock source when the 31 kHz frequency option is selected. This is covered in greater detail in **Section 2.4.1 "Oscillator Control Register"**.

2.2.5.3 Internal Oscillator Output Frequency and Drift

The internal oscillator block is calibrated at the factory to produce an INTOSC output frequency of 8.0 MHz. However, this frequency may drift as VDD or temperature changes, which can affect the controller operation in a variety of ways.

The low-frequency INTRC oscillator operates independently of the INTOSC source. Any changes in INTOSC across voltage and temperature are not necessarily reflected by changes in INTRC and vice versa.

REGISTER 2-1: OSCTUNE: OSCILLATOR TUNING REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
INTSRC	—	_	TUN4	TUN3	TUN2	TUN1	TUN0			
bit 7 bit (
Legend:										
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 7	INTSRC: Inte 1 = 31.25 kHz 0 = 31 kHz de	rnal Oscillator I device clock o vice clock deri	Low-Frequence derived from 8 ved directly fr	cy Source Sele MHz INTOSC om INTRC inte	ect bit source (divide ernal oscillator	-by-256 enable	d)			
bit 6-5	Unimplemen	ted: Read as '	o'							
bit 4-0	TUN4:TUN0:	Frequency Tur	ning bits							
	01111 = Max	imum frequenc	ÿ							
	•	•								
	• •									
00001 00000 = Center frequency. Oscillator module is running at the calibrated frequency.										

10000 = Minimum frequency

3.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode allows for controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. Although its value is ignored, it is recommended that SCS0 also be cleared; this is to maintain software compatibility with future devices. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value, or the INTSRC bit is set, the INTOSC output is enabled. The IOFS bit becomes set after the INTOSC output becomes stable, after an interval of TIOBST (parameter 39, Table 28-12). Clocks to the peripherals continue while the INTOSC source stabilizes. If the IRCF bits were previously at a non-zero value, or INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set. If the IRCF bits and INTSRC are all clear, the INTOSC output will not be enabled, the IOFS bit will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the INTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

3.5 Exiting Idle and Sleep Modes

An exit from Sleep mode or any of the Idle modes is triggered by an interrupt, a Reset or a WDT time-out. This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in each of the power-managed modes (see Section 3.2 "Run Modes", Section 3.3 "Sleep Mode" and Section 3.4 "Idle Modes").

3.5.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit from an Idle mode or Sleep mode to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The exit sequence is initiated when the corresponding interrupt flag bit is set.

On all exits from Idle or Sleep modes by interrupt, code execution branches to the interrupt vector if the GIE/GIEH bit (INTCON<7>) is set. Otherwise, code execution continues or resumes without branching (see Section 9.0 "Interrupts").

A fixed delay of interval TCSD following the wake event is required when leaving Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

3.5.2 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see Section 3.2 "Run Modes" and Section 3.3 "Sleep Mode"). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see Section 25.2 "Watchdog Timer (WDT)").

The WDT timer and postscaler are cleared by executing a SLEEP or CLRWDT instruction, the loss of a currently selected clock source (if the Fail-Safe Clock Monitor is enabled) and modifying the IRCF bits in the OSCCON register if the internal oscillator block is the device clock source.

3.5.3 EXIT BY RESET

Normally, the device is held in Reset by the Oscillator Start-up Timer (OST) until the primary clock becomes ready. At that time, the OSTS bit is set and the device begins executing code. If the internal oscillator block is the new clock source, the IOFS bit is set instead.

The exit delay time from Reset to the start of code execution depends on both the clock sources before and after the wake-up and the type of oscillator if the new clock source is the primary clock. Exit delays are summarized in Table 3-2.

Code execution can begin before the primary clock becomes ready. If either the Two-Speed Start-up (see **Section 25.3 "Two-Speed Start-up"**) or Fail-Safe Clock Monitor (see **Section 25.4 "Fail-Safe Clock Monitor"**) is enabled, the device may begin execution as soon as the Reset source has cleared. Execution is clocked by the INTOSC multiplexer driven by the internal oscillator block. Execution is clocked by the internal oscillator block until either the primary clock becomes ready or a power-managed mode is entered before the primary clock becomes ready; the primary clock is then shut down.

3.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power-managed modes do not invoke the OST at all. There are two cases:

- PRI_IDLE mode, where the primary clock source is not stopped; and
- the primary clock source is not any of the XT or HS modes.

In these instances, the primary clock source either does not require an oscillator start-up delay, since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (EC and any internal oscillator modes). However, a fixed delay of interval TCSD following the wake event is still required when leaving Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

TABLE 3-2:EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE
(BY CLOCK SOURCES)

Microcontrolle	r Clock Source	Evit Delev	Clock Ready Status	
Before Wake-up	Before Wake-up After Wake-up		Bit (OSCCON)	
	XT, HS			
Primary Device Clock	XTPLL, HSPLL	None	OSTS	
(PRI_IDLE mode)	EC	None		
	INTOSC ⁽³⁾		IOFS	
	XT, HS	Tost ⁽⁴⁾		
	XTPLL, HSPLL	Tost + t _{rc} (4)	OSTS	
	EC	TCSD ⁽²⁾		
	INTOSC ⁽³⁾	TIOBST ⁽⁵⁾	IOFS	
	XT, HS	Tost ⁽⁴⁾		
	XTPLL, HSPLL	Tost + t _{rc} (4)	OSTS	
	EC	TCSD ⁽²⁾	-	
	INTOSC ⁽³⁾	None	IOFS	
	XT, HS	Tost ⁽⁴⁾		
None	XTPLL, HSPLL	Tost + t _{rc} (4)	OSTS	
(Sleep mode)	EC	Tcsd ⁽²⁾		
	INTOSC ⁽³⁾	TIOBST ⁽⁵⁾	IOFS	

Note 1: In this instance, refers specifically to the 31 kHz INTRC clock source.

2: TCSD (parameter 38, Table 28-12) is a required delay when waking from Sleep and all Idle modes and runs concurrently with any other required delays (see Section 3.4 "Idle Modes").

- 3: Includes both the INTOSC 8 MHz source and postscaler derived frequencies.
- **4:** TOST is the Oscillator Start-up Timer period (parameter 32, Table 28-12). t_{rc} is the PLL lock time-out (parameter F12, Table 28-9); it is also designated as TPLL.
- 5: Execution continues during TIOBST (parameter 39, Table 28-12), the INTOSC stabilization period.

						<u>'</u>]				
File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
OSCCON	IDLEN	IRCF2	IRCF1	IRCF0	OSTS	IOFS	SCS1	SCS0	0100 q000	54, 33
HLVDCON	VDIRMAG	_	IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	0-00 0101	54, 285
WDTCON	—		-	-	—	—	—	SWDTEN	0	54, 304
RCON	IPEN	SBOREN ⁽²⁾	_	RI	TO	PD	POR	BOR	0q-1 11q0	54, 46
TMR1H	Timer1 Regis	ter High Byte							XXXX XXXX	54, 136
TMR1L	Timer1 Regis	ter Low Byte							XXXX XXXX	54, 136
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	0000 0000	54, 131
TMR2	Timer2 Regis	ter							0000 0000	54, 138
PR2	Timer2 Period	d Register							1111 1111	54, 138
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	54, 137
SSPBUF	MSSP Receiv	e Buffer/Trans	smit Register						XXXX XXXX	54, 198, 207
SSPADD	MSSP Addres	ss Register in	I ² C™ Slave m	ode. MSSP Ba	aud Rate Relo	ad Register in	I ² C [™] Master	mode.	0000 0000	54, 207
SSPSTAT	SMP	CKE	D/Ā	Р	S	R/W	UA	BF	0000 0000	54, 198, 208
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	54, 199, 209
SSPCON2	GCEN	ACKSTAT	ACKDT/ ADMSK5 ⁽⁷⁾	ACKEN/ ADMSK4 ⁽⁷⁾	RCEN/ ADMSK3 ⁽⁷⁾	PEN/ ADMSK2 ⁽⁷⁾	RSEN/ ADMSK1 ⁽⁷⁾	SEN	0000 0000	54, 210
ADRESH	A/D Result R	egister High B	yte				•		XXXX XXXX	54, 274
ADRESL	A/D Result Re	egister Low By	/te						XXXX XXXX	54, 274
ADCON0	_	-	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	00 0000	54, 265
ADCON1	—	—	VCFG1	VCFG0	PCFG3	PCFG2	PCFG1	PCFG0	00 0qqq	54, 266
ADCON2	ADFM	—	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	0-00 0000	54, 267
CCPR1H	Capture/Com	pare/PWM Re	gister 1 High E	Byte					XXXX XXXX	55, 144
CCPR1L	Capture/Com	pare/PWM Re	gister 1 Low E	Byte					XXXX XXXX	55, 144
CCP1CON	P1M1 ⁽³⁾	P1M0 ⁽³⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	55, 143, 151
CCPR2H	Capture/Com	pare/PWM Re	gister 2 High I	Byte					XXXX XXXX	55, 144
CCPR2L	Capture/Com	pare/PWM Re	gister 2 Low E	Byte					XXXX XXXX	55, 144
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	55, 143
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	0100 0-00	55, 246
ECCP1DEL	PRSEN	PDC6 ⁽³⁾	PDC5 ⁽³⁾	PDC4 ⁽³⁾	PDC3 ⁽³⁾	PDC2 ⁽³⁾	PDC1 ⁽³⁾	PDC0 ⁽³⁾	0000 0000	55, 160
ECCP1AS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽³⁾	PSSBD0 ⁽³⁾	0000 0000	55, 161
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000 0000	55, 281
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0111	55, 275
TMR3H	Timer3 Regis	ter High Byte							XXXX XXXX	55, 141
TMR3L	Timer3 Regis	ter Low Byte			1	1	1		XXXX XXXX	55, 141
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	0000 0000	55, 139
SPBRGH	EUSART Bau	id Rate Gener	ator Register I	High Byte					0000 0000	55, 247
SPBRG	EUSART Bau	id Rate Gener	ator Register I	_ow Byte					0000 0000	55, 247
RCREG	EUSART Rec	eive Register							0000 0000	55, 256
TXREG	EUSART Tra	nsmit Register		1	1	1	1		0000 0000	55, 253
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	55, 244
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	55, 245

TABLE 5-2: REGISTER FILE SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.

Note 1: Bit 21 of the TBLPTRU allows access to the device Configuration bits.

2: The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as '0'.

3: These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-'.

4: RA6 is configured as a port pin based on various primary oscillator modes. When the port pin is disabled, all of the associated bits read '0'.

5: RE3 is only available as a port pin when the MCLRE Configuration bit is clear; otherwise, the bit reads as '0'.

6: RC5 and RC4 are only available as port pins when the USB module is disabled (UCON<3> = 0).

7: I^2C^{TM} Slave mode only.

6.2.2 TABLE LATCH REGISTER (TABLAT)

The Table Latch (TABLAT) is an 8-bit register mapped into the SFR space. The Table Latch register is used to hold 8-bit data during data transfers between program memory and data RAM.

6.2.3 TABLE POINTER REGISTER (TBLPTR)

The Table Pointer (TBLPTR) register addresses a byte within the program memory. The TBLPTR is comprised of three SFR registers: Table Pointer Upper Byte, Table Pointer High Byte and Table Pointer Low Byte (TBLPTRU:TBLPTRH:TBLPTRL). These three registers join to form a 22-bit wide pointer. The low-order 21 bits allow the device to address up to 2 Mbytes of program memory space. The 22nd bit allows access to the Device ID, the user ID and the Configuration bits.

The Table Pointer, TBLPTR, is used by the TBLRD and TBLWT instructions. These instructions can update the TBLPTR in one of four ways based on the table operation. These operations are shown in Table 6-1. These operations on the TBLPTR only affect the low-order 21 bits.

6.2.4 TABLE POINTER BOUNDARIES

TBLPTR is used in reads, writes and erases of the Flash program memory.

When a TBLRD is executed, all 22 bits of the TBLPTR determine which byte is read from program memory into TABLAT.

When a TBLWT is executed, the five LSbs of the Table Pointer register (TBLPTR<4:0>) determine which of the 32 program memory holding registers is written to. When the timed write to program memory begins (via the WR bit), the 16 MSbs of the TBLPTR (TBLPTR<21:6>) determine which program memory block of 32 bytes is written to. For more detail, see **Section 6.5 "Writing to Flash Program Memory"**.

When an erase of program memory is executed, the 16 MSbs of the Table Pointer register (TBLPTR<21:6>) point to the 64-byte block that will be erased. The Least Significant bits (TBLPTR<5:0>) are ignored.

Figure 6-3 describes the relevant boundaries of the TBLPTR based on Flash program memory operations.

ΤΔΒΙ Ε 6-1·	TABLE POINTER OPERATIONS WITH TRUED AND TRUET INSTRUCTIONS
TADLE 0-1.	TABLE FOUNTER OF ERATIONS WITH IBLED AND IBLET INSTRUCTIONS

Example	Operation on Table Pointer
TBLRD* TBLWT*	TBLPTR is not modified
TBLRD*+ TBLWT*+	TBLPTR is incremented after the read/write
TBLRD*- TBLWT*-	TBLPTR is decremented after the read/write
TBLRD+* TBLWT+*	TBLPTR is incremented before the read/write

FIGURE 6-3: TABLE POINTER BOUNDARIES BASED ON OPERATION

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
OSCFIF	CMIF	USBIF	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	
bit 7								
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	างพท	
bit 7	OSCFIF: Osc	illator Fail Inter	rrupt Flag bit					
	1 = System c	scillator failed,	clock input h	as changed to	INTOSC (must	be cleared in s	oftware)	
h:+ 0		CIOCK Operating						
DIT 6		arator Interrupt	Flag Dit	the cleared in	a officiara)			
	0 = Compara	itor input has c	ot changed		soltware)			
bit 5	USBIF: USB	Interrupt Flag b	oit					
	1 = USB has	requested an i	nterrupt (mus	t be cleared in	software)			
	0 = No USB ii	nterrupt reques	st					
bit 4	EEIF: Data E	EPROM/Flash	Write Operat	ion Interrupt FI	ag bit			
	1 = The write	operation is c	omplete (mus	t be cleared in	software)			
h # 0		e operation is n	ot complete c	r nas not been	started			
DIL 3	BULIF: Bus C		pt Flag bit	o cloared in set	ftwara)			
	0 = No bus co	ollision occurre	ed		itware)			
bit 2	HLVDIF: High	n/Low-Voltage I	Detect Interru	pt Flag bit				
	1 = A high/lo	w-voltage conc	lition occurred	d (must be clea	ared in software)		
	0 = No high/l	ow-voltage eve	ent has occur	red				
bit 1	TMR3IF: TMF	R3 Overflow Inf	terrupt Flag b	it				
	1 = TMR3 reg	gister overflow	ed (must be c	leared in softw	/are)			
hit 0	bit 0. CCD2LEt CCD2 Interrupt Flog bit							
bit 0	Capture mode	2 Interrupt 1 ia	y bit					
	1 = A TMR1 or TMR3 register capture occurred (must be cleared in software)							
	$0 = No TMR^{2}$	1 or TMR3 regi	ster capture o	occurred				
	Compare mod	<u>de:</u> ar TMD2 region						
	1 = A TMRT 0 = No TMR ²	or TMR3 regist 1 or TMR3 regist	ter compare r ster compare	match occurred	i (must be clear) ad	ed in soltware)		
	<u>PWM</u> mode:							
	Unused in this	s mode.						

REGISTER 9-5: PIR2: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 2

NOTES:

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
RCON	IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR	BOR	54
PIR1	SPPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	56
PIE1	SPPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	56
IPR1	SPPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	56
PIR2	OSCFIF	CMIF	USBIF	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	56
PIE2	OSCFIE	CMIE	USBIE	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	56
IPR2	OSCFIP	CMIP	USBIP	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	56
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	56
TRISC	TRISC7	TRISC6	—	—	—	TRISC2	TRISC1	TRISC0	56
TMR1L	Timer1 Register Low Byte								54
TMR1H	Timer1 Re	gister High B	yte						54
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	54
TMR3H	Timer3 Re	gister High B	yte						55
TMR3L	Timer3 Re	gister Low By	/te						55
T3CON	RD16	T3CCP2	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	55
CCPR1L	Capture/Co	ompare/PWM	1 Register 1	Low Byte					55
CCPR1H	1H Capture/Compare/PWM Register 1 High Byte							55	
CCP1CON	P1M1 ⁽²⁾	P1M0 ⁽²⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	55
CCPR2L	R2L Capture/Compare/PWM Register 2 Low Byte								55
CCPR2H	Capture/Co	ompare/PWM	1 Register 2	High Byte					55
CCP2CON	_	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	55

TARI F 15-3.	REGISTERS ASSOCIATED WITH CAPTI	IRE COMPARE TIMER1 AND TIMER3
TADLE 13-3.	REGISTERS ASSOCIATED WITH CALL	SILL, COMITANE, THMENTAND THMENS

Legend: — = unimplemented, read as '0'. Shaded cells are not used by Capture/Compare, Timer1 or Timer3.

Note 1: The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as '0'.

2: These bits are unimplemented on 28-pin devices; always maintain these bits clear.

24.6 Operation During Sleep

When enabled, the HLVD circuitry continues to operate during Sleep. If the device voltage crosses the trip point, the HLVDIF bit will be set and the device will wake-up from Sleep. Device execution will continue from the interrupt vector address if interrupts have been globally enabled.

24.7 Effects of a Reset

A device Reset forces all registers to their Reset state. This forces the HLVD module to be turned off.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
HLVDCON	VDIRMAG		IRVST	HLVDEN	HLVDL3	HLVDL2	HLVDL1	HLVDL0	54
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
PIR2	OSCFIF	CMIF	USBIF	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	56
PIE2	OSCFIE	CMIE	USBIE	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	56
IPR2	OSCFIP	CMIP	USBIP	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	56

TABLE 24-1: REGISTERS ASSOCIATED WITH HIGH/LOW-VOLTAGE DETECT MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the HLVD module.

25.5.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits internal and external writes to data EEPROM. The CPU can continue to read and write data EEPROM regardless of the protection bit settings.

25.5.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers can be write-protected. The WRTC bit controls protection of the Configuration registers. In normal execution mode, the WRTC bit is readable only. WRTC can only be written via ICSP operation or an external programmer.

25.6 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are both readable and writable during normal execution through the TBLRD and TBLWT instructions or during program/verify. The ID locations can be read when the device is code-protected.

25.7 In-Circuit Serial Programming

PIC18F2455/2550/4455/4550 microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

25.8 In-Circuit Debugger

When the DEBUG Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 25-4 shows which resources are required by the background debugger.

TABLE 25-4:	DEBUGGER RESOURCES	
		,

I/O pins:	RB6, RB7
Stack:	2 levels
Program Memory:	512 bytes
Data Memory:	10 bytes

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to $\overline{\text{MCLR}}/\text{VPP}/\text{RE3}$, VDD, Vss, RB7 and RB6. This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

25.9 Special ICPORT Features (44-Pin TQFP Package Only)

Under specific circumstances, the No Connect (NC) pins of devices in 44-pin TQFP packages can provide additional functionality. These features are controlled by device Configuration bits and are available only in this package type and pin count.

25.9.1 DEDICATED ICD/ICSP PORT

The 44-pin TQFP devices can use NC pins to provide an alternate port for In-Circuit Debugging (ICD) and In-Circuit Serial Programming (ICSP). These pins are collectively known as the dedicated ICSP/ICD port, since they are not shared with any other function of the device.

When implemented, the dedicated port activates three NC pins to provide an alternate device Reset, data and clock ports. None of these ports overlap with standard I/O pins, making the I/O pins available to the user's application.

The dedicated ICSP/ICD port is enabled by setting the ICPRT Configuration bit. The port functions the same way as the legacy ICSP/ICD port on RB6/RB7. Table 25-5 identifies the functionally equivalent pins for ICSP and ICD purposes.

TABLE 25-5: EQUIVALENT PINS FOR LEGACY AND DEDICATED ICD/ICSP™ PORTS

Pin M	lame	Din			
Legacy Port	Dedicated Port	Туре	Pin Function		
MCLR/VPP/ RE3	NC/ICRST/ ICVPP	Р	Device Reset and Programming Enable		
RB6/KBI2/ PGC	NC/ICCK/ ICPGC	I	Serial Clock		
RB7/KBI3/ PGD	NC/ICDT/ ICPGD	I/O	Serial Data		

Legend: I = Input, O = Output, P = Power

SUBWF	в	Sı	ıbtract V	V from f v	vith B	orrow	
Syntax:		SL	SUBWFB f {,d {,a}}				
Operand	ls:	$0 \le f \le 255$					
		d	∈ [0,1]				
		a ∈ [0,1]					
Operatio	n:	$(f) - (W) - (\overline{C}) \rightarrow dest$					
Status A	ffected:	N,	OV, C, [DC, Z			
Encoding	g:		0101	10da	fff	f ffff	
Descript	ion:	Subtract W and the Carry flag (borrow) from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed					
Words [.]		1		set woue			
Cycles:		1					
Q Cycle	Activity.						
Q Oyolo	Q1		Q2	Q3	3	Q4	
[Decode		Read	Proce	ess	Write to	
		reg	jister 'f'	Data	а	destination	
Example	<u>e 1:</u>	S	SUBWFB	REG, 1	, 0		
Bef	ore Instruc	tion	10h	(000	1 100)1)	
	W	=	0Dh	(000)	1 100)1)	
۸ <i>۴</i> ۰	C	=	1				
Ane	REG	=	0Ch	(0000 10		1)	
	W	=	0Dh 1	(000)	0 110)1)	
	z	=	0				
	Ν	=	0	; resu	lt is po	ositive	
Example	<u>e 2:</u>	S	SUBWFB	REG, 0	, 0		
Bef	ore Instruc	tion =	1Rh	(000	1 1 1 1	1)	
	W	=	1Ah	(000)	1 101	_0)	
۸ <i>۴</i> ۰	С		∩				
/\ _		=	0				
Alte	er Instructio REG	= on =	0 1Bh	(000)	1 101	.1)	
Alte	er Instructio REG W	= on = =	0 1Bh 00h	(000)	1 101	.1)	
Alle	er Instructio REG W C Z	= on = = =	0 1Bh 00h 1 1	(000: : resu l	1 101 It is ze	.1) !ro	
Alt	er Instructio REG W C Z N	= = = = =	0 1Bh 00h 1 1 0	(000: ; resu l	1 101 It is ze	.1) ?ro	
Example	er Instructio REG W C Z N e <u>3:</u>	= = = = =	1Bh 00h 1 1 0 SUBWFB	(000); ; resul	1 101 It is ze	.1) :ro	
Example Bef	er Instructio REG W C Z N <u>e 3:</u> fore Instruc	= n = = = = tion	0 1Bh 00h 1 1 0 SUBWFB	(000); ; resul REG, 1	1 101 It is ze	.1) *ro	
Example Bef	er Instructio REG W C Z N <u>2 3:</u> Tore Instruc REG W	= = = = = tion = =	0 1Bh 00h 1 0 SUBWFB 03h 0Eh	(000); ; resul REG, 1 (000) (000)	1 101 It is ze ., 0 0 001 0 110	.1) Pro	
Example Bef	er Instruction REG W C Z N e 3: ore Instruct REG W C	= = = = tion = = =	0 1Bh 00h 1 1 0 SUBWFB 03h 0Eh 1	(000); ; resul REG, 1 (000) (000)	1 101 It is ze	.1) .1) .1)	
Example Bef	er Instruction REG W C Z N 3-3: fore Instruct REG W C er Instruction REG	= = = = tion = = = n =	0 1Bh 00h 1 1 0 SUBWFB 0Sh 0Eh 1 F5h	(0002 ; resul REG, 1 (0000 (0000) (1111)	1 101 It is ze ., 0 0 001 0 110 1 010	11) FO 1) 1)	
Example Bef	er Instruction REG W C Z N A 23: fore Instruct REG W C er Instruction REG	= n = = = tion = = n =	1Bh 00h 1 1 0 SUBWFB 03h 0Eh 1 F5h	(000); ; resul REG, 1 (000) (000) (1111; ; [2's c	1 101 It is ze , 0 0 001 0 110 1 010 comp]	11) Pro	
Example Bef	er Instructio REG W C Z N s <u>3:</u> fore Instruc REG W C er Instructio REG	= pn = = = tion = = pn = = = =	1Bh 00h 1 1 0 500BWFB 03h 0Eh 1 F5h 0Eh 0	(000); ; resul REG, 1 (000) (000) (1111; ; [2's c (000)	1 101 It is ze , 0 0 001 0 110 1 010 comp] 0 110	.1) Pro	

SWAPF	Swap f	Swap f				
Syntax:	SWAPF f	SWAPF f {,d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$				
Operation:	(f<3:0>) → (f<7:4>) →	dest<7:4 dest<3:0	>, >			
Status Affected:	None					
Encoding:	0011	10da	ffff	ffff		
Description:	The upper a 'f' are excha- is placed in re If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enabl in Indexed mode wher Section 26 Bit-Oriente Literal Offe	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read	Proce	ss V	Vrite to		
	register 'f'	Data	a de	stination		
Example: SWAPF REG, 1, 0 Before Instruction REG = 53h After Instruction						
REG	- 3011					

28.2 DC Characteristics:

Power-Down and Supply Current PIC18F2455/2550/4455/4550 (Industrial) PIC18LF2455/2550/4455/4550 (Industrial)

PIC18LF2455/2550/4455/4550 (Industrial)		Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
PIC18F2455/2550/4455/4550 (Industrial)		Standa Operat	tandard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No. Symbol Device		Тур	Max	Units	Conditio	ons		
		Power-Down Current (IPD)	(1)					
		PIC18LFX455/X550	0.1	0.95	μA	-40°C		
			0.1	1.0	μA	+25°C	(Sleen mode)	
			0.2	5	μΑ	+85°C	(Olcep mode)	
		PIC18LFX455/X550	0.1	1.4	μA	-40°C		
			0.1	2	μΑ	+25°C	VDD = 3.0V (Sleen mode)	
			0.3	8	μA	+85°C	(Olcep mode)	
		All devices	0.1	1.9	μA	-40°C		
			0.1	2.0	μA	+25°C	VDD = 5.0V (Sleen mode)	
			0.4	15	μA	+85°C		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or Vss;

- MCLR = VDD; WDT enabled/disabled as specified.
- 3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

DC Characteristics			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial				
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Internal Program Memory Programming Specifications ⁽¹⁾					
D110	VIHH	Voltage on MCLR/VPP/RE3 pin	9.00	—	13.25	V	(Note 3)
D113	IDDP	Supply Current during Programming	—	—	10	mA	
		Data EEPROM Memory					
D120	ED	Byte Endurance	100K	1M	—	E/W	-40°C to +85°C
D121	Vdrw	VDD for Read/Write	VMIN	_	5.5	V	Using EECON to read/write VMIN = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	_	4	_	ms	
D123	TRETD	Characteristic Retention	40	—	_	Year	Provided no other specifications are violated
D124	Tref	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C
		Program Flash Memory					
D130	Eр	Cell Endurance	10K	100K	—	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	—	5.5	V	Vмın = Minimum operating voltage
D132	VIE	VDD for Bulk Erase	3.2 ⁽⁴⁾	—	5.5	V	Using ICSP™ port only
D132A	Viw	VDD for All Erase/Write Operations (except bulk erase)	VMIN	—	5.5	V	Using ICSP port or self-erase/write
D133A	Tiw	Self-Timed Write Cycle Time	—	2	—	ms	
D134	TRETD	Characteristic Retention	40	100		Year	Provided no other specifications are violated

TABLE 28-1: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

- 2: Refer to Section 7.7 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.
- 3: Required only if Single-Supply Programming is disabled.
- 4: Minimum voltage is 3.2V for PIC18LF devices in the family. Minimum voltage is 4.2V for PIC18F devices in the family.

	10 10.				1002,		
Param. No.	Symbol	Charact	eristic	Min	Max	Units	Conditions
100	Тнідн	Clock High Time	100 kHz mode	4.0	—	μS	PIC18FXXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6	—	μS	PIC18FXXXX must operate at a minimum of 10 MHz
			MSSP Module	1.5 TCY	_		
101	TLOW	Clock Low Time	100 kHz mode	4.7	—	μS	PIC18FXXXX must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3	—	μS	PIC18FXXXX must operate at a minimum of 10 MHz
			MSSP Module	1.5 TCY	—		
102	TR	SDA and SCL Rise	100 kHz mode	—	1000	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
103	TF	SDA and SCL Fall	100 kHz mode	—	300	ns	
		Time	400 kHz mode	20 + 0.1 Св	300	ns	CB is specified to be from 10 to 400 pF
90	TSU:STA Start Condition		100 kHz mode	4.7	_	μs	Only relevant for Repeated
		Setup Time	400 kHz mode	0.6	_	μS	Start condition
91	THD:STA	Start Condition	100 kHz mode	4.0	-	μs	After this period, the first
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated
106	THD:DAT	Data Input Hold	100 kHz mode	0	—	ns	
		Time	400 kHz mode	0	0.9	μS	
107	TSU:DAT	Data Input Setup	100 kHz mode	250	—	ns	(Note 2)
		lime	400 kHz mode	100	—	ns	
92	Tsu:sto	O Stop Condition Setup Time	100 kHz mode	4.7	—	μs	
			400 kHz mode	0.6	—	μS	
109	ΤΑΑ	Output Valid from	100 kHz mode		3500	ns	(Note 1)
		Clock	400 kHz mode		—	ns	
110	TBUF	Bus Free Time	100 kHz mode	4.7	—	μS	Time the bus must be free
			400 kHz mode	1.3	_	μS	before a new transmission can start
D102	Св	Bus Capacitive Loading		—	400	pF	

TABLE 28-20: I²C[™] BUS DATA REQUIREMENTS (SLAVE MODE)

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode I²C [™] bus device can be used in a Standard mode I²C bus system but the requirement, TSU:DAT ≥ 250 ns, must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line, TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

PIC18F2455/2550/4455/4550 PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X /XX XXX Temperature Package Pattern Range	Examples: a) PIC18LF4550-I/P 301 = Industrial temp., PDIP package, Extended VDD limits, QTP pattern
Device	PIC18F2455/2550 ⁽¹⁾ , PIC18F4455/4550 ⁽¹⁾ , PIC18F2455/2550T ⁽²⁾ , PIC18F4455/4550T ⁽²⁾ ; VDD range 4.2V to 5.5V PIC18LF2455/2550 ⁽¹⁾ , PIC18LF4455/4550 ⁽¹⁾ , PIC18LF2455/2550T ⁽²⁾ , PIC18LF4455/4550T ⁽²⁾ ; VDD range 2.0V to 5.5V	 #301. b) PIC18LF2455-I/SO = Industrial temp., SOIC package, Extended VDD limits. c) PIC18F4455-I/P = Industrial temp., PDIP package, normal VDD limits.
Temperature Range	$ \begin{array}{rcl} I &=& -40^{\circ}\text{C to } +85^{\circ}\text{C (Industrial)} \\ E &=& -40^{\circ}\text{C to } +125^{\circ}\text{C (Extended)} \end{array} $	
Package	PT = TQFP (Thin Quad Flatpack) SO = SOIC SP = Skinny Plastic DIP P = PDIP ML = QFN	Note 1:F=Standard Voltage RangeLF=Wide Voltage Range2:T=in tape and reel TQFP packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/26/09