

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f4455t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Dia News	Pin Number			Pin Buffer	Buffer	Departuration		
Pin Name	PDIP QFN TQFP		Туре	Туре	Description			
RB0/AN12/INT0/ FLT0/SDI/SDA RB0	33	9	8	1/0	TTL	PORTB is a bidirectional I/O port. PORTB can be softwa programmed for internal weak pull-ups on all inputs. Digital I/O.		
AN12 INTO FLTO SDI SDA				/O	Analog ST ST ST ST ST	Analog input 12. External interrupt 0. Enhanced PWM Fault input (ECCP1 module). SPI data in. I ² C™ data I/O.		
RB1/AN10/INT1/SCK/ SCL RB1 AN10 INT1 SCK SCL	34	10	9	I/O I I I/O I/O	TTL Analog ST ST ST	Digital I/O. Analog input 10. External interrupt 1. Synchronous serial clock input/output for SPI mode Synchronous serial clock input/output for I ² C mode		
RB2/AN8/INT2/VMO RB2 AN8 INT2 VMO	35	11	10	I/O I I O	TTL Analog ST —	Digital I/O. Analog input 8. External interrupt 2. External USB transceiver VMO output.		
RB3/AN9/CCP2/VPO RB3 AN9 CCP2 ⁽¹⁾ VPO	36	12	11	I/O I I/O O	TTL Analog ST —	Digital I/O. Analog input 9. Capture 2 input/Compare 2 output/PWM2 output. External USB transceiver VPO output.		
RB4/AN11/KBI0/CSSPP RB4 AN11 KBI0 CSSPP	37	14	14	I/O I I O	TTL Analog TTL —	Digital I/O. Analog input 11. Interrupt-on-change pin. SPP chip select control output.		
RB5/KBI1/PGM RB5 KBI1 PGM	38	15	15	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. Low-Voltage ICSP™ Programming enable pin.		
RB6/KBI2/PGC RB6 KBI2 PGC	39	16	16	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming clock p		
RB7/KBI3/PGD RB7 KBI3	40	17	17	I/O I I/O	TTL TTL ST	Digital I/O. Interrupt-on-change pin. In-Circuit Debugger and ICSP programming data pi		

TABLE 1-3: PIC18F4455/4550 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

3.4.3 RC_IDLE MODE

In RC_IDLE mode, the CPU is disabled but the peripherals continue to be clocked from the internal oscillator block using the INTOSC multiplexer. This mode allows for controllable power conservation during Idle periods.

From RC_RUN, this mode is entered by setting the IDLEN bit and executing a SLEEP instruction. If the device is in another Run mode, first set IDLEN, then set the SCS1 bit and execute SLEEP. Although its value is ignored, it is recommended that SCS0 also be cleared; this is to maintain software compatibility with future devices. The INTOSC multiplexer may be used to select a higher clock frequency by modifying the IRCF bits before executing the SLEEP instruction. When the clock source is switched to the INTOSC multiplexer, the primary oscillator is shut down and the OSTS bit is cleared.

If the IRCF bits are set to any non-zero value, or the INTSRC bit is set, the INTOSC output is enabled. The IOFS bit becomes set after the INTOSC output becomes stable, after an interval of TIOBST (parameter 39, Table 28-12). Clocks to the peripherals continue while the INTOSC source stabilizes. If the IRCF bits were previously at a non-zero value, or INTSRC was set before the SLEEP instruction was executed and the INTOSC source was already stable, the IOFS bit will remain set. If the IRCF bits and INTSRC are all clear, the INTOSC output will not be enabled, the IOFS bit will remain clear and there will be no indication of the current clock source.

When a wake event occurs, the peripherals continue to be clocked from the INTOSC multiplexer. After a delay of TCSD following the wake event, the CPU begins executing code being clocked by the INTOSC multiplexer. The IDLEN and SCS bits are not affected by the wake-up. The INTRC source will continue to run if either the WDT or the Fail-Safe Clock Monitor is enabled.

3.5 Exiting Idle and Sleep Modes

An exit from Sleep mode or any of the Idle modes is triggered by an interrupt, a Reset or a WDT time-out. This section discusses the triggers that cause exits from power-managed modes. The clocking subsystem actions are discussed in each of the power-managed modes (see Section 3.2 "Run Modes", Section 3.3 "Sleep Mode" and Section 3.4 "Idle Modes").

3.5.1 EXIT BY INTERRUPT

Any of the available interrupt sources can cause the device to exit from an Idle mode or Sleep mode to a Run mode. To enable this functionality, an interrupt source must be enabled by setting its enable bit in one of the INTCON or PIE registers. The exit sequence is initiated when the corresponding interrupt flag bit is set.

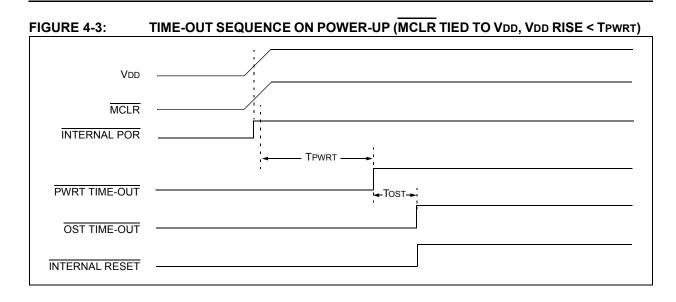
On all exits from Idle or Sleep modes by interrupt, code execution branches to the interrupt vector if the GIE/GIEH bit (INTCON<7>) is set. Otherwise, code execution continues or resumes without branching (see Section 9.0 "Interrupts").

A fixed delay of interval TCSD following the wake event is required when leaving Sleep and Idle modes. This delay is required for the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

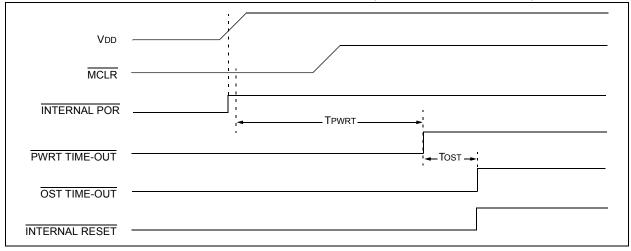
3.5.2 EXIT BY WDT TIME-OUT

A WDT time-out will cause different actions depending on which power-managed mode the device is in when the time-out occurs.

If the device is not executing code (all Idle modes and Sleep mode), the time-out will result in an exit from the power-managed mode (see Section 3.2 "Run Modes" and Section 3.3 "Sleep Mode"). If the device is executing code (all Run modes), the time-out will result in a WDT Reset (see Section 25.2 "Watchdog Timer (WDT)").


The WDT timer and postscaler are cleared by executing a SLEEP or CLRWDT instruction, the loss of a currently selected clock source (if the Fail-Safe Clock Monitor is enabled) and modifying the IRCF bits in the OSCCON register if the internal oscillator block is the device clock source.

3.5.3 EXIT BY RESET


Normally, the device is held in Reset by the Oscillator Start-up Timer (OST) until the primary clock becomes ready. At that time, the OSTS bit is set and the device begins executing code. If the internal oscillator block is the new clock source, the IOFS bit is set instead.

The exit delay time from Reset to the start of code execution depends on both the clock sources before and after the wake-up and the type of oscillator if the new clock source is the primary clock. Exit delays are summarized in Table 3-2.

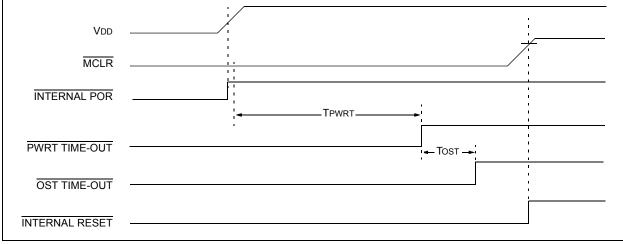

Code execution can begin before the primary clock becomes ready. If either the Two-Speed Start-up (see **Section 25.3 "Two-Speed Start-up"**) or Fail-Safe Clock Monitor (see **Section 25.4 "Fail-Safe Clock Monitor"**) is enabled, the device may begin execution as soon as the Reset source has cleared. Execution is clocked by the INTOSC multiplexer driven by the internal oscillator block. Execution is clocked by the internal oscillator block until either the primary clock becomes ready or a power-managed mode is entered before the primary clock becomes ready; the primary clock is then shut down.

FIGURE 4-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 1

FIGURE 4-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

4.6 Reset State of Registers

Most registers are unaffected by a Reset. Their status is unknown on POR and unchanged by all other Resets. The other registers are forced to a "Reset state" depending on the type of Reset that occurred.

Most registers are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. Status bits from the RCON register, RI, TO, PD, POR and BOR, are set or cleared differently in different Reset situations as indicated in Table 4-3. These bits are used in software to determine the nature of the Reset. Table 4-4 describes the Reset states for all of the Special Function Registers. These are categorized by Power-on and Brown-out Resets, Master Clear and WDT Resets and WDT wake-ups.

TABLE 4-3:	STATUS BITS, THEIR SIGNIFICANCE AND THE INITIALIZATION CONDITION
	FOR RCON REGISTER

Condition	Program		RCO	N Reg		STKPTR Register		
Condition	Counter	RI	то	PD	POR	BOR	STKFUL	STKUNF
Power-on Reset	0000h	1	1	1	0	0	0	0
RESET instruction	0000h	0	u	u	u	u	u	u
Brown-out Reset	0000h	1	1	1	u	0	u	u
MCLR Reset during power-managed Run modes	0000h	u	1	u	u	u	u	u
MCLR Reset during power-managed Idle modes and Sleep mode	0000h	u	1	0	u	u	u	u
WDT time-out during full power or power-managed Run modes	0000h	u	0	u	u	u	u	u
MCLR Reset during full-power execution	0000h	u	u	u	u	u	u	u
Stack Full Reset (STVREN = 1)	0000h	u	u	u	u	u	1	u
Stack Underflow Reset (STVREN = 1)	0000h	u	u	u	u	u	u	1
Stack Underflow Error (not an actual Reset, STVREN = 0)	0000h	u	u	u	u	u	u	1
WDT time-out during power-managed Idle or Sleep modes	PC + 2	u	0	0	u	u	u	u
Interrupt exit from power-managed modes	PC + 2 ⁽¹⁾	u	u	0	u	u	u	u

Legend: u = unchanged

Note 1: When the wake-up is due to an interrupt and the GIEH or GIEL bits are set, the PC is loaded with the interrupt vector (008h or 0018h).

2: Reset state is '1' for POR and unchanged for all other Resets when software BOR is enabled (BOREN1:BOREN0 Configuration bits = 01 and SBOREN = 1); otherwise, the Reset state is '0'.

TABLE 4-4:	INIT	INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)											
Register Appli		plicable Devices			Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt						
INDF2	2455	2550	4455	4550	N/A	N/A	N/A						
POSTINC2	2455	2550	4455	4550	N/A	N/A	N/A						
POSTDEC2	2455	2550	4455	4550	N/A	N/A	N/A						
PREINC2	2455	2550	4455	4550	N/A	N/A	N/A						
PLUSW2	2455	2550	4455	4550	N/A	N/A	N/A						
FSR2H	2455	2550	4455	4550	0000	0000	uuuu						
FSR2L	2455	2550	4455	4550	XXXX XXXX	uuuu uuuu	սսսս սսսս						
STATUS	2455	2550	4455	4550	x xxxx	u uuuu	u uuuu						
TMR0H	2455	2550	4455	4550	0000 0000	0000 0000	սսսս սսսս						
TMR0L	2455	2550	4455	4550	XXXX XXXX	uuuu uuuu	սսսս սսսս						
T0CON	2455	2550	4455	4550	1111 1111	1111 1111	սսսս սսսս						
OSCCON	2455	2550	4455	4550	0100 q000	0100 00q0	uuuu uuqu						
HLVDCON	2455	2550	4455	4550	0-00 0101	0-00 0101	u-uu uuuu						
WDTCON	2455	2550	4455	4550	0	0	u						
RCON ⁽⁴⁾	2455	2550	4455	4550	0q-1 11q0	0q-q qquu	uq-u qquu						
TMR1H	2455	2550	4455	4550	XXXX XXXX	uuuu uuuu	սսսս սսսս						
TMR1L	2455	2550	4455	4550	XXXX XXXX	uuuu uuuu	սսսս սսսս						
T1CON	2455	2550	4455	4550	0000 0000	u0uu uuuu	սսսս սսսս						
TMR2	2455	2550	4455	4550	0000 0000	0000 0000	սսսս սսսս						
PR2	2455	2550	4455	4550	1111 1111	1111 1111	1111 1111						
T2CON	2455	2550	4455	4550	-000 0000	-000 0000	-uuu uuuu						
SSPBUF	2455	2550	4455	4550	XXXX XXXX	uuuu uuuu	սսսս սսսս						
SSPADD	2455	2550	4455	4550	0000 0000	0000 0000	սսսս սսսս						
SSPSTAT	2455	2550	4455	4550	0000 0000	0000 0000	սսսս սսսս						
SSPCON1	2455	2550	4455	4550	0000 0000	0000 0000	սսսս սսսս						
SSPCON2	2455	2550	4455	4550	0000 0000	0000 0000	սսսս սսսս						
ADRESH	2455	2550	4455	4550	XXXX XXXX	սսսս սսսս	սսսս սսսս						
ADRESL	2455	2550	4455	4550	XXXX XXXX	սսսս սսսս	սսսս սսսս						
ADCON0	2455	2550	4455	4550	00 0000	00 0000	uu uuuu						
ADCON1	2455	2550	4455	4550	00 0qqq	00 0qqq	uu uuuu						
ADCON2	2455	2550	4455	4550	0-00 0000	0-00 0000	u-uu uuuu						

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

2: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).

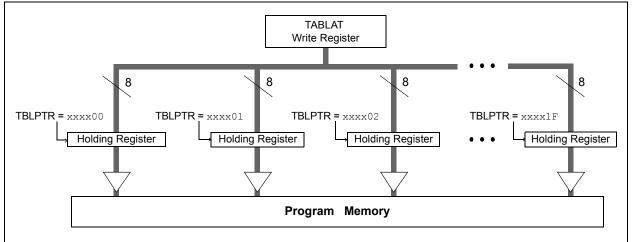
- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- **4:** See Table 4-3 for Reset value for specific condition.

5: PORTA<6>, LATA<6> and TRISA<6> are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

6.5 Writing to Flash Program Memory

The minimum programming block is 16 words or 32 bytes. Word or byte programming is not supported.

Table writes are used internally to load the holding registers needed to program the Flash memory. There are 32 holding registers used by the table writes for programming.


Since the Table Latch (TABLAT) is only a single byte, the TBLWT instruction may need to be executed 32 times for each programming operation. All of the table write operations will essentially be short writes because only the holding registers are written. At the end of updating the 32 holding registers, the EECON1 register must be written to in order to start the programming operation with a long write.

The long write is necessary for programming the internal Flash. Instruction execution is halted while in a long write cycle. The long write will be terminated by the internal programming timer.

The EEPROM on-chip timer controls the write time. The write/erase voltages are generated by an on-chip charge pump, rated to operate over the voltage range of the device.

Note: The default value of the holding registers on device Resets and after write operations is FFh. A write of FFh to a holding register does not modify that byte. This means that individual bytes of program memory may be modified, provided that the change does not attempt to change any bit from a '0' to a '1'. When modifying individual bytes, it is not necessary to load all 32 holding registers before executing a write operation.

6.5.1 FLASH PROGRAM MEMORY WRITE SEQUENCE

The sequence of events for programming an internal program memory location should be:

- 1. Read 64 bytes into RAM.
- 2. Update data values in RAM as necessary.
- 3. Load Table Pointer register with address being erased.
- 4. Execute the Row Erase procedure.
- 5. Load Table Pointer register with address of first byte being written.
- 6. Write 32 bytes into the holding registers with auto-increment.
- Set the EECON1 register for the write operation:
 set EEPGD bit to point to program memory;
 - clear the CFGS bit to access program memory;
 - set WREN to enable byte writes.

- 8. Disable interrupts.
- 9. Write 55h to EECON2.
- 10. Write 0AAh to EECON2.
- 11. Set the WR bit. This will begin the write cycle.
- 12. The CPU will stall for duration of the write (about 2 ms using internal timer).
- 13. Re-enable interrupts.
- 14. Repeat steps 6 through 14 once more to write 64 bytes.
- 15. Verify the memory (table read).

This procedure will require about 8 ms to update one row of 64 bytes of memory. An example of the required code is given in Example 6-3.

Note: Before setting the WR bit, the Table Pointer address needs to be within the intended address range of the 32 bytes in the holding register.

9.0 INTERRUPTS

The PIC18F2455/2550/4455/4550 devices have multiple interrupt sources and an interrupt priority feature that allows each interrupt source to be assigned a high-priority level or a low-priority level. The high-priority interrupt vector is at 000008h and the low-priority interrupt vector is at 000018h. High-priority interrupt events will interrupt any low-priority interrupts that may be in progress.

There are ten registers which are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2
- PIE1, PIE2
- IPR1, IPR2

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register.

Each interrupt source has three bits to control its operation. The functions of these bits are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- Priority bit to select high priority or low priority

The interrupt priority feature is enabled by setting the IPEN bit (RCON<7>). When interrupt priority is enabled, there are two bits which enable interrupts globally. Setting the GIEH bit (INTCON<7>) enables all interrupts that have the priority bit set (high priority). Setting the GIEL bit (INTCON<6>) enables all interrupts that have the priority bit cleared (low priority). When the interrupt flag, enable bit and appropriate global interrupt enable bit are set, the interrupt will vector immediately to address 000008h or 000018h, depending on the priority bit setting. Individual interrupts can be disabled through their corresponding enable bits.

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] mid-range devices. In Compatibility mode, the interrupt priority bits for each source have no effect. INTCON<6> is the PEIE bit which enables/disables all peripheral interrupt sources. INTCON<7> is the GIE bit which enables/disables all interrupt sources. All interrupts branch to address 000008h in Compatibility mode.

When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. If the IPEN bit is cleared, this is the GIE bit. If interrupt priority levels are used, this will be either the GIEH or GIEL bit. High-priority interrupt sources can interrupt a lowpriority interrupt. Low-priority interrupts are not processed while high-priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (000008h or 000018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bits must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used) which re-enables interrupts.

For external interrupt events, such as the INTx pins or the PORTB input change interrupt, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding enable bit or the GIE bit.

Note:	Do not use the MOVFF instruction to modify
	any of the interrupt control registers while
	any interrupt is enabled. Doing so may
	cause erratic microcontroller behavior.

9.1 USB Interrupts

Unlike other peripherals, the USB module is capable of generating a wide range of interrupts for many types of events. These include several types of normal communication and status events and several module level error events.

To handle these events, the USB module is equipped with its own interrupt logic. The logic functions in a manner similar to the microcontroller level interrupt funnel, with each interrupt source having separate flag and enable bits. All events are funneled to a single device level interrupt, USBIF (PIR2<5>). Unlike the device level interrupt logic, the individual USB interrupt events cannot be individually assigned their own priority. This is determined at the device level interrupt funnel for all USB events by the USBIP bit.

For additional details on USB interrupt logic, refer to **Section 17.5 "USB Interrupts"**.

TABLE 10-7:	-7: PORTD I/O SUMMARY							
Pin	Function	TRIS Setting	I/O	I/О Туре	Description			
RD0/SPP0	RD0	0	OUT	DIG	LATD<0> data output.			
		1	IN	ST	PORTD<0> data input.			
	SPP0	1	OUT	DIG	SPP<0> output data; takes priority over port data.			
		1	IN	TTL	SPP<0> input data.			
RD1/SPP1	RD1	0	OUT	DIG	LATD<1> data output.			
		1	IN	ST	PORTD<1> data input.			
	SPP1	1	OUT	DIG	SPP<1> output data; takes priority over port data.			
		1	IN	TTL	SPP<1> input data.			
RD2/SPP2	RD2	0	OUT	DIG	LATD<2> data output.			
		1	IN	ST	PORTD<2> data input.			
	SPP2	1	OUT	DIG	SPP<2> output data; takes priority over port data.			
		1	IN	TTL	SPP<2> input data.			
RD3/SPP3	RD3	0	OUT	DIG	LATD<3> data output.			
		1	IN	ST	PORTD<3> data input.			
	SPP3	1	OUT	DIG	SPP<3> output data; takes priority over port data.			
		1	IN	TTL	SPP<3> input data.			
RD4/SPP4	RD4	0	OUT	DIG	LATD<4> data output.			
		1	IN	ST	PORTD<4> data input.			
	SPP4	1	OUT	DIG	SPP<4> output data; takes priority over port data.			
		1	IN	TTL	SPP<4> input data.			
RD5/SPP5/P1B	RD5	0	OUT	DIG	LATD<5> data output			
		1	IN	ST	PORTD<5> data input			
	SPP5	1	OUT	DIG	SPP<5> output data; takes priority over port data.			
		1	IN	TTL	SPP<5> input data.			
	P1B	0	OUT	DIG	ECCP1 Enhanced PWM output, Channel B; takes priority over port and SPP data. ⁽¹⁾			
RD6/SPP6/P1C	RD6	0	OUT	DIG	LATD<6> data output.			
		1	IN	ST	PORTD<6> data input.			
	SPP6	1	OUT	DIG	SPP<6> output data; takes priority over port data.			
		1	IN	TTL	SPP<6> input data.			
	P1C	0	OUT	DIG	ECCP1 Enhanced PWM output, Channel C; takes priority over port and SPP data. ⁽¹⁾			
RD7/SPP7/P1D	RD7	0	OUT	DIG	LATD<7> data output.			
		1	IN	ST	PORTD<7> data input.			
	SPP7	1	OUT	DIG	SPP<7> output data; takes priority over port data.			
		1	IN	TTL	SPP<7> input data.			
	P1D	0	OUT	DIG	ECCP1 Enhanced PWM output, Channel D; takes priority over port and SPP data. ⁽¹⁾			

TABLE 10-7: PORTD I/O SUMMARY

Legend: OUT = Output, IN = Input, DIG = Digital Output, ST = Schmitt Buffer Input, TTL = TTL Buffer Input

Note 1: May be configured for tri-state during Enhanced PWM shutdown events.

TABLE 10-8 :	SUMMARY OF REGISTERS ASSOCIATED WITH PORTD
---------------------	--

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTD ⁽³⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	56
LATD ⁽³⁾	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	56
TRISD ⁽³⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	56
PORTE	RDPU ⁽³⁾	_	_	_	RE3 ^(1,2)	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	56
CCP1CON	P1M1 ⁽³⁾	P1M0 ⁽³⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	55
SPPCON ⁽³⁾	_	—	—	—	—	—	SPPOWN	SPPEN	57

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTD.

Note 1: Implemented only when Master Clear functionality is disabled (MCLRE Configuration bit = 0).

2: RE3 is the only PORTE bit implemented on both 28-pin and 40/44-pin devices. All other bits are implemented only when PORTE is implemented (i.e., 40/44-pin devices).

3: These registers and/or bits are unimplemented on 28-pin devices.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF	53
RCON	IPEN	SBOREN ⁽¹⁾	_	RI	TO	PD	POR	BOR	54
PIR1	SPPIF ⁽²⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	56
PIE1	SPPIE ⁽²⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	56
IPR1	SPPIP ⁽²⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	56
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	56
TRISC	TRISC7	TRISC6	_	_	_	TRISC2	TRISC1	TRISC0	56
TMR2	Timer2 Reg	jister							54
PR2	Timer2 Peri	iod Register							54
T2CON	—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0	54
CCPR1L	Capture/Co	mpare/PWM	Register 1 L	ow Byte					55
CCPR1H	Capture/Co	mpare/PWM	Register 1 H	ligh Byte					55
CCP1CON	P1M1 ⁽²⁾	P1M0 ⁽²⁾	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	55
CCPR2L	Capture/Co	mpare/PWM	Register 2 l	ow Byte					55
CCPR2H	Capture/Co	mpare/PWM	Register 2 H	High Byte					55
CCP2CON	—	_	DC2B1	DC2B0	CCP2M3	CCP2M2	CCP2M1	CCP2M0	55
ECCP1AS	ECCPASE	ECCPAS2	ECCPAS1	ECCPAS0	PSSAC1	PSSAC0	PSSBD1 ⁽²⁾	PSSBD0 ⁽²⁾	55
ECCP1DEL	PRSEN	PDC6 ⁽²⁾	PDC5 ⁽²⁾	PDC4 ⁽²⁾	PDC3 ⁽²⁾	PDC2 ⁽²⁾	PDC1 ⁽²⁾	PDC0 ⁽²⁾	55

TABLE 15-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PWM or Timer2.

Note 1: The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as '0'.

2: These bits are unimplemented on 28-pin devices; always maintain these bits clear.

19.3.6 SLAVE MODE

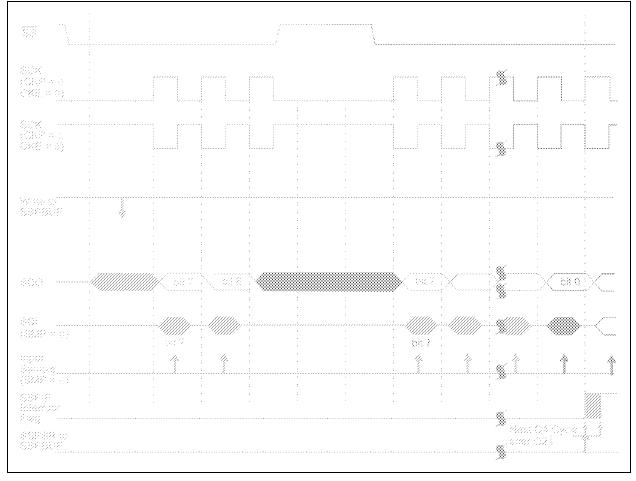
In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched, the SSPIF interrupt flag bit is set.

While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in Sleep mode, the slave can transmit/receive data. When a byte is received, the device can be configured to wake-up from Sleep.

19.3.7 SLAVE SELECT SYNCHRONIZATION

The \overline{SS} pin allows a Synchronous Slave mode. The SPI must be in Slave mode with the \overline{SS} pin control enabled (SSPCON1<3:0> = 04h). When the \overline{SS} pin is low, transmission and reception are enabled and the SDO pin is driven. When the \overline{SS} pin goes high, the SDO pin is no longer driven, even if in the middle of a


transmitted byte and becomes a floating output. External pull-up/pull-down resistors may be desirable depending on the application.

Note 1:	When	the SF	Pl mod	ule is in Sl	ave mode
	with	SS	pin	control	enabled
	(SSPC	ON1<3	3:0> = C	100), the S	PI module
	will res	et if the	e <u>SS</u> pii	n is set to V	DD.

2: If the SPI is used in Slave mode with CKE set, then the SS pin control must be enabled.

When the SPI module resets, the bit counter is forced to '0'. This can be done by either forcing the \overline{SS} pin to a high level or clearing the SSPEN bit.

To emulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured as an input. This disables transmissions from the SDO. The SDI can always be left as an input (SDI function) since it cannot create a bus conflict.

FIGURE 19-4: SLAVE SYNCHRONIZATION WAVEFORM

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾
bit 7			·				bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 7	GCEN: Gene	ral Call Enable	bit (Slave mo	de only)			
	Unused in Ma	aster mode.					
bit 6	ACKSTAT: A	cknowledge Sta	atus bit (Maste	er Transmit mo	de only)		
		dge was not re dge was receiv					
bit 5		nowledge Data			nly) ⁽¹⁾		
	1 = Not Ackn	owledge	,				
L:1 4	0 = Acknowle	age nowledge Sequ	ianaa Frahla	L:4(2)			
bit 4		•			s and transmit	ACKDT data bit.	Automatical
	cleared b	by hardware. edge sequence					
bit 3		ve Enable bit (e mode only)	2)		
bit 5		Receive mode		e mode only).			
	0 = Receive I						
bit 2	PEN: Stop Co	ondition Enable	e bit ⁽²⁾				
	1 = Initiate St 0 = Stop cond	op condition or lition Idle	SDA and SC	L pins. Automa	atically cleared	by hardware.	
bit 1	RSEN: Repea	ated Start Cond	dition Enable b	_{oit} (2)			
		epeated Start o d Start conditio		DA and SCL p	ins. Automatica	ally cleared by h	ardware.
bit 0	SEN: Start Co	ondition Enable	/Stretch Enab	le bit ⁽²⁾			
		art condition or			atically cleared	by hardware.	
Note 1: V	alue that will be t	ransmitted whe	en the user init	iates an Ackno	wledge seque	nce at the end c	of a receive.

REGISTER 19-5: SSPCON2: MSSP CONTROL REGISTER 2 (I²C[™] MASTER MODE)

- **Note 1:** Value that will be transmitted when the user initiates an Acknowledge sequence at the end of a receive.
 - 2: If the I²C module is active, these bits may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

19.4.14 SLEEP OPERATION

While in Sleep mode, the I^2C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

19.4.15 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

19.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLIF bit.

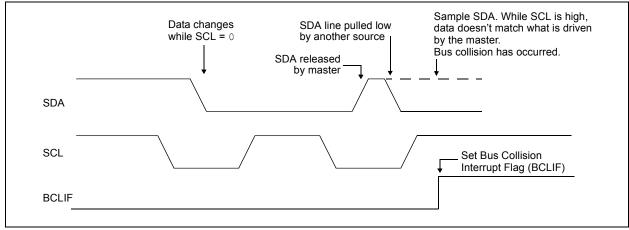
The states where arbitration can be lost are:

- · Address Transfer
- · Data Transfer
- · A Start Condition
- · A Repeated Start Condition
- An Acknowledge Condition

19.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF, and reset the I^2C port to its Idle state (Figure 19-27).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine, and if the I²C bus is free, the user can resume communication by asserting a Start condition.


If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine, and if the l^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF bit will start the transmission of data at the first data bit regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

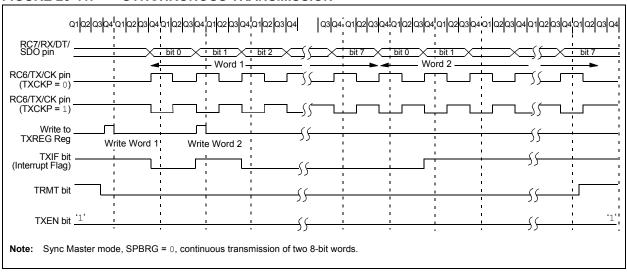
FIGURE 19-27: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

20.3 EUSART Synchronous Master Mode

The Synchronous Master mode is entered by setting the CSRC bit (TXSTA<7>). In this mode, the data is transmitted in a half-duplex manner (i.e., transmission and reception do not occur at the same time). When transmitting data, the reception is inhibited and vice versa. Synchronous mode is entered by setting bit, SYNC (TXSTA<4>). In addition, enable bit, SPEN (RCSTA<7>), is set in order to configure the TX and RX pins to CK (clock) and DT (data) lines, respectively.

The Master mode indicates that the processor transmits the master clock on the CK line.

Clock polarity (CK) is selected with the TXCKP bit (BAUDCON<4>). Setting TXCKP sets the Idle state on CK as high, while clearing the bit sets the Idle state as low. Data polarity (DT) is selected with the RXDTP bit (BAUDCON<5>). Setting RXDTP sets the Idle state on DT as high, while clearing the bit sets the Idle state as low. DT is sampled when CK returns to its idle state. This option is provided to support Microwire devices with this module.


20.3.1 EUSART SYNCHRONOUS MASTER TRANSMISSION

The EUSART transmitter block diagram is shown in Figure 20-3. The heart of the transmitter is the Transmit (Serial) Shift Register (TSR). The Shift register obtains its data from the Read/Write Transmit Buffer register, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG is empty and the TXIF flag bit (PIR1<4>) is set. The interrupt can be enabled or disabled by setting or clearing the interrupt enable bit, TXIE (PIE1<4>). TXIF is set regardless of the state of enable bit, TXIE; it cannot be cleared in software. It will reset only when new data is loaded into the TXREG register.

While flag bit, TXIF, indicates the status of the TXREG register, another bit, TRMT (TXSTA<1>), shows the status of the TSR register. TRMT is a read-only bit which is set when the TSR is empty. No interrupt logic is tied to this bit so the user has to poll this bit in order to determine if the TSR register is empty. The TSR is not mapped in data memory so it is not available to the user.

To set up a Synchronous Master Transmission:

- 1. Initialize the SPBRGH:SPBRG registers for the appropriate baud rate. Set or clear the BRG16 bit, as required, to achieve the desired baud rate.
- 2. Enable the synchronous master serial port by setting bits, SYNC, SPEN and CSRC.
- 3. If interrupts are desired, set enable bit, TXIE.
- 4. If 9-bit transmission is desired, set bit, TX9.
- 5. Enable the transmission by setting bit, TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit, TX9D.
- 7. Start transmission by loading data to the TXREG register.
- If using interrupts, ensure that the GIE and PEIE bits in the INTCON register (INTCON<7:6>) are set.

FIGURE 20-11: SYNCHRONOUS TRANSMISSION

REGISTER 25-1: CONFIG1L: CONFIGURATION REGISTER 1 LOW (BYTE ADDRESS 300000h)

					· ·		,		
U-0	U-0	R/P-0	R/P-0	R/P-0	R/P-0	R/P-0	R/P-0		
_		USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0		
bit 7							bit C		
Legend:									
R = Readabl		P = Programr	nable bit	-	nented bit, read				
-n = Value w	hen device is unp	programmed		u = Unchange	ed from progran	nmed state			
bit 7-6	-	ted: Read as '							
bit 5				•	SB mode only; I	JCFG:FSEN =	1)		
				MHz PLL divide			_		
h:+ 4 0			-		scillator block w	ith no posiscal	5		
bit 4-3				caler Selection	DIIS				
	For XT, HS, EC and ECIO Oscillator modes: 11 = Primary oscillator divided by 4 to derive system clock								
				ive system cloc					
				ive system cloc					
	00 = Primary	oscillator used	directly for sy	stem clock (no	postscaler)				
				scillator modes	<u>s:</u>				
		PLL divided by							
		PLL divided by PLL divided by							
		PLL divided by							
bit 2-0		.DIV0: PLL Pre	•						
	111 = Divide I	111 = Divide by 12 (48 MHz oscillator input)							
		by 10 (40 MHz							
		by 6 (24 MHz o							
		by 5 (20 MHz o							
		by 4 (16 MHz o by 3 (12 MHz o							
				.)					
		by 2 (8 MHz os	•	:)					

BRA	BRA Unconditional Branch						
Synta	ax:	BRA n					
$\label{eq:operands} Operands: -1024 \leq n \leq 1023$							
Operation: $(PC) + 2 + 2n \rightarrow PC$							
Statu	s Affected:	None					
Enco	ding:	1101	0nnn	nnnr	n nnnn		
Description: Add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a two-cycle instruction.							
Word	s:	1	1				
Cycle	es:	2	2				
QC	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read literal 'n'	Proces Data		Write to PC		
	No	No	No		No		
	operation	operation	operati	on	operation		
<u>Exan</u>	<u>nple:</u>	HERE	BRA J	Jump			
	Before Instruc PC After Instructio	= ad	dress (H	IERE)			
	PC	= ad	dress (J	ſump)			

BSF	Bit Set f						
Syntax:	BSF f, b {	,a}					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$						
Operation:	$1 \rightarrow f \le b >$						
Status Affected:	None						
Encoding:	1000	bbba	ffff	ffff			
Description:	If 'a' is '0', ti If 'a' is '1', ti GPR bank of If 'a' is '0' a set is enabl in Indexed of mode when Section 26 Bit-Oriente	Bit 'b' in register 'f' is set. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Proce Data		Write gister 'f'			
Example:							
Before Instruction FLAG_REG = 0Ah After Instruction FLAG_REG = 8Ah							

NEGF	Negate f							
Syntax:	NEGF f	{,a}						
Operands:	$0 \le f \le 255$ $a \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ a \in [0,1] \end{array}$						
Operation:	$(\overline{f}) + 1 \rightarrow f$							
Status Affected:	N, OV, C, I	DC, Z						
Encoding:	0110 110a ffff ffff							
Description:	Location 'f' is negated using two's complement. The result is placed in the data memory location 'f'. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.							
Words:	1							
Cycles:	1							

NOP		No Operation					
Synta	ax:	NOP					
Oper	ands:	None					
Oper	Dperation: No operation						
Status Affected: None							
Encoding:		0000 1111	0000 xxxx	000 xxx	-	0000 xxxx	
Desc	ription:	No operation.					
Word	ls:	1					
Cycle	es:	1					
QC	ycle Activity:						
Q1		Q2	Q	3	Q4		
			No operat		No operation		

Example:

None.

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write
	register 'f'	Data	register 'f'

Example:

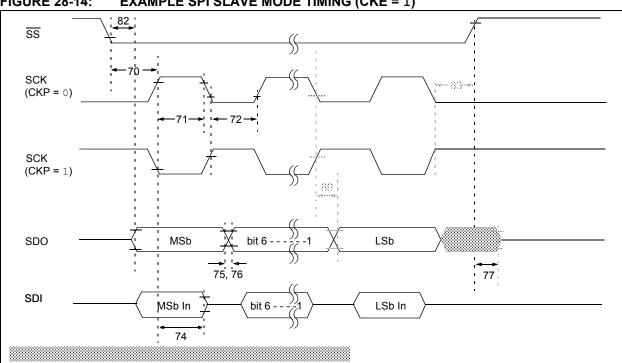
NEGF REG, 1

Before Instruction REG = 0011 1010 [3Ah] After Instruction = 1100 0110 [C6h] REG

© 2009 Microchip Technology Inc.

TBL	RD	Table Read					
Synta	ax:	TBLRD (*; *-	+; *-; +	-*)			
Oper	ands:	None					
	ation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT, TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT, (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT, (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR, (Prog Mem (TBLPTR)) \rightarrow TABLAT					
Statu	s Affected:	None					
Enco	ding:	0000	000	00	nn= = =)nn =0 * =1 *+ =2 *- =3 +*	
Description: This instruction is used to read the contents of Program Memory (P.M.). To address the program memory, a pointer called Table Pointer (TBLPTR) is used. The TBLPTR (a 21-bit pointer) points to each byte in the program memory. TBLPTR has a 2-Mbyte address range. TBLPTR[0] = 0: Least Significant Byte of Program Memory Word TBLPTR[0] = 1: Most Significant Byte of Program Memory Word The TBLRD instruction can modify the value of TBLPTR as follows: • no change • post-increment • post-decrement						s the le _DTR _DTR t Byte mory t Byte mory	
		pre-increment					
Word Cycle		1 2					
QU	ycle Activity Q1	Q2		Q3	Q4		
	Decode	No		No	No		
	DCCOUC	operation	o	peration	operati	on	
	No operation	No operation (Read Progra Memory)	1	No peration	No opera (Write TABLA	ation e	

TBLRD	Table Read	(Con	tinued)
Example 1:	TBLRD *+	;	
Before Instruction TABLAT TBLPTR MEMORY After Instruction	(00A356h)	= = =	55h 00A356h 34h
TABLAT TBLPTR		= =	34h 00A357h
Example 2:	TBLRD +*	;	
Before Instructio TABLAT TBLPTR MEMORY MEMORY After Instruction	(01A357h) (01A358h)	= = =	AAh 01A357h 12h 34h
TABLAT TBLPTR		= =	34h 01A358h


28.3 DC Characteristics: PIC18F2455/2550/4455/4550 (Industrial) PIC18LF2455/2550/4455/4550 (Industrial)

DC CHA	RACTER	RISTICS	Standard Operating Conditions (unless otherwise stated Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial			
Param No.	Symbol	Characteristic	Min	Мах	Units	Conditions
	VIL	Input Low Voltage				
		I/O Ports (except RC4/RC5 in USB mode):				
D030		with TTL Buffer	Vss	0.15 Vdd	V	VDD < 4.5V
D030A			—	0.8	V	$4.5V \leq V\text{DD} \leq 5.5V$
D031		with Schmitt Trigger Buffer RB0 and RB1	Vss Vss	0.2 Vdd 0.3 Vdd	V V	When in I ² C™ mode
D032		MCLR	Vss	0.2 Vdd	V	
D032A		OSC1 and T1OSI	Vss	0.3 Vdd	V	XT, HS, HSPLL modes ⁽¹⁾
D033		OSC1	Vss	0.2 Vdd	V	EC mode ⁽¹⁾
	VIH	Input High Voltage				
		I/O Ports (except RC4/RC5 in USB mode):				
D040		with TTL Buffer	0.25 VDD + 0.8V	Vdd	V	VDD < 4.5V
D040A			2.0	Vdd	V	$4.5V \leq V\text{DD} \leq 5.5V$
D041		with Schmitt Trigger Buffer RB0 and RB1	0.8 Vdd 0.7 Vdd	Vdd Vdd	V V	When in I ² C mode
D042		MCLR	0.8 VDD	Vdd	V	
D042A		OSC1 and T1OSI	0.7 Vdd	Vdd	V	XT, HS, HSPLL modes ⁽¹⁾
D043		OSC1	0.8 Vdd	Vdd	V	EC mode ⁽¹⁾
	lı∟	Input Leakage Current ⁽²⁾				
D060		I/O Ports, except D+ and D-	_	±200	nA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &P{\sf in \ at \ high-impedance} \end{split}$
D061		MCLR	_	±1	μA	$Vss \le VPIN \le VDD$
D063		OSC1	—	±1	μA	$Vss \leq V PIN \leq V DD$
	IPU	Weak Pull-up Current				
D070	IPURB	PORTB Weak Pull-up Current	50	400	μA	VDD = 5V, VPIN = VSS
D071	IPURD	PORTD Weak Pull-up Current	50	400	μA	VDD = 5V, VPIN = VSS

Note 1: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

2: Negative current is defined as current sourced by the pin.

3: Parameter is characterized but not tested.

FIGURE 28-14: EXAMPLE SPI SLAVE MODE TIMING (CKE = 1)

TABLE 28-18: EXAMPLE SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param No.	Symbol	Characteristic	Characteristic		Max	Units	Conditions
70	TssL2scH, TssL2scL	$\overline{\mathrm{SS}}\downarrow$ to SCK \downarrow or SCK \uparrow Input	or SCK ↑ Input		1	ns	
71	TscH	SCK Input High Time	Continuous	1.25 Tcy + 30		ns	
71A		(Slave mode)	Single Byte	40		ns	(Note 1)
72	TscL	SCK Input Low Time	Continuous	1.25 Tcy + 30		ns	
72A		(Slave mode)	Single Byte	40		ns	(Note 1)
73A	Tb2b	Last Clock Edge of Byte 1 to the First	Clock Edge of Byte 2	1.5 Tcy + 40	_	ns	(Note 2)
74	TscH2diL, TscL2diL	Hold Time of SDI Data Input to SCK Edge		35	_	ns	
75	TdoR	SDO Data Output Rise Time	PIC18FXXXX	—	25	ns	
			PIC18LFXXXX	—	45	ns	VDD = 2.0V
76	TdoF	SDO Data Output Fall Time		—	25	ns	
77	TssH2doZ	SS ↑ to SDO Output High-Impedan	се	10	50	ns	
78	TscR	SCK Output Rise Time	PIC18FXXXX		25	ns	
		(Master mode)	PIC18LFXXXX	_	45	ns	VDD = 2.0V
79	TscF	SCK Output Fall Time (Master mod	e)		25	ns	
80	TscH2doV,	SDO Data Output Valid after SCK	PIC18FXXXX	—	50	ns	
	TscL2doV	Edge	PIC18LFXXXX	_	100	ns	VDD = 2.0V
82	TssL2doV	SDO Data Output Valid after $\overline{\mathrm{SS}}\downarrow$	PIC18FXXXX	—	50	ns	
		Edge	PIC18LFXXXX		100	ns	VDD = 2.0V
83	TscH2ssH, TscL2ssH	SS ↑ after SCK Edge	·	1.5 Tcy + 40	_	ns	

Note 1: Requires the use of Parameter 73A.

2: Only if Parameter 71A and 72A are used.