

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4455-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

RB0/M12/ INTO/FLT0/ SDI/SDA RB0 0 OUT DIG LATB<0> data output; not affected by analog input. NTO/FLT0/ SDI/SDA 1 IN TTL PORTB<0> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾ SDI/SDA AN12 1 IN ANA A/D Input Channel 12. ⁽¹⁾ INT0 1 IN ST External Interrupt 0 input. FLT0 1 IN ST Enhanced PWM Fault input (ECCP1 module); enabled in softwar SDI 1 IN ST Enhanced PWM Fault input (MSSP module); SDI 1 IN ST Enhanced PWM Fault input (MSSP module); NT1/SCK RB1 0 OUT DIG LATB<1> data output; not affected by analog input. NT1/SCK RB1 0 OUT DIG LATB<1> data input; (MSSP module); input see points over port data. NT1/SCK 1 IN ST External Interrupt 1 input. SCL 0 OUT DIG SPI clock output (MSSP module); takes priority over port data. INT1	Pin	Function	TRIS Setting	I/O	I/O Type	Description
INTO/FLTO/ SDUSDA Image: SDUSDA Image: SDUSDA <thimage: sdusda<="" th=""> Image: SDUSDA Image</thimage:>	RB0/AN12/	RB0	0	OUT	DIG	LATB<0> data output; not affected by analog input.
AN12 1 IN ANA A/D Input Channel 12. ⁽¹⁾ INT0 1 IN ST External Interrupt 0 input. FLT0 1 IN ST External Interrupt 0 input. SDI 1 IN ST External Interrupt 0 input. SDI 1 IN ST SPI data input (MSSP module). SDI 1 IN ST SPI data output (MSSP module). SDI 1 IN IST SPI data output (MSSP module). INT1/SCK/ RB1 0 OUT DIG LATB=1> data output. Nate paulo	INT0/FLT0/ SDI/SDA		1	IN	TTL	PORTB<0> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input enabled. ⁽¹⁾
INT0 1 IN ST External Interrupt 0 input. FLT0 1 IN ST Enhanced PVM Fault input (BCCP1 module); enabled in softwar SDI 1 IN ST SPI data input (MSSP module). SDA 1 OUT DIG I ² C ^{-M} data output (MSSP module); takes priority over port data. INT1/SCK/ RB1 0 OUT DIG LATB-1> data output (MSSP module); takes priority over port data. SCL 1 IN TTL PORTB-1> data output; not affected by analog input. NT1/SCK/ SCL 1 IN AN10 1 IN ANA SCL AN10 1 IN ANA A/D Input Channel 10. ⁽¹⁾ Instaled when analog input enabled (¹⁾ INT1 1 IN ST SPI clock input (MSSP module); takes priority over port data. SCL 0 OUT DIG LATB-2> data input; weak pull-up when RBPU bit is cleared. INT2 1 IN TTL PORTB-2> data input; weak pull-up when RBPU bit is cleared. INT2 1 IN<		AN12	1	IN	ANA	A/D Input Channel 12. ⁽¹⁾
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		INT0	1	IN	ST	External Interrupt 0 input.
SDI 1 IN ST SPI data input (MSSP module). SDA 1 OUT DIG I ² C [™] data output (MSSP module). takes priority over port data. I IN I ² C/M data output (MSSP module). takes priority over port data. I INT IN I ² C/M data output (MSSP module). takes priority over port data. INT/SCK/ RB1 0 OUT DIG LATB-1> data output; not affected by analog input. INT/SCK/ I IN TTL PORTB-1> data output; not affected by analog input. SCL I IN ANA A/D input Channel 10. ⁽¹⁾ INT1 I IN ST SPI clock input (MSSP module); takes priority over port data. SCL 0 OUT DIG I ² C clock output (MSSP module); takes priority over port data. SCL 0 OUT DIG I ² C clock output (MSSP module); takes priority over port data. INT2/VMO 1 IN TTL PORTB-2> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input. 1 IN TTL PORTB-2> data output; not affected by analog		FLT0	1	IN	ST	Enhanced PWM Fault input (ECCP1 module); enabled in software.
$ \begin{array}{ c c c c c c } & SDA & 1 & OUT & DIG & i^2 C^{TM} data output (MSSP module); takes priority over port data. \\ \hline 1 & IN & i^2 C/SMB & i^2 C data input (MSSP module); input type depends on module se RB1/AN10/ INT I/SCK/ SCL & IN & IN & TTL & PORTB<1> data output; not affected by analog input. \\ \hline 1 & IN & TTL & PORTB<1> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. (1) \\ \hline 1 & IN & ST & External Interrupt 1 input. \\ \hline 1 & IN & ST & External Interrupt 1 input. \\ \hline 1 & IN & ST & SPI clock output (MSSP module); takes priority over port data. \\ \hline 1 & IN & ST & SPI clock output (MSSP module); takes priority over port data. \\ \hline 1 & IN & ST & SPI clock output (MSSP module); takes priority over port data. \\ \hline 1 & IN & ST & SPI clock output (MSSP module); takes priority over port data. \\ \hline 1 & IN & ST & SPI clock output (MSSP module); takes priority over port data. \\ \hline 1 & IN & ST & SPI clock input (MSSP module); takes priority over port data. \\ \hline 1 & IN & ITL & DIG & I^2C clock output (MSSP module); takes priority over port data. \\ \hline 1 & IN & ITL & DIG & LATB<2> data output; not affected by analog input. \\ \hline 1 & IN & TTL & DORTB<2> data output; not affected by analog input. \\ \hline 1 & IN & ST & External Interrupt 2 input. \\ \hline 1 & IN & ST & External Interrupt 2 input. \\ \hline 1 & IN & ST & External Interrupt 2 input. \\ \hline 1 & IN & ST & External Interrupt 2 input. \\ \hline 1 & IN & ST & External Interrupt 2 input. \\ \hline 1 & IN & ST & External Interrupt 2 input. \\ \hline 1 & IN & ST & CCP2/VPO \\ \hline 1 & IN & TTL & PORTB<2> data input; weak pull-up when RBPU bit is cleared. \\ \hline 1 & IN & ST & CCP2 compare and PWM output. \\ \hline 1 & IN & ST & CCP2 compare and PWM output. \\ \hline 1 & IN & ST & CCP2 compare and PWM output. \\ \hline 1 & IN & ST & CCP2 compare and PWM output. \\ \hline 1 & IN & ST & CCP2 compare and PWM output. \\ \hline 1 & IN & ST & CCP2 compare and PWM output. \\ \hline 1 & IN & ST & CCP2 compare and PWM output. \\ \hline 1 & IN & ST & CCP2 compare and PWM output. \\ \hline 1 & IN & ST & CCP2 compare and PWM output. \\ \hline 1 & IN &$		SDI	1	IN	ST	SPI data input (MSSP module).
RB1/AN10/ INT1/SCK/ SCL RB1 0 OUT DIG LATB<1> data input (MSSP module); input type depends on module set and on the set of		SDA	1	OUT	DIG	I ² C [™] data output (MSSP module); takes priority over port data.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	IN	I ² C/SMB	I ² C data input (MSSP module); input type depends on module setting.
INT 1/SCK/ SCL Image: mail of the second secon	RB1/AN10/	RB1	0	OUT	DIG	LATB<1> data output; not affected by analog input.
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	INT1/SCK/ SCL		1	IN	TTL	PORTB<1> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input enabled. ⁽¹⁾
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		AN10	1	IN	ANA	A/D Input Channel 10. ⁽¹⁾
$ \begin{array}{ c c c c c c } & SCK & 0 & OUT & DIG & SPI clock output (MSSP module); takes priority over port data. \\ \hline 1 & IN & ST & SPI clock input (MSSP module); takes priority over port data. \\ \hline 1 & IN & I^2C/SMB & I^2C clock output (MSSP module); takes priority over port data. \\ \hline 1 & IN & I^2C/SMB & I^2C clock input (MSSP module); input type depends on module s \\ \hline RB2/AN8/ INT2/VMO & RB2 & 0 & OUT & DIG & LATB<2> data output; not affected by analog input. \\ \hline 1 & IN & ITL & PORTB<2> data output; not affected by analog input. \\ \hline 1 & IN & IN & TTL & PORTB<2> data output; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. (1) \\ \hline 1 & IN & ST & External Interrupt 2 input. \\ \hline 1 & IN & ST & External Interrupt 2 input. \\ \hline 1 & IN & ST & External USB transceiver VMO data output. \\ \hline 1 & IN & ITL & PORTB<3> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. (1) \\ \hline 1 & IN & TTL & PORTB<3> data output; not affected by analog input. \\ \hline 1 & IN & ANA & A/D Input Channel 9. (1) \\ \hline 1 & IN & ST & CCP2 compare and PWM output. \\ \hline 1 & IN & ST & CCP2 capture input. \\ \hline VPO & 0 & OUT & DIG & LATB<4> data output; not affected by analog input. \\ \hline VPO & 0 & OUT & DIG & LATB<4> data output; not affected by analog input. \\ \hline VPO & 0 & OUT & DIG & CCP2 capture input. \\ \hline VPO & 0 & OUT & DIG & LATB<4> data output; not affected by analog input. \\ \hline RB4/AN11/ KBI0/CSSPP & RB4 & 0 & OUT & DIG & LATB<4> data output; not affected by analog input. \\ \hline RB5/KBI1/ KBI0 & 1 & IN & ANA & A/D Input Channel 1. \\ \hline RB5/KBI1/ RB5 & 0 & OUT & DIG & SPP chip select control output. \\ \hline RB5/KBI1/ RB5 & 0 & OUT & DIG & LATB<5> data output. \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		INT1	1	IN	ST	External Interrupt 1 input.
$ \begin{array}{ c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		SCK	0	OUT	DIG	SPI clock output (MSSP module); takes priority over port data.
$ \begin{array}{ c c c c c c } & SCL & 0 & OUT & DIG & I^2C clock output (MSSP module); takes priority over port data. \\ \hline 1 & IN & I^2C/SMB & I^2C clock input (MSSP module); input type depends on module s \\ RB2/AN8/ INT2/VMO & RB2 & 0 & OUT & DIG & LATB<2> data output; not affected by analog input. \\ \hline 1 & IN & TTL & PORTB<2> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. (1) \\ \hline AN8 & 1 & IN & ANA & A/D input channel 8. (1) \\ \hline INT2 & 1 & IN & ST & External Interrupt 2 input. \\ \hline VMO & 0 & OUT & DIG & External USB transceiver VMO data output. \\ \hline CCP2/VPO & RB3 & 0 & OUT & DIG & LATB<3> data output; not affected by analog input. \\ \hline CCP2/VPO & 1 & IN & TTL & PORTB<3> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. (1) \\ \hline AN9 & 1 & IN & TTL & PORTB<3> data output; not affected by analog input. \\ \hline CCP2(2) & 0 & OUT & DIG & CCP2 compare and PWM output. \\ \hline CCP2(2) & 0 & OUT & DIG & CCP2 compare and PWM output. \\ \hline I & IN & ST & CCP2 capture input. \\ \hline VPO & 0 & OUT & DIG & External USB transceiver VPO data output. \\ \hline RB4/AN11/ KBI0/CSSPP & 1 & IN & ANA & A/D Input Channel 9. (1) \\ \hline RB5/KBI1/ & RB5 & 0 & OUT & DIG & LATB<4> data output; not affected by analog input. \\ \hline RB5/KBI1/ & RB5 & 0 & OUT & DIG & LATB<5> data output. \\ \hline RB5/KBI1/ & RB5 & 0 & OUT & DIG & LATB<5> data output. \\ \hline RB5/KBI1/ & RB5 & 0 & OUT & DIG & LATB<5> data output. \\ \hline \ RB5/KBI1/ & RB5 & 0 & OUT & DIG & LATB<5> data output. \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			1	IN	ST	SPI clock input (MSSP module).
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		SCL	0	OUT	DIG	I ² C clock output (MSSP module); takes priority over port data.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	IN	I ² C/SMB	I ² C clock input (MSSP module); input type depends on module setting.
$ \begin{array}{ c c c c c c c c } \mbox{Intro} I$	RB2/AN8/	RB2	0	OUT	DIG	LATB<2> data output; not affected by analog input.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	INT2/VMO		1	IN	TTL	PORTB<2> data input; weak pull-up when $\overline{\text{RBPU}}$ bit is cleared. Disabled when analog input enabled. ⁽¹⁾
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		AN8	1	IN	ANA	A/D input channel 8. ⁽¹⁾
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		INT2	1	IN	ST	External Interrupt 2 input.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		VMO	0	OUT	DIG	External USB transceiver VMO data output.
CCP2/VPO 1 IN TTL PORTB<3> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾ AN9 1 IN ANA A/D Input Channel 9. ⁽¹⁾ CCP2 ⁽²⁾ 0 OUT DIG CCP2 compare and PWM output. 1 IN ST CCP2 capture input. VPO 0 OUT DIG External USB transceiver VPO data output. RB4/AN11/ KBI0/CSSPP RB4 0 OUT DIG LATB<4> data output; not affected by analog input. I IN TTL PORTB<4> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾ KBI0/CSSPP AN11 IN TTL PORTB<4> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾ KBI0/CSSPP IN IN ANA A/D Input Channel 11. ⁽¹⁾ KBI0 I IN TTL Interrupt-on-pin change. CSSPP ⁽⁴⁾ 0 OUT DIG SPP chip select control output. RB5/KBI1/ RB5 0 OUT DIG LATB<5> data output.	RB3/AN9/	RB3	0	OUT	DIG	LATB<3> data output; not affected by analog input.
AN9 1 IN ANA A/D Input Channel 9. ⁽¹⁾ CCP2 ⁽²⁾ 0 OUT DIG CCP2 compare and PWM output. 1 IN ST CCP2 capture input. VPO 0 OUT DIG External USB transceiver VPO data output. RB4/AN11/ RB4 0 OUT DIG LATB<4> data output; not affected by analog input. RB4/AN11/ RB4 0 OUT DIG LATB<4> data output; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾ AN11 1 IN ANA A/D Input Channel 11. ⁽¹⁾ KBI0 1 IN TTL Interrupt-on-pin change. CSSPP ⁽⁴⁾ 0 OUT DIG SPP chip select control output. RB5/KBI1/ RB5 0 OUT DIG LATB<5> data output.	CCP2/VPO		1	IN	TTL	PORTB<3> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾
CCP2 ⁽²⁾ 0 OUT DIG CCP2 compare and PWM output. 1 IN ST CCP2 capture input. VPO 0 OUT DIG External USB transceiver VPO data output. RB4/AN11/ KBI0/CSSPP RB4 0 OUT DIG LATB<4> data output; not affected by analog input. In IN TTL PORTB<4> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾ AN11 1 IN ANA A/D Input Channel 11. ⁽¹⁾ KBI0 1 IN TTL Interrupt-on-pin change. CSSPP ⁽⁴⁾ 0 OUT DIG SPP chip select control output. RB5/KBI1/ PGM RB5 0 OUT DIG LATB<5> data output.		AN9	1	IN	ANA	A/D Input Channel 9. ⁽¹⁾
Image: Normal System Image: No		CCP2 ⁽²⁾	0	OUT	DIG	CCP2 compare and PWM output.
VPO 0 OUT DIG External USB transceiver VPO data output. RB4/AN11/ KBI0/CSSPP RB4 0 OUT DIG LATB<4> data output; not affected by analog input. 1 IN TTL PORTB<4> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾ AN11 1 IN ANA A/D Input Channel 11. ⁽¹⁾ KBI0 1 IN TTL Interrupt-on-pin change. CSSPP ⁽⁴⁾ 0 OUT DIG SPP chip select control output. RB5/KBI1/ PGM RB5 0 OUT DIG LATB<5> data output.			1	IN	ST	CCP2 capture input.
RB4/AN11/ KBI0/CSSPP RB4 0 OUT DIG LATB<4> data output; not affected by analog input. 1 IN TTL PORTB<4> data output; not affected by analog input. AN11 1 IN TTL PORTB<4> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾ AN11 1 IN ANA A/D Input Channel 11. ⁽¹⁾ KBI0 1 IN TTL Interrupt-on-pin change. CSSPP ⁽⁴⁾ 0 OUT DIG SPP chip select control output. RB5/KBI1/ RB5 0 OUT DIG LATB<		VPO	0	OUT	DIG	External USB transceiver VPO data output.
KBI0/CSSPP 1 IN TTL PORTB<4> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾ AN11 1 IN ANA A/D Input Channel 11. ⁽¹⁾ KBI0 1 IN TTL Interrupt-on-pin change. CSSPP ⁽⁴⁾ 0 OUT DIG SPP chip select control output. RB5/KBI1/ RB5 0 OUT DIG LATB<> data output.	RB4/AN11/	RB4	0	OUT	DIG	LATB<4> data output; not affected by analog input.
AN11 1 IN ANA A/D Input Channel 11. ⁽¹⁾ KBI0 1 IN TTL Interrupt-on-pin change. CSSPP ⁽⁴⁾ 0 OUT DIG SPP chip select control output. RB5/KBI1/ RB5 0 OUT DIG LATB<5> data output.	KBI0/CSSPP		1	IN	TTL	PORTB<4> data input; weak pull-up when RBPU bit is cleared. Disabled when analog input enabled. ⁽¹⁾
KBI0 1 IN TTL Interrupt-on-pin change. CSSPP ⁽⁴⁾ 0 OUT DIG SPP chip select control output. RB5/KBI1/ RB5 0 OUT DIG LATB<5> data output.		AN11	1	IN	ANA	A/D Input Channel 11. ⁽¹⁾
CSSPP ⁽⁴⁾ 0 OUT DIG SPP chip select control output. RB5/KBI1/ RB5 0 OUT DIG LATB<5> data output.		KBI0	1	IN	TTL	Interrupt-on-pin change.
RB5/KBI1/ RB5 0 OUT DIG LATB<5> data output.		CSSPP ⁽⁴⁾	0	OUT	DIG	SPP chip select control output.
	RB5/KBI1/	RB5	0	OUT	DIG	LATB<5> data output.
I IN TTL PORTB<5> data input; weak pull-up when RBPU bit is cleared.	PGM		1	IN	TTL	PORTB<5> data input; weak pull-up when RBPU bit is cleared.
KBI1 1 IN TTL Interrupt-on-pin change.		KBI1	1	IN	TTL	Interrupt-on-pin change.
PGM x IN ST Single-Supply Programming mode entry (ICSP™). Enabled by LV Configuration bit; all other pin functions disabled.		PGM	х	IN	ST	Single-Supply Programming mode entry (ICSP™). Enabled by LVP Configuration bit; all other pin functions disabled.

TABLE 10-3: PORTB I/O SUMMARY

Legend. OUT - Output, IN - Input, ANA - Analog Signal, DIG - Digital Output, ST - Scinnit Buller Input, I²C/SMB = I²C/SMBus input buffer, TTL = TTL Buffer Input, x = Don't care (TRIS bit does not affect port direction or is overridden for this option)
Note: The problem of the

Note 1: Configuration on POR is determined by PBADEN Configuration bit. Pins are configured as analog inputs when PBADEN is set and digital inputs when PBADEN is cleared.

2: Alternate pin assignment for CCP2 when CCP2MX = 0. Default assignment is RC1.

3: All other pin functions are disabled when ICSP[™] or ICD operation is enabled.

4: 40/44-pin devices only.

11.3 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module. The prescaler is not directly readable or writable; its value is set by the PSA and T0PS2:T0PS0 bits (T0CON<3:0>) which determine the prescaler assignment and prescale ratio.

Clearing the PSA bit assigns the prescaler to the Timer0 module. When it is assigned, prescale values from 1:2 through 1:256, in power-of-2 increments, are selectable.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF TMR0, MOVWF TMR0, BSF TMR0, etc.) clear the prescaler count.

Note: Writing to TMR0 when the prescaler is assigned to Timer0 will clear the prescaler count but will not change the prescaler assignment.

11.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control and can be changed "on-the-fly" during program execution.

11.4 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h in 8-bit mode, or from FFFFh to 0000h in 16-bit mode. This overflow sets the TMR0IF flag bit. The interrupt can be masked by clearing the TMR0IE bit (INTCON<5>). Before reenabling the interrupt, the TMR0IF bit must be cleared in software by the Interrupt Service Routine.

Since Timer0 is shut down in Sleep mode, the TMR0 interrupt cannot awaken the processor from Sleep.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TMR0L	Timer0 Register Low Byte							54	
TMR0H	Timer0 Register High Byte						54		
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
INTCON2	RBPU	INTEDG0	INTEDG1	INTEDG2	_	TMR0IP	_	RBIP	53
T0CON	TMR0ON	T08BIT	TOCS	T0SE	PSA	T0PS2	T0PS1	T0PS0	54
TRISA	_	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	56

Legend: — = unimplemented locations, read as '0'. Shaded cells are not used by Timer0.

Note 1: RA6 is configured as a port pin based on various primary oscillator modes. When the port pin is disabled, all of the associated bits read '0'.

15.3 Compare Mode

In Compare mode, the 16-bit CCPRx register value is constantly compared against either the TMR1 or TMR3 register pair value. When a match occurs, the CCPx pin can be:

- · driven high
- · driven low
- toggled (high-to-low or low-to-high)
- remain unchanged (that is, reflects the state of the I/O latch)

The action on the pin is based on the value of the mode select bits (CCPxM3:CCPxM0). At the same time, the interrupt flag bit, CCPxIF, is set.

15.3.1 CCP PIN CONFIGURATION

The user must configure the CCPx pin as an output by clearing the appropriate TRIS bit.

Note:	Clearing the CCP2CON register will force					
	the RB3 or RC1 compare output latch					
	(depending on device configuration) to the					
	default low level. This is not the PORTB or					
	PORTC I/O data latch.					

15.3.2 TIMER1/TIMER3 MODE SELECTION

Timer1 and/or Timer3 must be running in Timer mode, or Synchronized Counter mode, if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

15.3.3 SOFTWARE INTERRUPT MODE

When the Generate Software Interrupt mode is chosen (CCPxM3:CCPxM0 = 1010), the corresponding CCPx pin is not affected. Only a CCP interrupt is generated, if enabled, and the CCPxIE bit is set.

15.3.4 SPECIAL EVENT TRIGGER

Both CCP modules are equipped with a Special Event Trigger. This is an internal hardware signal generated in Compare mode to trigger actions by other modules. The Special Event Trigger is enabled by selecting the Compare Special Event Trigger mode (CCPxM3:CCPxM0 = 1011).

For either CCP module, the Special Event Trigger resets the Timer register pair for whichever timer resource is currently assigned as the module's time base. This allows the CCPRx registers to serve as a programmable Period register for either timer.

The Special Event Trigger for CCP2 can also start an A/D conversion. In order to do this, the A/D converter must already be enabled.

FIGURE 15-2: COMPARE MODE OPERATION BLOCK DIAGRAM

PWM DUTY CYCLE 16.4.2

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The PWM duty cycle is calculated by the following equation.

EQUATION 16-2:

PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>• TOSC • (TMR2 Prescale Value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not copied into CCPR1H until a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double-buffer the PWM duty cycle. This double-buffering is essential for glitchless PWM operation. When the CCPR1H and 2-bit latch match TMR2. concatenated with an internal 2-bit Q clock or two bits of the TMR2 prescaler, the CCP1 pin is cleared. The maximum PWM resolution (bits) for a given PWM frequency is given by the following equation.

EQUATION 16-3:

PWM Resolution (max) =
$$\frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

16.4.3 **PWM OUTPUT CONFIGURATIONS**

The P1M1:P1M0 bits in the CCP1CON register allow one of four configurations:

- Single Output
- · Half-Bridge Output
- Full-Bridge Output, Forward mode
- · Full-Bridge Output, Reverse mode

8

The Single Output mode is the standard PWM mode discussed in Section 16.4 "Enhanced PWM Mode". The Half-Bridge and Full-Bridge Output modes are covered in detail in the sections that follow.

The general relationship of the outputs in all configurations is summarized in Figure 16-2 and Figure 16-3.

7

6.58

TABLE 10-2. EXAMPLE P		ENCIES AN	D RESULUI	IUN5 AT 40		
PWM Frequency	2.44 kHz	9.77 kHz	39.06 kHz	156.25 kHz	312.50 kHz	416.67 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	FFh	FFh	FFh	3Fh	1Fh	17h

10

10

10

Maximum Resolution (bits)

REGISTER 17-5: BDnSTAT: BUFFER DESCRIPTOR n STATUS REGISTER (BD0STAT THROUGH BD63STAT), CPU MODE (DATA IS WRITTEN TO THE SIDE)

			D/\/.	D 44/	D///	D/4/	D/4/
R/W-X	K/VV-X	R/W-X	K/W-X	R/W-X	R/VV-X	R/VV-X	R/W-X
UOWN	DTS(2)	KEN	INCDIS	DTSEN	BSTALL	BC9	BC8
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	UOWN: USB	Own bit ⁽¹⁾					
	0 = The micr	ocontroller cor	e owns the BI	D and its corres	ponding buffer		
bit 6	DTS: Data To	ggle Synchron	ization bit ⁽²⁾				
	1 = Data 1 pa	acket					
	0 = Data 0 pa	acket					
bit 5	KEN: BD Kee	ep Enable bit					
	1 = USB will	keep the BD ir	definitely onc	e UOWN is set	t (required for S	PP endpoint co	onfiguration)
		nand back the	BD once a to	ken nas been p	processed		
bit 4	INCDIS: Addi	ress Increment	Disable bit				
	1 = Address 0 = Address	increment disa	bled (required	a for SPP endp	oint configuratio	on)	
hit 3		Toggle Synch	ronization En	ahla hit			
bit o	1 = Data toq	ale synchroniz	ation is enabl	led: data nacke	ets with incorrect	t Sync value v	vill be ignored
	except fo	or a SETUP tra	nsaction, which	ch is accepted	even if the data	toggle bits do r	not match
	0 = No data t	toggle synchro	nization is per	formed			
bit 2	BSTALL: Buf	fer Stall Enable	e bit				
	1 = Buffer sta	all enabled; ST	ALL handshal	ke issued if a to	ken is received	that would use	e the BD in the
	given loc	ation (UOWN I	oit remains se	t, BD value is ι	unchanged)		
		all disabled					
bit 1-0	BC9:BC8: By	/te Count 9 and	1 8 bits				
The byte count bits represent the number of bytes that will be transmitted for an IN token or received during an OUT token. Together with $BC<7.05$ the valid byte counts are 0.1023							en or received
		i token. ioget				0 1020.	
Note 1: 7	This bit must be in	itialized by the	user to the de	esired value pri	or to enabling t	ne USB module	э.

2: This bit is ignored unless DTSEN = 1.

R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16		WUE	ABDEN
bit 7		•					bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, reac	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 7	ABDOVF: Au	uto-Baud Acquis	sition Rollove	r Status bit			
	1 = A BRG r 0 = No BRG	ollover has occ rollover has oc	urred during /	Auto-Baud Rate	e Detect mode (must be cleare	ed in software)
bit 6	RCIDL: Rece	eive Operation I	dle Status bit				
	1 = Receive	operation is Idle	9				
L:1 F		operation is act	IVE				
DIL 5	Asynchronou	eived Data Pola is mode:	anty Select DI	l			
	1 = RX data i	is inverted					
	0 = RX data	received is not	inverted				
	Synchronous	<u>; modes:</u> L Data (DT) is ir	wartad Idla s	tato is a low lo	vol		
	0 = No inverse	sion of Data (D). Idle state i	s a high level.	vei.		
bit 4	TXCKP: Cloc	k and Data Pol	arity Select b	it			
	Asynchronou	<u>is mode:</u>					
	1 = I X data i 0 = TX data i	s inverted					
	Synchronous	<u>modes:</u>					
	1 = Clock (Cl	K) is inverted. Ic	dle state is a l	high level.			
h:1 0	0 = No invers	sion of Clock (C	K). Idle state	IS a low level.			
DIT 3	BRG16: 16-E	ud Pate Cener	egister Enab	IE DIE	2		
	0 = 8-bit Bau	d Rate General	tor – SPBRG	only (Compatit	ole mode), SPBI	RGH value ign	ored
bit 2	Unimplemer	nted: Read as '	0'				
bit 1	WUE: Wake-	up Enable bit					
	Asynchronou	<u>is mode:</u>				f-ll'a la -	
	⊥ = EUSAR hardwar	e on following r	o sample the ising edge	RX pin – inter	rupt generated	on failing edge	; dit cleared in
	0 = RX pin n	ot monitored or	rising edge of	detected			
	<u>Synchronous</u> Unused in thi	<u>s mode:</u> is mode.					
bit 0	ABDEN: Auto	o-Baud Detect	Enable bit				
	Asynchronou	<u>is mode:</u>			ton Dogwings re	contion of a C	upp field (EEb)
	⊥ = ∟nable t cleared i	in hardware upo	on completion	ne next charac I.	iei. Requires re	ception of a Sy	/nc lieid (55f);
	0 = Baud rat	e measuremen	t disabled or	completed			
	Synchronous	mode:					
	Unused in thi	is mode.					

REGISTER 20-3: BAUDCON: BAUD RATE CONTROL REGISTER

20.4 EUSART Synchronous Slave Mode

Synchronous Slave mode is entered by clearing bit, CSRC (TXSTA<7>). This mode differs from the Synchronous Master mode in that the shift clock is supplied externally at the CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in any power-managed mode.

20.4.1 EUSART SYNCHRONOUS SLAVE TRANSMISSION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit.
- b) The second word will remain in the TXREG register.
- c) Flag bit, TXIF, will not be set.
- When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit, TXIF, will now be set.
- e) If enable bit, TXIE, is set, the interrupt will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector.

To set up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting bits, SYNC and SPEN, and clearing bit, CSRC.
- 2. Clear bits, CREN and SREN.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If the signal from the CK pin is to be inverted, set the TXCKP bit. If the signal from the DT pin is to be inverted, set the RXDTP bit.
- 5. If 9-bit transmission is desired, set bit, TX9.
- 6. Enable the transmission by setting enable bit, TXEN.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 8. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
PIR1	SPPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	56
PIE1	SPPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	56
IPR1	SPPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	56
RCSTA	SPEN	RX9 SREN CREN ADDEN FERR OERR RX9D							55
TXREG	EUSART Transmit Register								55
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	55
BAUDCON	ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN	55
SPBRGH	EUSART Baud Rate Generator Register High Byte							55	
SPBRG	EUSART B	aud Rate Ge	enerator Re	gister Low I	Byte				55

TABLE 20-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: Reserved in 28-pin devices; always maintain these bits clear.

21.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The Analog-to-Digital (A/D) converter module has 10 inputs for the 28-pin devices and 13 for the 40/44-pin devices. This module allows conversion of an analog input signal to a corresponding 10-bit digital number.

The module has five registers:

- A/D Result High Register (ADRESH)
- A/D Result Low Register (ADRESL)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)
- A/D Control Register 2 (ADCON2)

The ADCON0 register, shown in Register 21-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 21-2, configures the functions of the port pins. The ADCON2 register, shown in Register 21-3, configures the A/D clock source, programmed acquisition time and justification.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6 Unimplemented: Read as '0'

bit 5-2	CHS3:CHS0: Analog Channel Select bits
	0000 = Channel 0 (AN0)
	0001 = Channel 1 (AN1)
	0010 = Channel 2 (AN2)
	0011 = Channel 3 (AN3)
	0100 = Channel 4 (AN4)
	0101 = Channel 5 (AN5) ^(1,2)
	0110 = Channel 6 (AN6) ^(1,2)
	0111 = Channel 7 (AN7) ^(1,2)
	1000 = Channel 8 (AN8)
	1001 = Channel 9 (AN9)
	1010 = Channel 10 (AN10)
	1011 = Channel 11 (AN11)
	1100 = Channel 12 (AN12)
	$1101 = \text{Unimplemented}^{(2)}$
	1110 = Unimplemented ⁽²⁾
bit 1	GO/DONE: A/D Conversion Status bit
	When ADON = 1:
	1 = A/D conversion in progress
	0 = A/D Idle
bit 0	ADON: A/D On bit
	1 = A/D converter module is enabled
	0 = A/D converter module is disabled
Note 1:	These channels are not implemented on 28-pin devices.
2:	Performing a conversion on unimplemented channels will return a floating input measurement.

REGISTER 21-1: ADCON0: A/D CONTROL REGISTER 0

22.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 22-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this

range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up condition may occur. A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

TABLE 22-1: REGISTERS ASSOCIATED WI	ITH COMPARATOR MODULE
-------------------------------------	-----------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	55
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	55
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
PIR2	OSCFIF	CMIF	USBIF	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	56
PIE2	OSCFIE	CMIE	USBIE	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	56
IPR2	OSCFIP	CMIP	USBIP	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	56
PORTA	_	RA6 ⁽¹⁾	RA5	RA4	RA3	RA2	RA1	RA0	56
LATA	_	LATA6 ⁽¹⁾	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	56
TRISA	_	TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	56

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

Note 1: PORTA<6> and its direction and latch bits are individually configured as port pins based on various oscillator modes. When disabled, these bits read as '0'.

NOTES:

Even when the dedicated port is enabled, the ICSP functions remain available through the legacy port. When VIHH is seen on the MCLR/VPP/RE3 pin, the state of the ICRST/ICVPP pin is ignored.

- **Note 1:** The ICPRT Configuration bit can only be programmed through the default ICSP port (MCLR/RB6/RB7).
 - The ICPRT Configuration bit must be maintained clear for all 28-pin and 40-pin devices; otherwise, unexpected operation may occur.

25.9.2 28-PIN EMULATION

Devices in 44-pin TQFP packages also have the ability to change their configuration under external control for debugging purposes. This allows the device to behave as if it were a 28-pin device.

This 28-pin Configuration mode is controlled through a single pin, NC/ICPORTS. Connecting this pin to VSS forces the device to function as a 28-pin device. Features normally associated with the 40/44-pin devices are disabled along with their corresponding control registers and bits. This includes PORTD and PORTE, the SPP and the Enhanced PWM functionality of CCP1. On the other hand, connecting the pin to VDD forces the device to function in its default configuration.

The configuration option is only available when background debugging and the dedicated ICD/ICSP port are both enabled (DEBUG Configuration bit is clear and ICPRT Configuration bit is set). When disabled, NC/ICPORTS is a No Connect pin.

25.10 Single-Supply ICSP Programming

The LVP Configuration bit enables Single-Supply ICSP Programming (formerly known as *Low-Voltage ICSP Programming* or *LVP*). When Single-Supply Programming is enabled, the microcontroller can be programmed without requiring high voltage being applied to the MCLR/VPP/RE3 pin, but the RB5/KBI1/PGM pin is then dedicated to controlling Program mode entry and is not available as a general purpose I/O pin.

While programming using <u>Single-Supply</u> Programming, VDD is applied to the MCLR/VPP/RE3 pin as in normal execution mode. To enter Programming mode, VDD is applied to the PGM pin.

- Note 1: High-Voltage Programming is always available, regardless of the state of the LVP bit, by applying VIHH to the MCLR pin.
 - 2: While in Low-Voltage ICSP Programming mode, the RB5 pin can no longer be used as a general purpose I/O pin and should be held low during normal operation.
 - 3: When using Low-Voltage ICSP Programming (LVP) and the pull-ups on PORTB are enabled, bit 5 in the TRISB register must be cleared to disable the pull-up on RB5 and ensure the proper operation of the device.
 - 4: If the device Master Clear is disabled, verify that either of the following is done to ensure proper entry into ICSP mode:
 - a) disable Low-Voltage Programming (CONFIG4L<2> = 0); or
 - b) make certain that RB5/KBI1/PGM is held low during entry into ICSP.

If Single-Supply ICSP Programming mode will not be used, the LVP bit can be cleared. RB5/KBI1/PGM then becomes available as the digital I/O pin, RB5. The LVP bit may be set or cleared only when using standard high-voltage programming (VIHH applied to the MCLR/VPP/RE3 pin). Once LVP has been disabled, only the standard high-voltage programming is available and must be used to program the device.

Memory that is not code-protected can be erased using either a Block Erase, or erased row by row, then written at any specified VDD. If code-protected memory is to be erased, a Block Erase is required. If a Block Erase is to be performed when using Low-Voltage Programming, the device must be supplied with VDD of 4.5V to 5.5V.

RRN	CF	Rotate I	Rotate Right f (No Carry)							
Synta	ax:	RRNCF	1	f {,d {,a}}						
Oper	rands:	0 ≤ f ≤ 2 d ∈ [0,1] a ∈ [0,1]	55]]							
Oper	ration:	(f <n>) – (f<0>) –</n>	→ d → d	est <n <sup="" –="">- est<7></n>	1>,					
Statu	is Affected:	N, Z								
Enco	oding:	0100		00da	fff	ff ffff				
Desc	pription:	The contents of register 'f' are rotated one bit to the right. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank will be selected, overriding the BSR value. If 'a' is '1', then the bank will be selected as per the BSR value (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.								
					egistei					
Word	ds:	1								
Cycle	es:	1								
QC	ycle Activity:			_		_				
	Q1	Q2		Q	3	Q4				
	Decode	Read register '	f	Proce Dat	ess a	Write to destination				
<u>Exan</u>	nple 1: Before Instruc REG After Instructic REG	RRNCF tion = 110 on = 111	1 0	REG, 1 0111 1011	, 0					
Exan	nple 2:	RRNCF		REG, 0	, 0					
	Before Instruc W REG	tion = ? = 110	1 (0111						
	After Instructio	on = 111 = 110	0 1	1011 0111						

SETF	Set f							
Syntax:	SETF f{,a	a}						
Operands:	0 ≤ f ≤ 255 a ∈ [0,1]							
Operation:	$FFh \rightarrow f$							
Status Affected:	None							
Encoding:	0110	100a ffi	ff ffff					
Description:	The content are set to F If 'a' is '0', tl If 'a' is '1', tl GPR bank (If 'a' is '0' ar set is enabl in Indexed I mode when Section 26 Bit-Oriente Literal Offs	The contents of the specified register are set to FFh. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	Q4					
Decode	Read register 'f'	Process Data	Write register 'f'					
Example:	SETF	REG,1						
Before Instruction REG = 5Ah After Instruction								
REG	– rr	11						

SUBLW Subtract W from Literal								
Synta	ax:	ę	SUBLW	k				
Oper	ands:	C) ≤ k ≤ 25	55	;			
Oper	ation:	k	x – (W) –	→	W			
Statu	s Affected:	1	N, OV, C	, C	DC, Z			
Enco	ding:	Γ	0000		1000	kk}	k	kkkk
Desc	ription	N I	V is subt iteral 'k'.	tra T	acted from he result	m the is pla	eigh acec	nt-bit I in W.
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1		Q2		Q3			Q4
	Decode	l lit	Read eral 'k'		Proces Data	SS I	Wr	ite to W
<u>Exan</u>	nple 1:	S	SUBLW	0	2h			
Before Instruction W = C = After Instruction W = C = Z =			01h ? 01h 1 ; result is positive 0					
Exan	nple 2:	S	SUBLW	0	2h			
Before Instruction W = 02h C = ? After Instruction W = 00h C = 1; result is zero Z = 1 N = 0								
Exan	nple 3:	S	SUBLW	0	2h			
	Before Instruc W C After Instructio W C Z N	tion = = n = = =	03h ? FFh 0 1	; (; r	(2's com esult is r	oleme negati	ent) ve	

SUBWF	Subtract	W from f					
Syntax:	SUBWF	f {,d {,a}}					
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5					
Operation:	(f) – (W) –	→ dest					
Status Affected:	N, OV, C,	DC, Z					
Encoding:	0101	11da ffi	ff ffff				
Description:Subtract W from register 'f' (2's complement method). If 'd' is '1' result is stored in W. If 'd' is '1' result is stored back in register (default).If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is to select the GPR bank (defau 							
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	Q4				
Decode	Read register 'f'	Process Data	vvrite to destination				
Example 1: Before Instructi REG W C After Instruction REG W C Z	SUBWF ion = 3 = 2 = ? n = 1 = 2 = 1; re = 0	REG, 1, 0	2				
Ν	= 0						
Example 2:	SUBWF	REG, 0, 0					
After Instruction REG W C After Instruction REG W C Z	ion = 2 = 2 = ? n = 2 = 0 = 1 ; re = 1 ; re	esult is zero					
Z N	= 1 = 0	1 0					
Example 3:	SUBWF	REG, 1, 0					
Before Instructi REG W C	ion = 1 = 2						
	= ? n						
REG	= ? n = FFh ;(2	's complemen	t)				
REG W C	= ? n = FFh ;(2 = 2 = 0 ; re	's complemen	t) e				

28.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +85°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD and MCLR) (Note 3)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	-0.3V to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0V to +13.25V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iικ (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports	200 mA

- **Note 1:** Power dissipation is calculated as follows: Pdis = VDD x {IDD $- \sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOL x IOL)
 - 2: Voltage spikes below Vss at the MCLR/VPP/RE3 pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR/VPP/ RE3 pin, rather than pulling this pin directly to Vss.
 - **3:** When the internal USB regulator is enabled or VUSB is powered externally, RC4 and RC5 are limited to -0.3V to (VUSB + 0.3V) with respect to VSS.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

28.2 DC Characteristics: Power-Down and Supply Current PIC18F2455/2550/4455/4550 (Industrial) PIC18LF2455/2550/4455/4550 (Industrial) (Continued)

PIC18L (Inc	. F2455/2 lustrial)	2455/2550/4455/4550Standard Operating Conditions (unless otherwise stated) v_{trial} Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial									
PIC18F (Inc	2455/25 lustrial)	50/4455/4550	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial								
Param No.	Symbol	Device	Тур	Max	Units	ts Conditions					
		Supply Current (IDD) ⁽²⁾									
		PIC18LFX455/X550	250	500	μΑ	-40°C					
			250	500	μΑ	+25°C	VDD = 2.0V				
			250	500	μΑ	+85°C					
		PIC18LFX455/X550	550	650	μΑ	-40°C		Fosc = 1 MHz			
			480	650	μA	+25°C	VDD = 3.0V	(PRI_RUN,			
			460	650	μΑ	+85°C		EC oscillator)			
		All devices	1.2	1.6	mA	-40°C					
			1.1	1.5	mA	+25°C	VDD = 5.0V				
			1.0	1.4	mA	+85°C					
		PIC18LFX455/X550	0.74	2.0	mA	-40°C					
			0.74	2.0	mA	+25°C	VDD = 2.0V				
			0.74	2.0	mA	+85°C					
		PIC18LFX455/X550	1.3	3.0	mA	-40°C		Fosc = 4 MHz (PRI_RUN , EC oscillator)			
			1.3	3.0	mA	+25°C	VDD = 3.0V				
			1.3	3.0	mA	+85°C					
		All devices	2.7	6.0	mA	-40°C					
			2.6	6.0	mA	+25°C	VDD = 5.0V				
			2.5	6.0	mA	+85°C					
		All devices	15	35	mA	-40°C					
			16	35	mA	+25°C	VDD = 4.2V				
			16	35	mA	+85°C		Fosc = 40 MHz			
		All devices	21	40	mA	-40°C		EC oscillator)			
			21	40	mA	+25°C	VDD = 5.0V				
			21	40	mA	+85°C					
		All devices	20	40	mA	-40°C					
			20	40	mA	+25°C	VDD = 4.2V				
			20	40	mA	+85°C		FOSC = 48 MHZ			
		All devices	25	50	mA	-40°C		EC oscillator)			
			25	50	mA	+25°C	VDD = 5.0V				
			25	50	mA	+85°C					

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or Vss; MCLR = VDD; WDT enabled/disabled as specified.

- 3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

TABLE 28-15: EXAMPLE SPI MODE REQUIREMENTS (MASTER MODE, CKE = 0)

Param No.	Symbol	Characteristic	Min	Max	Units	Conditions	
70	TssL2scH, TssL2scL	$\overline{SS} \downarrow$ to SCK \downarrow or SCK \uparrow Input		3 TCY	—	ns	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40	—	ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30	_	ns	
72A		(Slave mode)	Single Byte	40		ns	(Note 1)
73	TdiV2scH, TdiV2scL	Setup Time of SDI Data Input t	o SCK Edge	20	_	ns	
73A	Tb2b	Last Clock Edge of Byte 1 to th of Byte 2	e 1st Clock Edge	1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to	SCK Edge	35	_	ns	
75	TdoR	SDO Data Output Rise Time	PIC18FXXXX	—	25	ns	
			PIC18 LF XXXX	—	45	ns	VDD = 2.0V
76	TdoF	SDO Data Output Fall Time		—	25	ns	
78	TscR	SCK Output Rise Time	PIC18FXXXX	—	25	ns	
		(Master mode)	PIC18 LF XXXX	—	45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time (Master	mode)		25	ns	
80	TscH2doV,	SDO Data Output Valid after	PIC18FXXXX		50	ns	
	TscL2doV	SCK Edge	PIC18 LF XXXX		100	ns	VDD = 2.0V

Note 1: Requires the use of Parameter 73A.

2: Only if Parameter 71A and 72A are used.

TABLE 28-19: I²C[™] BUS START/STOP BITS REQUIREMENTS (SLAVE MODE)

Param. No.	Symbol	Characteristic		Min	Мах	Units	Conditions	
90	TSU:STA	Start Condition	100 kHz mode	4700		ns	Only relevant for Repeated	
		Setup Time	400 kHz mode	600	—		Start condition	
91	THD:STA	Start Condition	100 kHz mode	4000	—	ns	After this period, the first	
		Hold Time	400 kHz mode	600	—		clock pulse is generated	
92	Tsu:sto	Stop Condition	100 kHz mode	4700	—	ns		
		Setup Time	400 kHz mode	600				
93	THD:STO	Stop Condition	100 kHz mode	4000	—	ns		
		Hold Time	400 kHz mode	600	—			

Param No.	Symbol	Charact	Characteristic		Мах	Units	Conditions
130	Tad	A/D Clock Period	PIC18FXXXX	0.8	25.0 ⁽¹⁾	μS	Tosc based, VREF \geq 3.0V
			PIC18LFXXXX	1.4	25.0 ⁽¹⁾	μS	VDD = 2.0V, Tosc based, VREF full range
			PIC18FXXXX	—	1	μS	A/D RC mode
			PIC18LFXXXX	—	3	μS	V _{DD} = 2.0V, A/D RC mode
131	TCNV	Conversion Time (not including acquisition	on time) ⁽²⁾	11	12	Tad	
132	TACQ	Acquisition Time ⁽³⁾		1.4	—	μS	-40°C to +85°C
135	Tswc	Switching Time from C	onvert \rightarrow Sample	—	(Note 4)		
137	TDIS	Discharge Time		0.2	_	μS	

TABLE 28-29: A/D CONVERSION REQUIREMENTS

Note 1: The time of the A/D clock period is dependent on the device frequency and the TAD clock divider.

2: ADRES registers may be read on the following TCY cycle.

3: The time for the holding capacitor to acquire the "New" input voltage when the voltage changes full scale after the conversion (Vss to VDD). The source impedance (*Rs*) on the input channels is 50Ω .

4: On the following cycle of the device clock.