

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	24
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf2455-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Din Nama	Pin Number			Pin Buffer	Description	
Pin Name	PDIP	QFN	TQFP	Туре	Туре	Description
						PORTD is a bidirectional I/O port or a Streaming Parallel Port (SPP). These pins have TTL input buffers when the SPP module is enabled.
RD0/SPP0 RD0 SPP0	19	38	38	I/O I/O	ST TTL	Digital I/O. Streaming Parallel Port data.
RD1/SPP1 RD1 SPP1	20	39	39	I/O I/O	ST TTL	Digital I/O. Streaming Parallel Port data.
RD2/SPP2 RD2 SPP2	21	40	40	I/O I/O	ST TTL	Digital I/O. Streaming Parallel Port data.
RD3/SPP3 RD3 SPP3	22	41	41	I/O I/O	ST TTL	Digital I/O. Streaming Parallel Port data.
RD4/SPP4 RD4 SPP4	27	2	2	I/O I/O	ST TTL	Digital I/O. Streaming Parallel Port data.
RD5/SPP5/P1B RD5 SPP5 P1B	28	3	3	I/O I/O O	ST TTL	Digital I/O. Streaming Parallel Port data. Enhanced CCP1 PWM output, channel B.
RD6/SPP6/P1C RD6 SPP6 P1C	29	4	4	I/O I/O O	ST TTL	Digital I/O. Streaming Parallel Port data. Enhanced CCP1 PWM output, channel C.
RD7/SPP7/P1D RD7 SPP7 P1D	30	5	5	I/O I/O O	ST TTL	Digital I/O. Streaming Parallel Port data. Enhanced CCP1 PWM output, channel D.

TABLE 1-3: PIC18F4455/4550 PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Alternate assignment for CCP2 when CCP2MX Configuration bit is cleared.

= Output

0

2: Default assignment for CCP2 when CCP2MX Configuration bit is set.

3: These pins are No Connect unless the ICPRT Configuration bit is set. For NC/ICPORTS, the pin is No Connect unless ICPRT is set and the DEBUG Configuration bit is cleared.

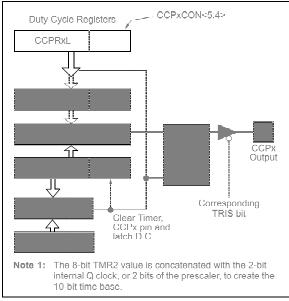
Р

= Power

NOTES:

NOTES:

15.4 PWM Mode


In Pulse-Width Modulation (PWM) mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP2 pin is multiplexed with a PORTB or PORTC data latch, the appropriate TRIS bit must be cleared to make the CCP2 pin an output.

Note:	Clearing the CCP2CON register will force the RB3 or RC1 output latch (depending on device configuration) to the default low
	level. This is not the PORTB or PORTC I/O data latch.

Figure 15-3 shows a simplified block diagram of the CCP module in PWM mode.

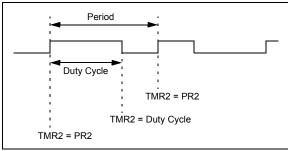
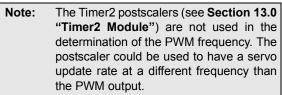

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 15.4.4** "Setup for PWM Operation".

FIGURE 15-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 15-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

15.4.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:


EQUATION 15-1:

 $PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 Prescale Value)$

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCPx pin is set (exception: if PWM duty cycle = 0%, the CCPx pin will not be set)
- The PWM duty cycle is latched from CCPRxL into CCPRxH

15.4.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPRxL register and to the CCPxCON<5:4> bits. Up to 10-bit resolution is available. The CCPRxL contains the eight MSbs and the CCPxCON<5:4> bits contain the two LSbs. This 10-bit value is represented by CCPRxL:CCPxCON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

EQUATION 15-2:

```
PWM Duty Cycle = (CCPRxL:CCPxCON<5:4>) •
Tosc • (TMR2 Prescale Value)
```

CCPRxL and CCPxCON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPRxH until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPRxH is a read-only register.

16.4.6 PROGRAMMABLE DEAD-BAND DELAY

Note:	Programmable	de	ad-band	delay	is	not
	implemented	in	28-pin	devices	5	with
	standard CCP	moc	lules.			

In half-bridge applications where all power switches are modulated at the PWM frequency at all times, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (*shoot-through current*) may flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In the Half-Bridge Output mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 16-4 for illustration. Bits PDC6:PDC0 of the ECCP1DEL register (Register 16-2) set the delay period in terms of microcontroller instruction cycles (TCY or 4 TOSC). These bits are not available on 28-pin devices, as the standard CCP module does not support half-bridge operation.

16.4.7 ENHANCED PWM AUTO-SHUTDOWN

When ECCP is programmed for any of the Enhanced PWM modes, the active output pins may be configured for auto-shutdown. Auto-shutdown immediately places the Enhanced PWM output pins into a defined shutdown state when a shutdown event occurs.

A shutdown event can be caused by either of the comparator modules, a low level on the RB0/AN12/INT0/FLT0/SDI/SDA pin, or any combination of these three sources. The comparators may be used to monitor a voltage input proportional to a current being monitored in the bridge circuit. If the voltage exceeds a threshold, the comparator switches state and triggers a shutdown. Alternatively, a digital signal on the INT0 pin can also trigger a shutdown. The auto-shutdown feature can be disabled by not selecting any auto-shutdown sources. The auto-shutdown sources to be used are selected using the ECCPAS2:ECCPAS0 bits (bits<6:4> of the ECCP1AS register).

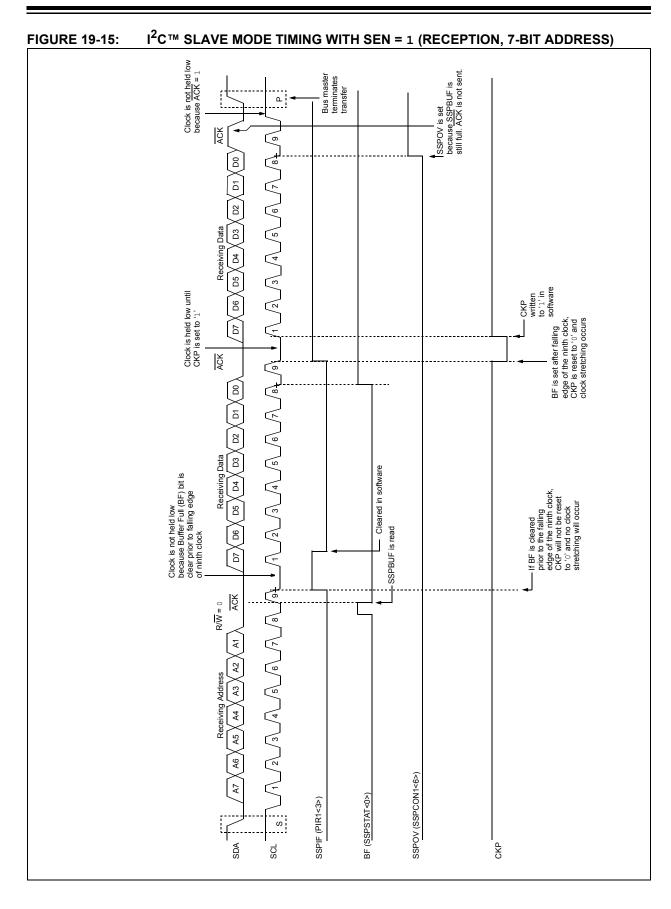
When a shutdown occurs, the output pins are asynchronously placed in their shutdown states, specified by the PSSAC1:PSSAC0 and PSSBD1:PSSBD0 bits (ECCP1AS3:ECCP1AS0). Each pin pair (P1A/P1C and P1B/P1D) may be set to drive high, drive low or be tri-stated (not driving). The ECCPASE bit (ECCP1AS<7>) is also set to hold the Enhanced PWM outputs in their shutdown states.

The ECCPASE bit is set by hardware when a shutdown event occurs. If automatic restarts are not enabled, the ECCPASE bit is cleared by firmware when the cause of the shutdown clears. If automatic restarts are enabled, the ECCPASE bit is automatically cleared when the cause of the auto-shutdown has cleared.

If the ECCPASE bit is set when a PWM period begins, the PWM outputs remain in their shutdown state for that entire PWM period. When the ECCPASE bit is cleared, the PWM outputs will return to normal operation at the beginning of the next PWM period.

Note: Writing to the ECCPASE bit is disabled while a shutdown condition is active.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PRSEN	PDC6 ⁽¹⁾	PDC5 ⁽¹⁾	PDC4 ⁽¹⁾	PDC3 ⁽¹⁾	PDC2 ⁽¹⁾	PDC1 ⁽¹⁾	PDC0 ⁽¹⁾	
bit 7							bit (
Legend:								
R = Readable bit W = Writable bit				U = Unimplem	nented bit, read	as '0'		
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
bit 7 bit 6-0	 1 = Upon aut the PWM 0 = Upon aut PDC6:PDC0: 	l restarts autom o-shutdown, E PWM Delay C	e ECCPASE to natically CCPASE mus ount bits ⁽¹⁾	bit clears autom st be cleared in) cycles, betwee	software to res	tart the PWM		


REGISTER 16-2: ECCP1DEL: PWM DEAD-BAND DELAY REGISTER

Note 1: Reserved on 28-pin devices; maintain these bits clear.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
GCEN	ACKSTAT	ADMSK5	ADMSK4	ADMSK3	ADMSK2	ADMSK1	SEN ⁽¹⁾		
bit 7							bit (
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own		
bit 7	1 = Enable int	al Call Enable errupt when a all address dis	general call a	37) is received in	the SSPSR			
bit 6	ACKSTAT: Acknowledge Status bit Unused in Slave mode.								
bit 5-2	1 = Masking o	MSK2: Slave A of correspondir of correspondir	ig bits of SSP	ADD enabled					
bit 1	In 7-Bit Addre	ave Address M <u>ssing mode:</u> of SPADD<1> o of SPADD<1> o	only enabled						
		<u>essing mode:</u> of SSPADD<1:0 of SSPADD<1:0							
bit 0	SEN: Stretch 1 = Clock stre 0 = Clock stre	tching is enab		ave transmit ar	id slave receive	e (stretch enable	ed)		

REGISTER 19-6: SSPCON2: MSSP CONTROL REGISTER 2 (I²C[™] SLAVE MODE)

Note 1: If the I²C module is active, this bit may not be set (no spooling) and the SSPBUF may not be written (or writes to the SSPBUF are disabled).

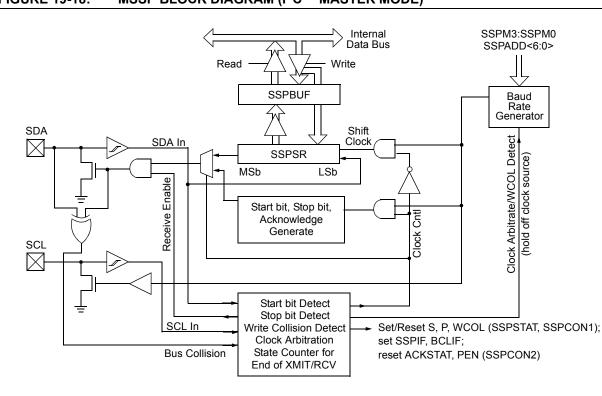
© 2009 Microchip Technology Inc.

19.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware if the TRIS bits are set.

Master mode operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all ${\sf I}^2{\sf C}$ bus operations based on Start and Stop bit conditions.


Once Master mode is enabled, the user has six options:

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I^2C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

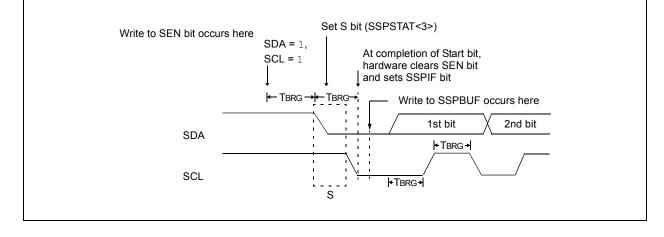
Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPIF, to be set (and MSSP interrupt, if enabled):

- · Start condition
- Stop condition
- · Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

FIGURE 19-18: MSSP BLOCK DIAGRAM (I²C[™] MASTER MODE)

19.4.8 I²C MASTER MODE START CONDITION TIMING


To initiate a Start condition, the user sets the Start Enable bit, SEN (SSPCON2<0>). If the SDA and SCL pins are sampled high, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and starts its count. If SCL and SDA are both sampled high when the Baud Rate Generator times out (TBRG), the SDA pin is driven low. The action of the SDA being driven low while SCL is high is the Start condition and causes the S bit (SSPSTAT<3>) to be set. Following this, the Baud Rate Generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the Baud Rate Generator times out (TBRG), the SEN bit (SSPCON2<0>) will be automatically cleared by hardware, the Baud Rate Generator is suspended, leaving the SDA line held low and the Start condition is complete.

Note: If, at the beginning of the Start condition, the SDA and SCL pins are already sampled low, or if during the Start condition, the SCL line is sampled low before the SDA line is driven low, a bus collision occurs, the Bus Collision Interrupt Flag, BCLIF, is set, the Start condition is aborted and the I²C module is reset into its Idle state.

19.4.8.1 WCOL Status Flag

If the user writes the SSPBUF when a Start sequence is in progress, the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing to the lower five bits of SSPCON2 is disabled until the Start condition is complete.

FIGURE 19-21: FIRST START BIT TIMING

19.4.10 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address, or the other half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time specification parameter 106). SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high (see data setup time specification parameter 107). When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKDT bit on the falling edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSPIF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSPBUF, leaving SCL low and SDA unchanged (Figure 19-23).

After the write to the SSPBUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will deassert the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT status bit (SSPCON2<6>). Following the falling edge of the ninth clock transmission of the address, the SSPIF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSPBUF takes place, holding SCL low and allowing SDA to float.

19.4.10.1 BF Status Flag

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all eight bits are shifted out.

19.4.10.2 WCOL Status Flag

If the user writes the SSPBUF when a transmit is already in progress (i.e., SSPSR is still shifting out a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur) after 2 TcY after the SSPBUF write. If SSPBUF is rewritten within 2 TcY, the WCOL bit is set and SSPBUF is updated. This may result in a corrupted transfer. The user should verify that the WCOL is clear after each write to SSPBUF to ensure the transfer is correct. In all cases, WCOL must be cleared in software.

19.4.10.3 ACKSTAT Status Flag

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$ and is set when the slave does not Acknowledge $(\overline{ACK} = 1)$. A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

19.4.11 I²C MASTER MODE RECEPTION

Master mode reception is enabled by programming the Receive Enable bit, RCEN (SSPCON2<3>).

Note:	The MSSP module must be in an Idle state
	before the RCEN bit is set or the RCEN bit
	will be disregarded.

The Baud Rate Generator begins counting and on each rollover, the state of the SCL pin changes (high-to-low/ low-to-high) and data is shifted into the SSPSR. After the falling edge of the eighth clock, the receive enable flag is automatically cleared, the contents of the SSPSR are loaded into the SSPBUF, the BF flag bit is set, the SSPIF flag bit is set and the Baud Rate Generator is suspended from counting, holding SCL low. The MSSP is now in Idle state awaiting the next command. When the buffer is read by the CPU, the BF flag bit is automatically cleared. The user can then send an Acknowledge bit at the end of reception by setting the Acknowledge Sequence Enable bit, ACKEN (SSPCON2<4>).

19.4.11.1 BF Status Flag

In receive operation, the BF bit is set when an address or data byte is loaded into SSPBUF from SSPSR. It is cleared when the SSPBUF register is read.

19.4.11.2 SSPOV Status Flag

In receive operation, the SSPOV bit is set when eight bits are received into the SSPSR and the BF flag bit is already set from a previous reception.

19.4.11.3 WCOL Status Flag

If the user writes the SSPBUF when a receive is already in progress (i.e., SSPSR is still shifting in a data byte), the WCOL bit is set and the contents of the buffer are unchanged (the write doesn't occur).

25.1 Configuration Bits

The Configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped starting at program memory location 300000h.

The user will note that address 300000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (300000h-3FFFFh), which can only be accessed using table reads and table writes.

Programming the Configuration registers is done in a manner similar to programming the Flash memory. The WR bit in the EECON1 register starts a self-timed write to the Configuration register. In normal operation mode, a TBLWT instruction, with the TBLPTR pointing to the Configuration register, sets up the address and the data for the Configuration register write. Setting the WR bit starts a long write to the Configuration register. The Configuration registers are written a byte at a time. To write or erase a configuration cell, a TBLWT instruction can write a '1' or a '0' into the cell. For additional details on Flash programming, refer to Section 6.5 "Writing to Flash Program Memory".

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Default/ Unprogrammed Value
300000h	CONFIG1L	-	_	USBDIV	CPUDIV1	CPUDIV0	PLLDIV2	PLLDIV1	PLLDIV0	00 0000
300001h	CONFIG1H	IESO	FCMEN	—	_	FOSC3	FOSC2	FOSC1	FOSC0	00 0101
300002h	CONFIG2L	_	_	VREGEN	BORV1	BORV0	BOREN1	BOREN0	PWRTEN	01 1111
300003h	CONFIG2H	_	_	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN	1 1111
300005h	CONFIG3H	MCLRE	_	_	_	_	LPT1OSC	PBADEN	CCP2MX	1011
300006h	CONFIG4L	DEBUG	XINST	ICPRT ⁽³⁾	_	_	LVP		STVREN	1001-1
300008h	CONFIG5L	_		_		CP3 ⁽¹⁾	CP2	CP1	CP0	1111
300009h	CONFIG5H	CPD	CPB	_	_	_	—	_	_	11
30000Ah	CONFIG6L	—	_	—	_	WRT3 ⁽¹⁾	WRT2	WRT1	WRT0	1111
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	_	_	—		_	111
30000Ch	CONFIG7L	—	_	—	_	EBTR3 ⁽¹⁾	EBTR2	EBTR1	EBTR0	1111
30000Dh	CONFIG7H	_	EBTRB	—	_	—	—	_	_	-1
3FFFFEh	DEVID1	DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0	×××× ×××××(2)
3FFFFFh	DEVID2	DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3	0001 0010(2)

TABLE 25-1: CONFIGURATION BITS AND DEVICE IDs

Legend: x = unknown, u = unchanged, - = unimplemented. Shaded cells are unimplemented, read as '0'.

Note 1: Unimplemented in PIC18FX455 devices; maintain this bit set.

2: See Register 25-13 and Register 25-14 for DEVID values. DEVID registers are read-only and cannot be programmed by the user.

3: Available only on PIC18F4455/4550 devices in 44-pin TQFP packages. Always leave this bit clear in all other devices.

REGISTER 25-2: CONFIG1H: CONFIGURATION REGISTER 1 HIGH (BYTE ADDRESS 300001h)

R/P-0	R/P-0	U-0	U-0	R/P-0	R/P-1	R/P-0	R/P-1			
IESO	FCMEN			FOSC3 ⁽¹⁾	FOSC2 ⁽¹⁾	FOSC1 ⁽¹⁾	FOSC0 ⁽¹⁾			
bit 7	·						bit			
Legend:										
R = Readable	e bit	P = Programn	nable bit	U = Unimplen	nented bit, read	as '0'				
-n = Value wl	nen device is un	orogrammed		u = Unchange	ed from progran	nmed state				
bit 7	IESO: Interna	al/External Osci	llator Switcho	over bit						
		Switchover mo								
		Switchover mo								
bit 6	FCMEN: Fail-Safe Clock Monitor Enable bit									
	1 = Fail-Safe Clock Monitor enabled 0 = Fail-Safe Clock Monitor disabled									
bit 5-4	•	ted: Read as '		1)						
bit 3-0		C0: Oscillator S								
	111x = HS o 110x = HS o	scillator, PLL er	habled (HSPL	_L)						
		• •	S oscillator us	sed by USB (IN	THS)					
	1011 = Internal oscillator, HS oscillator used by USB (INTHS) 1010 = Internal oscillator, XT used by USB (INTXT)									
	1001 = Internal oscillator, CLKO function on RA6, EC used by USB (INTCKO)									
		· •			by USB (INTIC	D)				
		scillator, PLL er			· · · ·					
		scillator, PLL er scillator, CLKO			(ECPIO)					
		scillator, port fu								
	001x = XT os									
				L)						

Note 1: The microcontroller and USB module both use the selected oscillator as their clock source in XT, HS and EC modes. The USB module uses the indicated XT, HS or EC oscillator as its clock source whenever the microcontroller uses the internal oscillator.

REGISTER 25-3: CONFIG2L: CONFIGURATION REGISTER 2 LOW (BYTE ADDRESS 300002h)

U-0	U-0	R/P-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1				
_	_	VREGEN	BORV1 ⁽¹⁾	BORV0 ⁽¹⁾	BOREN1 ⁽²⁾	BOREN0 ⁽²⁾	PWRTEN ⁽²⁾				
bit 7	ŀ		•			•	bit 0				
Legend:											
R = Readab	le bit	P = Program	nable bit	U = Unimpler	nented bit, read	l as '0'					
-n = Value w	hen device is un	orogrammed		u = Unchang	ed from progran	nmed state					
bit 7-6	Unimplemen	ted: Read as '	0'								
bit 5	VREGEN: US	B Internal Volt	age Regulato	r Enable bit							
		age regulator e									
		age regulator d									
bit 4-3	BORV1:BOR	V0: Brown-out	Reset Voltage	e bits ⁽¹⁾							
	11 = Minimun	n setting									
	•										
	•										
	00 = Maximu	m setting									
bit 2-1	BOREN1:BO	REN0: Brown-	out Reset Ena	able bits ⁽²⁾							
	11 = Brown-c	out Reset enab	led in hardwai	re only (SBOR	EN is disabled)						
		10 = Brown-out Reset enabled in hardware only and disabled in Sleep mode (SBOREN is disabled)									
		 01 = Brown-out Reset enabled and controlled by software (SBOREN is enabled) 00 = Brown-out Reset disabled in hardware and software 									
bit 0		ower-up Timer		Te and soltwar	e						
	1 = PWRT dis	•									
	1 = PWRT dis 0 = PWRT en										
Note 1: S	ee Section 28.0	"Electrical Ch	aracteristics	" for the specif	ications.						

2: The Power-up Timer is decoupled from Brown-out Reset, allowing these features to be independently controlled.

REGISTER 25-11: CONFIG7L: CONFIGURATION REGISTER 7 LOW (BYTE ADDRESS 30000Ch)

U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
_	—	—	_	EBTR3 ⁽¹⁾	EBTR2	EBTR1	EBTR0
bit 7							bit 0
Legend:							
R = Reada	able bit	C = Clearable	e bit	U = Unimpler	nented bit, read	as '0'	
-n = Value	when device is unp	programmed		u = Unchang	ed from progran	nmed state	
bit 7-4	Unimplement	ted: Read as '	0'				
bit 3	EBTR3: Table	e Read Protect	ion bit ⁽¹⁾				
					reads executed		
	0 = Block 3 (0	06000-007FFF	h) protected	from table read	is executed in o	ther blocks	
bit 2	EBTR2: Table	Read Protect	ion bit				
					reads executed		
				from table read	is executed in o	ther blocks	
bit 1		Read Protect					
					e reads execute		(S
				d from table re	ads executed ir	other blocks	
bit 0		Read Protect					
	•		· ·		le reads execut		ks
	$\cup - \operatorname{BIOCK} \cup (\mathbf{U})$		rii) is protecte		eads executed in	I OTHER DIOCKS	
Note 1:	Unimplemented in	PIC18FX455 c	levices; maint	ain this bit set.			

REGISTER 25-12: CONFIG7H: CONFIGURATION REGISTER 7 HIGH (BYTE ADDRESS 30000Dh)

U-0	R/C-1	U-0	U-0	U-0	U-0	U-0	U-0
—	EBTRB	—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device is	s unprogrammed	u = Unchanged from programmed state

bit 7 Unimplemented: Read as '0'

bit 6 **EBTRB:** Boot Block Table Read Protection bit

- 1 = Boot block (000000-0007FFh) is not protected from table reads executed in other blocks
- 0 = Boot block (000000-0007FFh) is protected from table reads executed in other blocks
- bit 5-0 Unimplemented: Read as '0'

TABLE 26-2: PIC18FXXXX INSTRUCTION SET

Mnemonic, Operands		Description	Quality	16-Bit Instruction Word				Status	Nataa
		Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIENTED OPERATIONS									
ADDWF	f, d, a	Add WREG and f	1	0010	01da	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and Carry bit to f	1	0010	00da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, Skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, Skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, Skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1 .	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
	U U	f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with Borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
	,, . .	Borrow						-,, -, -, -, -, -, -, -, -, -, -, -,	
SWAPF	f, d, a	Swap Nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, Skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1	0001	10da	ffff	ffff		

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as an input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If the Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

MULLW	Multiply Litera	l with W		MULWF		Multiply V	V with f	
Syntax:	MULLW k			Syntax:		MULWF	f {,a}	
Operands:	$0 \leq k \leq 255$			Operands	s:	$0 \le f \le 25$	5	
Operation:	(W) x k \rightarrow PRO	DH:PRODL				a ∈ [0,1]		
Status Affected:	None	None			Operation:	(W) x (f) \rightarrow PRODH:PRODL		
Encoding:	0000 110)1 kkkk	kkkk	Status Af	fected:	None		
Description:	An unsigned mu	ultiplication is ca	arried	Encoding	J:	0000	001a f	fff fff
out between the contents of W and the 8-bit literal 'k'. The 16-bit result is placed in PRODH:PRODL register pair. PRODH contains the high byte. W is unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this operation. A zero result is possible but not detected.		Descriptio	on:	An unsigned multiplication is carried out between the contents of W and the register file location 'f'. The 16-bit result is stored in the PRODH:PRODI register pair. PRODH contains the high byte. Both W and 'f' are unchanged. None of the Status flags are affected. Note that neither Overflow nor Carry is possible in this operation. A Zero				
Words:	1					•	ossible but no	
Cycles:	1						the Access I	
Q Cycle Activity: Q1	Q2	Q3	Q4				lf 'a' is '1', the he GPR bank	
Decode Example:	Read Pr	rocess W Data reg PR PR	Vrite jisters ODH: RODL			set is ena operates i Addressin f ≤ 95 (5Fl "Byte-Ori Instructio	and the exter bled, this inst n Indexed Lit g mode wher n). See Secti ented and Bi ns in Indexe	ruction eral Offset never on 26.2.3 it-Oriented
Before Instruct	tion					Mode" for	details.	
W PRODH	= E2h = ?			Words:		1		
PRODL	= ?			Cycles:		1		
After Instructio W	n = E2h			Q Cycle	-	00	00	0.4
PRODH	= ADh				Q1 ecode	Q2 Read	Q3 Process	Q4 Write
PRODL	= 08h				ecoue	register 'f'	Data	registers PRODH PRODL
				Example: Befo	ore Instruc	MULWF Ction = C4	REG, 1	

=	C4h
=	B5h
=	?
=	?
=	C4h
=	B5h
=	8Ah
=	94h

SUBLW	s	Subtract W from Literal						
Syntax:	S	SUBLW k						
Operands:	0	$0 \leq k \leq 255$						
Operation:	k	$k-(W)\toW$						
Status Affected:	Ν	I, OV, C,	DC, Z					
Encoding:		0000	1000	kk]	κk	kkkk		
Description			acted from					
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1		Q2	Q3			Q4		
Decode	-	Read eral 'k'	Proce: Data		Wr	ite to W		
Example 1:	S	UBLW	02h					
Before Instruc W C After Instructio W C Z N	=	01h ? 01h 1 ; 0	result is p	ositiv	/e			
Example 2:	S	UBLW	02h					
Before Instruct W C After Instructio W C Z N	=	02h ? 00h 1 ; i 1 0	result is z	ero				
Example 3:	S	UBLW	02h					
Before Instruct W C After Instructio W C Z N	= =	03h ? FFh ; 0 ; 1	(2's com result is r	pleme negati	ent) ive			

SUBWF	Subtrac	Subtract W from f							
Syntax:	SUBWF	SUBWF f {,d {,a}}							
Operands:		$0 \le f \le 255$							
		$d \in [0,1]$							
Onenetien	a ∈ [0,1]								
Operation:	., . ,	$(f) - (W) \rightarrow dest$ N, OV, C, DC, Z							
Status Affected:									
Encoding:	0101	11da ffi							
Description:	complen result is result is (default) If 'a' is '0 selected to select If 'a' is '0 set is en operates Address $f \le 95$ (5 "Byte-O	Subtract W from register 'f' (2's complement method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset							
Words:	1	Ji detalis.							
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	Q4						
Decode	Read	Process	Write to						
	register 'f'	Data	destination						
Example 1:	SUBWF	REG, 1, 0							
Before Instruc REG	tion = 3								
W									
C	= 2								
C After Instructio	= 2 = ?								
After Instruction REG	= 2 = ? on = 1								
After Instruction REG W C	= 2 = ? on = 1 = 2 = 1 ;	result is positive	9						
After Instruction REG	= 2 = ? on = 1 = 2	result is positive	2						
After Instructio REG W C Z	= 2 = ? on = 1 = 2 = 1 ; = 0		3						
After Instructio REG W C Z N <u>Example 2:</u> Before Instruct	= 2 = ? on = 1 = 2 = 1 ; = 0 = 0 SUBWF		2						
After Instructio REG W C Z N <u>Example 2:</u>	= 2 = ? on = 1 = 2 = 1 ; = 0 = 0 SUBWF		9						
After Instruction REG W C Z N Example 2: Before Instruct REG W C	= 2 = ? on = 1 = 2 = 1 ; = 0 = 0 SUBWF tion = 2 = ?		3						
After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio	= 2 = ? on = 1 = 2 = 1; = 0 = 0 SUBWF subwr subwr = 2 = 2 = ?		3						
After Instructio REG W C Z N <u>Example 2:</u> Before Instruct REG W C After Instructio REG W	= 2 = ? on = 1 = 2 = 1; = 0 = 0 SUBWF tition = 2 = ? on = 2 = 0	REG, 0, 0	2						
After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C Z	= 2 = ? on = 1 = 2 = 1; = 0 = 0 SUBWF tition = 2 = ? on = 2 = 0		3						
After Instructio REG W C Z N <u>Example 2:</u> Before Instruct REG W C After Instructio REG W C After Instructio REG W C Z N	= 2 = ? on = 1 = 2 = 1 ; = 0 = 0 SUBWF tion = 2 = ? on = 2 = 0 = 0 ; = 1 ;	REG, 0, 0	3						
After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3:	= 2 = ? on = 1 = 2 = 1; = 0 = 0 SUBWF tition = 2 = ? on = 2 = ? on = 2 = 0; SUBWF	REG, 0, 0	2						
After Instructio REG W C Z N <u>Example 2:</u> Before Instruct REG W C After Instructio REG W C After Instructio REG W C Z N	= 2 = ? on = 1 = 2 = 0 SUBWF subwr tion = 2 = ? on = 2 = ? on = 1 ; = 0 SUBWF tion = 1 ; = 0 SUBWF = 1 ; = 0 = 0 SUBWF = 1 ; = 0 = 0 = 0 = 0 = 0 = 0 SUBWF = 1 ; = 0 = 0 SUBWF = 1 ; = 0 = 0 SUBWF = 1 ; = 0 SUBWF = 1 ; = 0 ; = 1 ; = 0 ; = 1 ; = 0 ; = 1 ; = 0 ; = 1 ; = 1 ; ; = 1 ; = 1 ; ; = 1 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	REG, 0, 0	3						
After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3: Before Instruct REG W	= 2 = ? on = 1 = 2 = 0 SUBWF subwr tion = 2 = ? on = 2 = ? on = 1 ; = 0 SUBWF tion = 1 ; = 0 SUBWF = 1 ; = 0 = 0 SUBWF = 1 ; = 0 = 0 = 0 = 0 = 0 = 0 SUBWF = 1 ; = 0 = 0 SUBWF = 1 ; = 0 = 0 SUBWF = 1 ; = 0 SUBWF = 1 ; = 0 ; = 1 ; = 0 ; = 1 ; = 0 ; = 1 ; = 0 ; = 1 ; = 1 ; ; = 1 ; = 1 ; ; = 1 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	REG, 0, 0	•						
After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C Z N Example 3: Before Instruct REG	= 2 = ? on = 1 = 2 = 1; = 0 = 0 SUBWF tion = 2 = ? on = 2 = ? on = 1; = 1; = 0 SUBWF tion = 1 = 2 = ? on = 2 = ? on = 2 = 0 SUBWF	REG, 0, 0	2						
After Instruction REG W C Z N Example 2: Before Instruct REG W C After Instruction REG W C Z N Example 3: Before Instruct REG W C After Instruction REG	= 2 = ? $ = 1 = 2 = ? $ $ = 0 = 0 $ $ = 0 $ $ = 2 = ? $ $ = 0 $ $ = 2 = ? $ $ = 0 $ $ = 2 = ? $ $ = 0 $ $ = 1 ; $ $ = 0 $ $ = 1 = ? $ $ = 2 $ $ = ? $ $ = 1 $ $ = 2 $ $ = ? $ $ = ? $ $ = 1 $ $ = 2 $ $ = ? $ $ = ? $ $ = 1 $ $ = ? $ $ = ? $ $ = 1 $ $ = ? $ $ = ? $ $ = 1 $ $ = ? $ $ = ? $ $ = 1 $ $ = ? $ $ = ? $ $ = ?$	REG, 0, 0							
After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3: Before Instruct REG W C After Instructio REG W C After Instructio REG W C	= 2 = ? $ = 1 = 2 = 1 = 2 = 1 = 0 = 0 = 0 = 0 = 2 = ? $ $ = 2 = 2 = ? $ $ = 2 = ? $ $ = 2 = ? = 2 = ? = 0 = 1 = 2 = ? = 0 = 1 = 2 = ? $ $ = 1 = 0 = 1 = 2 = ? = ? = 0 = 1 = 2 = ? = ? = 0 = 1 = 2 = ? = 0 = 1 = 2 = ? = 0 = 1 = 1 = 2 = ? = 0 = 1 = 1 = 1 = 0 = 1 = 1 = 1 = 1 = 0 = 1 = 1$	REG, 0, 0 result is zero REG, 1, 0	t)						
After Instructio REG W C Z N Example 2: Before Instruct REG W C After Instructio REG W C Z N Example 3: Before Instruct REG W C After Instructio REG W C After Instructio REG W C	= 2 = ? on $ = 1 = 2 = ? $ on $ = 0 = 0 = 0 $ SUBWF stion $ = 2 = ? = ? $ on $ = 1 = ? = 1 = 0 $ SUBWF stion $ = 1 = 2 = ? $ on $ = 1 = ? = ? $ on $ = 5 = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 2 = ? $ on $ = 1 = 2 = ? $ on $ = 2 = ? $ on $ = 2 = ? $ on $ = 1 = 2 = ? $ on $ =$	REG, 0, 0 result is zero REG, 1, 0 (2's complemen	t)						

28.2 DC Characteristics: Power-Down and Supply Current PIC18F2455/2550/4455/4550 (Industrial) PIC18LF2455/2550/4455/4550 (Industrial) (Continued)

			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC18F2455/2550/4455/4550 (Industrial)				Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial						
Param No.	Symbol	Device	Тур	Max	Units	Conditions				
		USB and Related Module	Differer	tial Cu	rrents (Δ IUSBX, Δ IPLL, Δ	lureg)			
	Δ IUSBX	USB Module	-	14.5	mA	+25°C	VDD = 3.0V			
		with On-Chip Transceiver	12.4	20	mA	+25°C	VDD = 5.0V			
	Δ IPLL	96 MHz PLL	1.2	3.0	mA	+25°C	VDD = 3.0V			
	(Oscillator Module)		1.2	4.8	mA	+25°C	VDD = 5.0V			
	∆IUREG	USB Internal Voltage Regulator	80	125	μA	+25°C	VDD = 5.0V	USB Idle, SUSPND (UCON<1> = 1)		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS; MCLR = VDD; WDT enabled/disabled as specified.

- **3:** Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.
- 4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

28.4 AC (Timing) Characteristics

28.4.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

1. TppS2pp	S	3. TCC:ST	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase I	etters (pp) and their meanings:		
рр			
ad	SPP address write	mc	MCLR
сс	CCP1	osc	OSC1
ck	CLKO	rd	RD
CS	CS	rw	RD or WR
da	SPP data write	sc	SCK
di	SDI	SS	SS
do	SDO	tO	TOCKI
dt	Data in	t1	T13CKI
io	I/O port	wr	WR
Uppercase I	etters and their meanings:		
S			
F	Fall	Р	Period
н	High	R	Rise
1	Invalid (High-Impedance)	V	Valid
L	Low	Z	High-Impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ² C	specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

NOTES: