

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	24KB (12K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4455-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

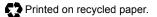
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

3.0 POWER-MANAGED MODES

PIC18F2455/2550/4455/4550 devices offer a total of seven operating modes for more efficient power management. These modes provide a variety of options for selective power conservation in applications where resources may be limited (i.e., battery-powered devices).

There are three categories of power-managed modes:

- Run modes
- Idle modes
- · Sleep mode

These categories define which portions of the device are clocked and sometimes, what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block); the Sleep mode does not use a clock source.

The power-managed modes include several power-saving features offered on previous PIC[®] devices. One is the clock switching feature, offered in other PIC18 devices, allowing the controller to use the Timer1 oscillator in place of the primary oscillator. Also included is the Sleep mode, offered by all PIC devices, where all device clocks are stopped.

3.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires two decisions: if the CPU is to be clocked or not and the selection of a clock source. The IDLEN bit (OSCCON<7>) controls CPU clocking, while the SCS1:SCS0 bits (OSCCON<1:0>) select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 3-1.

3.1.1 CLOCK SOURCES

The SCS1:SCS0 bits allow the selection of one of three clock sources for power-managed modes. They are:

- The primary clock, as defined by the FOSC3:FOSC0 Configuration bits
- The secondary clock (the Timer1 oscillator)
- The internal oscillator block (for RC modes)

3.1.2 ENTERING POWER-MANAGED MODES

Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS1:SCS0 bits select the clock source and determine which Run or Idle mode is to be used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. These are discussed in **Section 3.1.3 "Clock Transitions and Status Indicators"** and subsequent sections.

Entry to the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit.

Depending on the current mode and the mode being switched to, a change to a power-managed mode does not always require setting all of these bits. Many transitions may be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured correctly, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

TADLE 3-1.	FUVER		DES		
Mada	OSCCON<7,1:0>		Modul	e Clocking	Augilable Cleak and Casillater Source
Mode	IDLEN ⁽¹⁾	SCS1:SCS0	CPU	Peripherals	Available Clock and Oscillator Source
Sleep	0	N/A	Off	Off	None – all clocks are disabled
PRI_RUN	N/A	00	Clocked	Clocked	Primary – all oscillator modes. This is the normal full-power execution mode.
SEC_RUN	N/A	01	Clocked	Clocked	Secondary – Timer1 oscillator
RC_RUN	N/A	lx	Clocked	Clocked	Internal oscillator block ⁽²⁾
PRI_IDLE	1	00	Off	Clocked	Primary – all oscillator modes
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 oscillator
RC_IDLE	1	1x	Off	Clocked	Internal oscillator block ⁽²⁾

TABLE 3-1: POWER-MANAGED MODES

Note 1: IDLEN reflects its value when the SLEEP instruction is executed.

2: Includes INTOSC and INTOSC postscaler, as well as the INTRC source.

4.2 Master Clear Reset (MCLR)

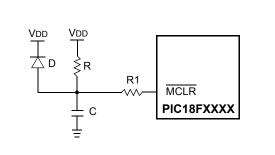
The MCLR pin provides a method for triggering an external Reset of the device. A Reset is generated by holding the pin low. These devices have a noise filter in the MCLR Reset path which detects and ignores small pulses.

The MCLR pin is not driven low by any internal Resets, including the WDT.

In PIC18F2455/2550/4455/4550 devices, the MCLR input can be disabled with the MCLRE Configuration bit. When MCLR is disabled, the pin becomes a digital input. See **Section 10.5 "PORTE, TRISE and LATE Registers"** for more information.

4.3 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip whenever VDD rises above a certain threshold. This allows the device to start in the initialized state when VDD is adequate for operation.


To take advantage of the POR circuitry, tie the $\overline{\text{MCLR}}$ pin through a resistor (1 k Ω to 10 k Ω) to VDD. This will eliminate external RC components usually needed to create a Power-on Reset delay. A minimum rise rate for VDD is specified (parameter D004, **Section 28.1 "DC Characteristics"**). For a slow rise time, see Figure 4-2.

When the device starts normal operation (i.e., exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.

POR events are captured by the \overrightarrow{POR} bit (RCON<1>). The state of the bit is set to '0' whenever a POR occurs; it does not change for any other Reset event. \overrightarrow{POR} is not reset to '1' by any hardware event. To capture multiple events, the user manually resets the bit to '1' in software following any POR.

FIGURE 4-2:

EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- Note 1: External Power-on Reset circuit is required only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: $R < 40 \text{ k}\Omega$ is recommended to make sure that the voltage drop across R does not violate the device's electrical specification.

4.5 Device Reset Timers

PIC18F2455/2550/4455/4550 devices incorporate three separate on-chip timers that help regulate the Power-on Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are:

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- PLL Lock Time-out

4.5.1 POWER-UP TIMER (PWRT)

The Power-up Timer (PWRT) of the PIC18F2455/2550/ 4455/4550 devices is an 11-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of 2048 x 32 μ s = 65.6 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC clock and will vary from chip to chip due to temperature and process variation. See DC parameter 33 (Table 28-12) for details.

The PWRT is enabled by clearing the PWRTEN Configuration bit.

4.5.2 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 33, Table 28-12). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, HS and HSPLL modes and only on Power-on Reset or on exit from most power-managed modes.

4.5.3 PLL LOCK TIME-OUT

With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A separate timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

4.5.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- 1. After the POR condition has cleared, PWRT time-out is invoked (if enabled).
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and the status of the PWRT. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all depict time-out sequences on power-up, with the Power-up Timer enabled and the device operating in HS Oscillator mode. Figures 4-3 through 4-6 also apply to devices operating in XT mode. For devices in RC mode and with the PWRT disabled, on the other hand, there will be no time-out at all.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, all time-outs will expire. Bringing MCLR high will begin execution immediately (Figure 4-5). This is useful for testing purposes or to synchronize more than one PIC18FXXXX device operating in parallel.

Oscillator	Power-up ⁽²⁾ and	Power-up ⁽²⁾ and Brown-out				
Configuration	PWRTEN = 0	PWRTEN = 1	Power-Managed Mode			
HS, XT	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc			
HSPLL, XTPLL	66 ms ⁽¹⁾ + 1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾			
EC, ECIO	66 ms ⁽¹⁾	—	—			
ECPLL, ECPIO	66 ms ⁽¹⁾ + 2 ms ⁽²⁾	2 ms ⁽²⁾	2 ms ⁽²⁾			
INTIO, INTCKO	66 ms ⁽¹⁾	_	—			
INTHS, INTXT	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc			

TABLE 4-2: TIME-OUT IN VARIOUS SITUATIONS

Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.

2: 2 ms is the nominal time required for the PLL to lock.

Register Applicable Device		ces	Power-on Reset, Brown-out Reset	MCLR Resets, WDT Reset, RESET Instruction, Stack Resets	Wake-up via WDT or Interrupt		
CCPR1H	2455	2550	4455	4550	XXXX XXXX	սսսս սսսս	սսսս սսսս
CCPR1L	2455	2550	4455	4550	XXXX XXXX	սսսս սսսս	սսսս սսսս
CCP1CON	2455	2550	4455	4550	00 0000	00 0000	uu uuuu
	2455	2550	4455	4550	0000 0000	0000 0000	սսսս սսսս
CCPR2H	2455	2550	4455	4550	XXXX XXXX	սսսս սսսս	սսսս սսսս
CCPR2L	2455	2550	4455	4550	XXXX XXXX	սսսս սսսս	սսսս սսսս
CCP2CON	2455	2550	4455	4550	00 0000	00 0000	uu uuuu
BAUDCON	2455	2550	4455	4550	0100 0-00	0100 0-00	uuuu u-uu
ECCP1DEL	2455	2550	4455	4550	0000 0000	0000 0000	սսսս սսսս
ECCP1AS	2455	2550	4455	4550	0000 0000	0000 0000	սսսս սսսս
CVRCON	2455	2550	4455	4550	0000 0000	0000 0000	uuuu uuuu
CMCON	2455	2550	4455	4550	0000 0111	0000 0111	uuuu uuuu
TMR3H	2455	2550	4455	4550	XXXX XXXX	սսսս սսսս	uuuu uuuu
TMR3L	2455	2550	4455	4550	XXXX XXXX	սսսս սսսս	uuuu uuuu
T3CON	2455	2550	4455	4550	0000 0000	սսսս սսսս	uuuu uuuu
SPBRGH	2455	2550	4455	4550	0000 0000	0000 0000	uuuu uuuu
SPBRG	2455	2550	4455	4550	0000 0000	0000 0000	սսսս սսսս
RCREG	2455	2550	4455	4550	0000 0000	0000 0000	uuuu uuuu
TXREG	2455	2550	4455	4550	0000 0000	0000 0000	uuuu uuuu
TXSTA	2455	2550	4455	4550	0000 0010	0000 0010	uuuu uuuu
RCSTA	2455	2550	4455	4550	0000 000x	0000 000x	uuuu uuuu
EEADR	2455	2550	4455	4550	0000 0000	0000 0000	uuuu uuuu
EEDATA	2455	2550	4455	4550	0000 0000	0000 0000	սսսս սսսս
EECON2	2455	2550	4455	4550	0000 0000	0000 0000	0000 0000
EECON1	2455	2550	4455	4550	xx-0 x000	uu-0 u000	uu-0 u000

TABLE 4-4: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition. Shaded cells indicate conditions do not apply for the designated device.

Note 1: When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the TOSU, TOSH and TOSL are updated with the current value of the PC. The STKPTR is modified to point to the next location in the hardware stack.

- 2: One or more bits in the INTCONx or PIRx registers will be affected (to cause wake-up).
- **3:** When the wake-up is due to an interrupt and the GIEL or GIEH bit is set, the PC is loaded with the interrupt vector (0008h or 0018h).
- 4: See Table 4-3 for Reset value for specific condition.
- **5:** PORTA<6>, LATA<6> and TRISA<6> are enabled depending on the oscillator mode selected. When not enabled as PORTA pins, they are disabled and read '0'.

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
EEADR	EEPROM Ad	dress Register							0000 0000	55, 91
EEDATA	EEPROM Da	ita Register							0000 0000	55, 91
EECON2	EEPROM Co	ntrol Register	2 (not a physic	cal register)					0000 0000	55, 82
EECON1	EEPGD	CFGS	_	FREE	WRERR	WREN	WR	RD	xx-0 x000	55, 83
IPR2	OSCFIP	CMIP	USBIP	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	1111 1111	56, 109
PIR2	OSCFIF	CMIF	USBIF	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	0000 0000	56, 105
PIE2	OSCFIE	CMIE	USBIE	EEIE	BCLIE	HLVDIE	TMR3IE	CCP2IE	0000 0000	56, 107
IPR1	SPPIP ⁽³⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	1111 1111	56, 108
PIR1	SPPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	56, 104
PIE1	SPPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	56, 106
OSCTUNE	INTSRC	_	_	TUN4	TUN3	TUN2	TUN1	TUN0	00 0000	56, 28
TRISE ⁽³⁾	_	_	_	_	_	TRISE2	TRISE1	TRISE0	111	56, 126
TRISD ⁽³⁾	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	1111 1111	56, 124
TRISC	TRISC7	TRISC6	_	_	_	TRISC2	TRISC1	TRISC0	11111	56, 121
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	56, 118
TRISA	_	TRISA6 ⁽⁴⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	-111 1111	56, 115
LATE ⁽³⁾	_	_	_	_	_	LATE2	LATE1	LATE0	xxx	56, 126
LATD ⁽³⁾	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	XXXX XXXX	56, 124
LATC	LATC7	LATC6	_	_	_	LATC2	LATC1	LATC0	xxxxx	56, 121
LATB	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	XXXX XXXX	56, 118
LATA	_	LATA6 ⁽⁴⁾	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	-xxx xxxx	56, 115
PORTE	RDPU ⁽³⁾	_	_	_	RE3 ⁽⁵⁾	RE2 ⁽³⁾	RE1 ⁽³⁾	RE0 ⁽³⁾	0 x000	56, 125
PORTD ⁽³⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	XXXX XXXX	56, 124
PORTC	RC7	RC6	RC5 ⁽⁶⁾	RC4 ⁽⁶⁾	_	RC2	RC1	RC0	xxxx -xxx	56, 121
PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	XXXX XXXX	56, 118
PORTA	_	RA6 ⁽⁴⁾	RA5	RA4	RA3	RA2	RA1	RA0	-x0x 0000	56, 115
UEP15	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP14	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP13	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP12		_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP11		_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP10		_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP9		_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP8	_	_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP7	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP6	_	_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP5	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP4	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP3	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP2	_			EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP1	_	_		EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172
UEP0				EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	0 0000	57, 172

TABLE 5-2:	REGISTER	FILE SUMMARY	(CONTINUED)

Legend:

x = unknown, u = unchanged, - = unimplemented, q = value depends on condition. Shaded cells are unimplemented, read as '0'.
 Bit 21 of the TBLPTRU allows access to the device Configuration bits.

Note 1:

2: The SBOREN bit is only available when BOREN<1:0> = 01; otherwise, the bit reads as '0'.

3: These registers and/or bits are not implemented on 28-pin devices and are read as '0'. Reset values are shown for 40/44-pin devices; individual unimplemented bits should be interpreted as '-'.

4: RA6 is configured as a port pin based on various primary oscillator modes. When the port pin is disabled, all of the associated bits read '0'.

5: RE3 is only available as a port pin when the MCLRE Configuration bit is clear; otherwise, the bit reads as '0'.

6: RC5 and RC4 are only available as port pins when the USB module is disabled (UCON<3> = 0).

7: I^2C^{TM} Slave mode only.

The PPBRST bit (UCON<6>) controls the Reset status when Double-Buffering mode (ping-pong buffering) is used. When the PPBRST bit is set, all Ping-Pong Buffer Pointers are set to the Even buffers. PPBRST has to be cleared by firmware. This bit is ignored in buffering modes not using ping-pong buffering.

The PKTDIS bit (UCON<4>) is a flag indicating that the SIE has disabled packet transmission and reception. This bit is set by the SIE when a SETUP token is received to allow setup processing. This bit cannot be set by the microcontroller, only cleared; clearing it allows the SIE to continue transmission and/or reception. Any pending events within the Buffer Descriptor Table will still be available, indicated within the USTAT register's FIFO buffer.

The RESUME bit (UCON<2>) allows the peripheral to perform a remote wake-up by executing Resume signaling. To generate a valid remote wake-up, firmware must set RESUME for 10 ms and then clear the bit. For more information on Resume signaling, see Sections 7.1.7.5, 11.4.4 and 11.9 in the USB 2.0 specification.

The SUSPND bit (UCON<1>) places the module and supporting circuitry (i.e., voltage regulator) in a low-power mode. The input clock to the SIE is also disabled. This bit should be set by the software in response to an IDLEIF interrupt. It should be reset by the microcontroller firmware after an ACTVIF interrupt is observed. When this bit is active, the device remains attached to the bus but the transceiver outputs remain Idle. The voltage on the VUSB pin may vary depending on the value of this bit. Setting this bit before a IDLEIF request will result in unpredictable bus behavior.

Note: While in Suspend mode, a typical bus powered USB device is limited to 2.5 mA of current. Care should be taken to assure minimum current draw when the device enters Suspend mode.

17.2.2 USB CONFIGURATION REGISTER (UCFG)

Prior to communicating over USB, the module's associated internal and/or external hardware must be configured. Most of the configuration is performed with the UCFG register (Register 17-2). The separate USB voltage regulator (see **Section 17.2.2.8** "Internal **Regulator**") is controlled through the Configuration registers.

The UFCG register contains most of the bits that control the system level behavior of the USB module. These include:

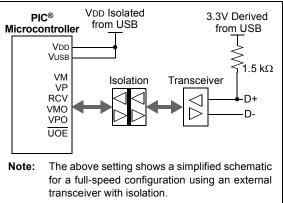
- Bus Speed (full speed versus low speed)
- On-Chip Pull-up Resistor Enable
- On-Chip Transceiver Enable
- Ping-Pong Buffer Usage

The UCFG register also contains two bits which aid in module testing, debugging and USB certifications. These bits control output enable state monitoring and eye pattern generation.

Note: The USB speed, transceiver and pull-up should only be configured during the module setup phase. It is not recommended to switch these settings while the module is enabled.

17.2.2.1 Internal Transceiver

The USB peripheral has a built-in, USB 2.0, full-speed and low-speed compliant transceiver, internally connected to the SIE. This feature is useful for low-cost single chip applications. The UTRDIS bit (UCFG<3>) controls the transceiver; it is enabled by default (UTRDIS = 0). The FSEN bit (UCFG<2>) controls the transceiver speed; setting the bit enables full-speed operation.


The on-chip USB pull-up resistors are controlled by the UPUEN bit (UCFG<4>). They can only be selected when the on-chip transceiver is enabled.

The USB specification requires 3.3V operation for communications; however, the rest of the chip may be running at a higher voltage. Thus, the transceiver is supplied power from a separate source, VUSB.

17.2.2.2 External Transceiver

This module provides support for use with an off-chip transceiver. The off-chip transceiver is intended for applications where physical conditions dictate the location of the transceiver to be away from the SIE. External transceiver operation is enabled by setting the UTRDIS bit.

19.3.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- MSSP Control Register 1 (SSPCON1)
- MSSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer Register (SSPBUF)
- MSSP Shift Register (SSPSR) Not directly accessible

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

SSPSR is the shift register used for shifting data in or out. SSPBUF is the buffer register to which data bytes are written to or read from.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

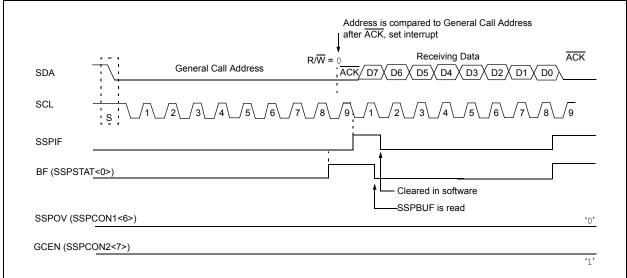
During transmission, the SSPBUF is not doublebuffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 19-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

SMP bit 7 Legend: R = Reada -n = Value bit 7	at POR SMP: Samp <u>SPI Master I</u> 1 = Input da	<u>mode:</u>	P	S U = Unimpler '0' = Bit is cle	R/W mented bit, rea	UA ad as '0' x = Bit is unkr	BF bit 0
Legend: R = Reada -n = Value	at POR SMP: Samp <u>SPI Master I</u> 1 = Input da	'1' = Bit is set le bit mode:	bit	•			
R = Reada -n = Value	at POR SMP: Samp <u>SPI Master I</u> 1 = Input da	'1' = Bit is set le bit mode:	bit	•			nown
R = Reada -n = Value	at POR SMP: Samp <u>SPI Master I</u> 1 = Input da	'1' = Bit is set le bit mode:	bit	•			nown
-n = Value	at POR SMP: Samp <u>SPI Master I</u> 1 = Input da	'1' = Bit is set le bit mode:	bit	•			nown
	SMP : Samp <u>SPI Master</u> 1 = Input da	le bit node:		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	<u>SPI Master</u> 1 = Input da	<u>mode:</u>					
DIT /	<u>SPI Master</u> 1 = Input da	<u>mode:</u>					
	1 = Input da						
			d of data out	tout time			
		ta sampled at mi					
	SPI Slave m	-					
		e cleared when	SPI is used i	n Slave mode.			
bit 6	CKE: SPI C	lock Select bit ⁽¹⁾					
		t occurs on trans t occurs on trans					
bit 5	D/A: Data/A	ddress bit					
	Used in I ² C	mode only.					
bit 4	P: Stop bit						
	Used in I ² C	mode only. This	bit is cleared	I when the MSS	P module is d	isabled, SSPEN	is cleared.
bit 3	S: Start bit						
	Used in I ² C	•					
bit 2		Write Information	ı bit				
	Used in I ² C	•					
bit 1	UA: Update						
	Used in I ² C	5					
bit 0		ull Status bit (Re		only)			
		complete, SSPE		4			
	0 = Receive	not complete, S	SPBUF IS er	npty			
Note 1:	Polarity of clock s	tate is set by the	e CKP bit (SS	SPCON1<4>).			

19.4.5 GENERAL CALL ADDRESS SUPPORT

The addressing procedure for the I^2C bus is such that the first byte after the Start condition usually determines which device will be the slave addressed by the master. The exception is the general call address which can address all devices. When this address is used, all devices should, in theory, respond with an Acknowledge.


The general call address is one of eight addresses reserved for specific purposes by the I²C protocol. It consists of all '0's with R/W = 0.

The general call address is recognized when the General Call Enable (GCEN) bit is enabled (SSPCON2<7> set). Following a Start bit detect, 8 bits are shifted into the SSPSR and the address is compared against the SSPADD. It is also compared to the general call address and fixed in hardware. If the general call address matches, the SSPSR is transferred to the SSPBUF, the BF flag bit is set (eighth bit) and on the falling edge of the ninth bit (ACK bit), the SSPIF interrupt flag bit is set.

When the interrupt is serviced, the source for the interrupt can be checked by reading the contents of the SSPBUF. The value can be used to determine if the address was device specific or a general call address.

In 10-bit mode, the SSPADD is required to be updated for the second half of the address to match and the UA bit is set (SSPSTAT<1>). If the general call address is sampled when the GCEN bit is set, while the slave is configured in 10-Bit Addressing mode, then the second half of the address is not necessary, the UA bit will not be set and the slave will begin receiving data after the Acknowledge (Figure 19-17).

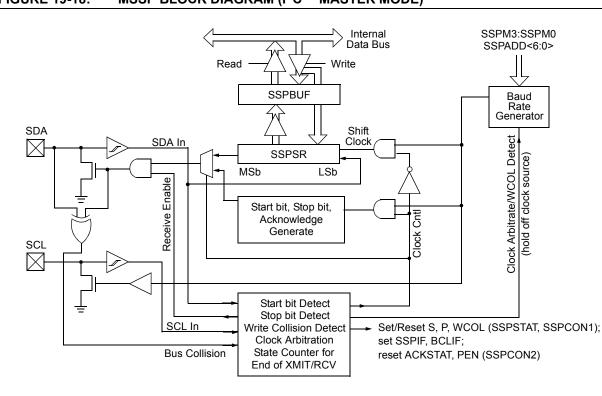
PIC18F2455/2550/4455/4550

19.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware if the TRIS bits are set.

Master mode operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all ${\sf I}^2{\sf C}$ bus operations based on Start and Stop bit conditions.

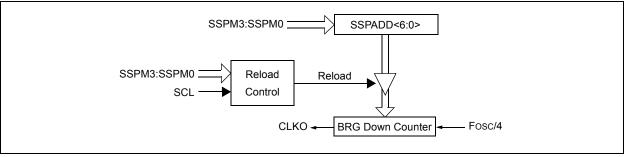

Once Master mode is enabled, the user has six options:

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I^2C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPIF, to be set (and MSSP interrupt, if enabled):

- · Start condition
- Stop condition
- · Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start


FIGURE 19-18: MSSP BLOCK DIAGRAM (I²C[™] MASTER MODE)

19.4.7 BAUD RATE

In I²C Master mode, the Baud Rate Generator (BRG) reload value is placed in the lower seven bits of the SSPADD register (Figure 19-19). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting. The BRG counts down to '0' and stops until another reload has taken place. The BRG count is decremented twice per instruction cycle (Tcr) on the Q2 and Q4 clocks. In I²C Master mode, the BRG is reloaded automatically.

Once the given operation is complete (i.e., transmission of the last data bit is followed by ACK), the internal clock will automatically stop counting and the SCL pin will remain in its last state. Table 19-3 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD. SSPADD values of less than 2 are not supported. Due to the need to support I²C clock stretching capability, I²C baud rates are partially dependent upon system parameters, such as line capacitance and pull-up strength. The parameters provided in Table 19-3 are guidelines, and the actual baud rate may be slightly slower than that predicted in the table. The baud rate formula shown in the bit description of Register 19-4 sets the maximum baud rate that can occur for a given SSPADD value.

FIGURE 19-19: BAUD RATE GENERATOR BLOCK DIAGRAM

TABLE 19-3: I²C[™] CLOCK RATE W/BRG

Fcy	Fcy * 2	BRG Value	Fsc∟ (2 Rollovers of BRG)
10 MHz	20 MHz	18h	400 kHz ⁽¹⁾
10 MHz	20 MHz	1Fh	312.5 kHz
10 MHz	20 MHz	63h	100 kHz
4 MHz	8 MHz	09h	400 kHz ⁽¹⁾
4 MHz	8 MHz	0Ch	308 kHz
4 MHz	8 MHz	27h	100 kHz
1 MHz	2 MHz	02h	333 kHz ⁽¹⁾
1 MHz	2 MHz	09h	100 kHz

Note 1: The I²C[™] interface does not conform to the 400 kHz I²C specification (which applies to rates greater than 100 kHz) in all details, but may be used with care where higher rates are required by the application.

PIC18F2455/2550/4455/4550

R/W-0	R-1	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
ABDOVF	RCIDL	RXDTP	TXCKP	BRG16	_	WUE	ABDEN		
bit 7				1			bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, re	ad as '0'			
-n = Value at	POR	'1' = Bit is se	t	ʻ0' = Bit is cl	eared	x = Bit is unk	nown		
bit 7		Auto-Baud Acqu			te Detect mode	e (must be cleare	ed in software		
		G rollover has o	Ų						
bit 6	RCIDL: Red	eive Operation	Idle Status bit						
		e operation is Idl e operation is ac							
bit 5	RXDTP: Re	ceived Data Pol	larity Select bi	t					
	Asynchrono 1 = RX data 0 = RX data		inverted						
		<u>is modes:</u> ed Data (DT) is i rsion of Data (D			evel.				
bit 4		ock and Data Po		-					
	Asynchrono	ous mode:							
	•	<u>is modes:</u> CK) is inverted. I rsion of Clock (0		•					
bit 3	BRG16: 16-Bit Baud Rate Register Enable bit								
		aud Rate Generaud Rate Genera				BRGH value ign	ored		
bit 2	Unimpleme	ented: Read as	'0'						
bit 1	WUE: Wake	e-up Enable bit							
	hardwa		rising edge	-	rrupt generate	d on falling edge	; bit cleared i		
	<u>Synchronou</u> Unused in t								
bit 0	ABDEN: Au	ito-Baud Detect	Enable bit						
	cleared		on completion	ı.	cter. Requires	reception of a Sy	nc field (55h		
	Synchronou Unused in t	<u>is mode:</u>							

REGISTER 20-3: BAUDCON: BAUD RATE CONTROL REGISTER

20.1.3 AUTO-BAUD RATE DETECT

The Enhanced USART module supports the automatic detection and calibration of baud rate. This feature is active only in Asynchronous mode and while the WUE bit is clear.

The automatic baud rate measurement sequence (Figure 20-1) begins whenever a Start bit is received and the ABDEN bit is set. The calculation is self-averaging.

In the Auto-Baud Rate Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. In ABD mode, the internal Baud Rate Generator is used as a counter to time the bit period of the incoming serial byte stream.

Once the ABDEN bit is set, the state machine will clear the BRG and look for a Start bit. The Auto-Baud Rate Detect must receive a byte with the value, 55h (ASCII "U", which is also the LIN bus Sync character), in order to calculate the proper bit rate. The measurement is taken over both a low and a high bit time in order to minimize any effects caused by asymmetry of the incoming signal. After a Start bit, the SPBRG begins counting up, using the preselected clock source on the first rising edge of RX. After eight bits on the RX pin, or the fifth rising edge, an accumulated value totalling the proper BRG period is left in the SPBRGH:SPBRG register pair. Once the 5th edge is seen (this should correspond to the Stop bit), the ABDEN bit is automatically cleared.

If a rollover of the BRG occurs (an overflow from FFFFh to 0000h), the event is trapped by the ABDOVF status bit (BAUDCON<7>). It is set in hardware by BRG rollovers and can be set or cleared by the user in software. ABD mode remains active after rollover events and the ABDEN bit remains set (Figure 20-2).

While calibrating the baud rate period, the BRG registers are clocked at 1/8th the preconfigured clock rate. Note that the BRG clock will be configured by the BRG16 and BRGH bits. Independent of the BRG16 bit setting, both the SPBRG and SPBRGH will be used as a 16-bit counter. This allows the user to verify that no carry occurred for 8-bit modes by checking for 00h in the SPBRGH register. Refer to Table 20-4 for counter clock rates to the BRG.

While the ABD sequence takes place, the EUSART state machine is held in Idle. The RCIF interrupt is set once the fifth rising edge on RX is detected. The value in the RCREG needs to be read to clear the RCIF interrupt. The contents of RCREG should be discarded.

- Note 1: If the WUE bit is set with the ABDEN bit, Auto-Baud Rate Detection will occur on the byte *following* the Break character.
 - 2: It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible due to bit error rates. Overall system timing and communication baud rates must be taken into consideration when using the Auto-Baud Rate Detection feature.

TABLE 20-4: BRG COUNTER CLOCK RATES

BRG16	BRGH	BRG Counter Clock						
0	0	Fosc/512						
0	1	Fosc/128						
1	0	Fosc/128						
1	1	Fosc/32						

Note: During the ABD sequence, SPBRG and SPBRGH are both used as a 16-bit counter, independent of the BRG16 setting.

20.1.3.1 ABD and EUSART Transmission

Since the BRG clock is reversed during ABD acquisition, the EUSART transmitter cannot be used during ABD. This means that whenever the ABDEN bit is set, TXREG cannot be written to. Users should also ensure that ABDEN does not become set during a transmit sequence. Failing to do this may result in unpredictable EUSART operation.

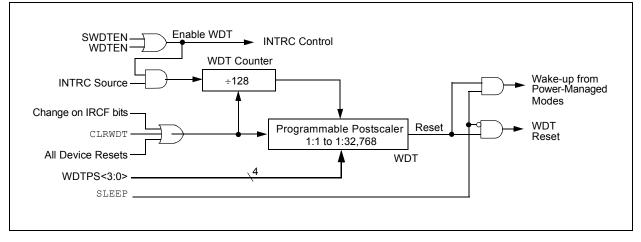
22.0 COMPARATOR MODULE

The analog comparator module contains two comparators that can be configured in a variety of ways. The inputs can be selected from the analog inputs multiplexed with pins RA0 through RA5, as well as the on-chip voltage reference (see **Section 23.0 "Comparator Voltage Reference Module**"). The digital outputs (normal or inverted) are available at the pin level and can also be read through the control register. The CMCON register (Register 22-1) selects the comparator input and output configuration. Block diagrams of the various comparator configurations are shown in Figure 22-1.

REGISTER 22-1: CMCON: COMPARATOR CONTROL REGISTER

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1	R/W-1
C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
h it 7	000117						
bit 7		parator 2 Outp	ut dit				
	<u>When C2INV</u> 1 = C2 VIN+ >						
	0 = C2 VIN + 4						
	When C2INV						
	1 = C2 VIN+ <						
	0 = C2 VIN+ 2	> C2 VIN-					
bit 6	C1OUT: Com	parator 1 Outp	ut bit				
	When C1INV	<u>= 0:</u>					
	1 = C1 VIN+ >						
	0 = C1 VIN+ <						
	When C1INV						
	1 = C1 VIN+ < 0 = C1 VIN+ >	-					
bit 5		parator 2 Outpu	t Inversion hi	t			
bit 0	1 = C2 outpu			·			
	0 = C2 outpu						
bit 4	•	parator 1 Outpu	t Inversion bi	t			
	1 = C1 outpu	t inverted					
	0 = C1 outpu	t not inverted					
bit 3	CIS: Compar	ator Input Swite	h bit				
	When CM2:C	CMO = 110:					
		connects to RA					
		connects to RA		CVREF			
		connects to RA					
bit 2-0		omparator Mod					
		hows the Com		s and the CM2	CM0 hit settin	as	
						93.	

25.2 Watchdog Timer (WDT)


For PIC18F2455/2550/4455/4550 devices, the WDT is driven by the INTRC source. When the WDT is enabled, the clock source is also enabled. The nominal WDT period is 4 ms and has the same stability as the INTRC oscillator.

The 4 ms period of the WDT is multiplied by a 16-bit postscaler. Any output of the WDT postscaler is selected by a multiplexer, controlled by bits in Configuration Register 2H. Available periods range from 4 ms to 131.072 seconds (2.18 minutes). The WDT and postscaler are cleared when any of the following events occur: a SLEEP or CLRWDT instruction is executed, the IRCF bits (OSCCON<6:4>) are changed or a clock failure has occurred.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and postscaler counts when executed.
 - 2: Changing the setting of the IRCF bits (OSCCON<6:4>) clears the WDT and postscaler counts.
 - **3:** When a CLRWDT instruction is executed, the postscaler count will be cleared.

25.2.1 CONTROL REGISTER

Register 25-15 shows the WDTCON register. This is a readable and writable register which contains a control bit that allows software to override the WDT enable Configuration bit, but only if the Configuration bit has disabled the WDT.

FIGURE 25-1: WDT BLOCK DIAGRAM

PIC18F2455/2550/4455/4550

BNC		Branch if N	lot Carry		BNN		Branch if I	Not Negative	
Synta	ax:	BNC n			Synta	ax:	BNN n		
Oper	ands:	-128 ≤ n ≤ 1	127		Oper	ands:	-128 ≤ n ≤	127	
Oper	ation:	if Carry bit i (PC) + 2 + 2			Oper	ation:	if Negative (PC) + 2 +		
Statu	s Affected:	None			Statu	s Affected:	None		
Enco	ding:	1110	0011 nni	nn nnnn	Enco	ding:	1110	0111 ni	nnn nnnn
Desc	ription:	will branch. The 2's con added to the incrementer instruction,	d to fetch the r the new addre n. This instruct	ber '2n' is e PC will have next ess will be	Desc	ription:	program wi The 2's cor added to th incremente instruction,	mplement nur le PC. Since t ed to fetch the the new add n. This instrue	nber '2n' is he PC will have next
Word	ls:	1			Word	ls:	1		
Cycle	es:	1(2)			Cycle	es:	1(2)		
Q C If Ju	ycle Activity: mp:				Q C If Ju	ycle Activity: mp:			
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	Write to PC
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	No operation
lf No	Jump:	operation	operation	operation	lf No	Jump:	operation	operation	operation
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	No operation
<u>Exan</u>		HERE	BNC Jump		Exan		HERE	BNN Jum	p
	Before Instruc PC After Instructio If Carry PC If Carry PC	= ado = 0; = ado = 1;	dress (HERE) dress (Jump) dress (HERE			Before Instruct PC After Instructio If Negati PC If Negati PC	= ac on ve = 0; = ac ve = 1;	ldress (HERI ldress (Jump ldress (HERI	5)

PIC18F2455/2550/4455/4550

CALLW		Subroutine	Subroutine Call Using WREG					
Syntax:		CALLW	CALLW					
Oper	ands:	None						
Operation:		$(W) \rightarrow PCL$ (PCLATH) -	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$					
Statu	s Affected:	None	None					
Enco	oding:	0000	0000 0000 0001 0100					
Description		pushed onto contents of existing vali contents of latched into respectively executed as new next in Unlike CALI	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched. Unlike CALL, there is no option to update W, STATUS or BSR.					
Word	ls:	1	•					
Cycle	es:	2						
,	ycle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read WREG	Push PC to stack	No operation				
	No operation	No operation	No operation	No operation				
<u>Exan</u>	Example: HERE CALLW							
Before Instruction $\begin{array}{rcl} PC &=& address (HERE) \\ PCLATH &=& 10h \\ PCLATU &=& 00h \\ W &=& 06h \\ \end{array}$ After Instruction $\begin{array}{rcl} PC &=& 001006h \\ TOS &=& address (HERE + 2) \\ PCLATH &=& 10h \\ PCLATU &=& 00h \\ W &=& 06h \\ \end{array}$								

MOVSF		Move Inde	Move Indexed to f					
Syntax:		MOVSF [z	<u>z</u> s], f _d					
Operands:		$0 \le z_s \le 127$ $0 \le f_d \le 409$	$0 \le z_s \le 127$					
Oper	ation:	((FSR2) + z	$(z_s) \rightarrow f_d$					
Statu	s Affected:	None						
Encoding: 1st word (source) 2nd word (destin.)		1110 1111	1011 Oz: ffff ff:	5				
		actual addr determined offset ' z_s ' in FSR2. The register is s 'f _d ' in the se can be any space (000 The MOVSF PCL, TOSL destination If the result an indirect a	moved to destination register 'f _d '. The actual address of the source register is determined by adding the 7-bit literal offset ' z_s ' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal 'f _d ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh). The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the					
Word		value returr 2	value returned will be 00h.					
Cycle		2						
•		2						
QC	ycle Activity: Q1	Q2	Q3	Q4				
	Decode	Determine source addr	Determine source addr	Read source reg				
Decode		No operation No dummy read	No operation	Write register 'f' (dest)				
Example: MOVSF [05h], REG2								
	Before Instruc FSR2 Contents of 85h REG2 After Instructic FSR2 Contents of 85h REG2	= 80 = 33 = 11 on = 80	h h h					

28.2 DC Characteristics: Power-Down and Supply Current PIC18F2455/2550/4455/4550 (Industrial) PIC18LF2455/2550/4455/4550 (Industrial) (Continued)

PIC18LF2455/2550/4455/4550 (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrialStandard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC18F2455/2550/4455/4550 (Industrial)								
Param No.	Symbol	Device	Тур	Typ Max Units Conditions				ns
		Supply Current (IDD) ⁽²⁾						
		PIC18LFX455/X550	14	40	μΑ	-40°C		
			15	40	μΑ	+25°C	VDD = 2.0V	
			16	40	μA	+85°C		
		PIC18LFX455/X550	40	74	μA	-40°C		Fosc = 32 kHz ⁽³⁾
			35	70	μA	+25°C	VDD = 3.0V	(SEC_RUN mode,
			31	67	μA	+85°C		Timer1 as clock)
		All devices	99	150	μA	-40°C		
			81	150	μA	+25°C	VDD = 5.0V	
			75	150	μA	+85°C		
		PIC18LFX455/X550	2.5	12	μA	-40°C		
			3.7	12	μA	+25°C	VDD = 2.0V	
			4.5	12	μA	+85°C		
		PIC18LFX455/X550	5.0	15	μA	-40°C		Fosc = 32 kHz ⁽³⁾
			5.4	15	μA	+25°C	VDD = 3.0V	(SEC_IDLE mode,
			6.3	15	μA	+85°C		Timer1 as clock)
		All devices	8.5	25	μA	-40°C		
			9.0	25	μA	+25°C	VDD = 5.0V	
			10.5	36	μA	+85°C		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSs and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

<u>OSC1</u> = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS; MCLR = VDD; WDT enabled/disabled as specified.

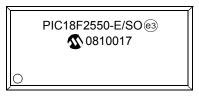
3: Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

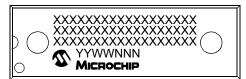
4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

30.0 PACKAGING INFORMATION

30.1 Package Marking Information

28-Lead PDIP (Skinny DIP)


Example


28-Lead SOIC

Example

40-Lead PDIP

Example

Legend	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.			
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.				

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com