

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4550-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.6.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the lower portion of Access RAM (00h to 5Fh) is mapped. Rather than containing just the contents of the bottom half of Bank 0, this mode maps the contents from Bank 0 and a user-defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 5.3.3 "Access Bank**"). An example of Access Bank remapping in this addressing mode is shown in Figure 5-9.

Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use Direct Addressing as before. Any indirect or indexed operation that explicitly uses any of the indirect file operands (including FSR2) will continue to operate as standard Indirect Addressing. Any instruction that uses the Access Bank, but includes a register address of greater than 05Fh, will use Direct Addressing and the normal Access Bank map.

5.6.4 BSR IN INDEXED LITERAL OFFSET MODE

Although the Access Bank is remapped when the extended instruction set is enabled, the operation of the BSR remains unchanged. Direct Addressing, using the BSR to select the data memory bank, operates in the same manner as previously described.

FIGURE 5-9: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

EXAMPLE 6-3: WRITING TO FLASH PROGRAM MEMORY

	MOVLW	D'64′	; number of bytes in erase block
	MOVWF	COUNTER	,
	MOVIW	BUFFER ADDR HIGH	; point to buffer
	MOVWE	FSROH	, point to barror
	MOVIW	BUFFER ADDR LOW	
	MOVWE	FSROI.	
	MOVIW	CODE ADDE LIDDED	· I and TRIDTP with the base
	MOVWE		; address of the memory block
	MOVIW	CODE ADDR HIGH	, address of the memory brock
	MOVINE		
	MOVWE	IDLFIND IOW	
	MOVEW		
DEND DIOCK	MOVWE	IBLFIRL	
KEAD_BLOCK	₩₽⊺₽ ₽*+		· read into TABLAT and inc
	MOVE	שאפראיי ש	, read files indini, and file
	MOVWE	POSTINCO	, get data
	DECESZ	COUNTER	, store data
	BDA	PEAD BLOCK	, tone.
MODIFY WORD	DIGI		, repeat
MODIFI_WORD	MOVIW	DATTA ADDR HIGH	· point to buffer
	MOVWE	FSDOH	, point to built
	MOVIN	DATA ADDR IOM	
	MOVWE	FSROI	
	MOVIM	NEW DATA LOW	: undate buffer word
	MOVWE	REW_DATA_LOW	, update buller word
	MOVIW	NEW DATA HICH	
	MOVWE	INDEO	
EDYCE BIOCK	HOVWE	INDEG	
EIGE_BLOCK	MOVIW	CODE ADDR HEPER	· load TRLPTR with the base
	MOVWE	TRI DTDII	, idad ibbilik with the base
	MOVIW	CODE ADDR HIGH	, address of the memory brock
	MOVWE	TRLPTRH	
	MOVIW	CODE ADDE LOW	
	MOVINE		
	BGE	FECON1 FEDCD	· point to Flach program memory
	BCF	FECON1 CEGS	, point to riash program memory
	BGE	FECON1 WPEN	, access flash program memory
	BSF	EECON1 FREE	; enable Row Frase operation
	BCF	INTCON GIE	· disable interrunts
	MOVIW	55h	, disable incertapes
Required	MOVWE	EECON2	: write 55h
Seguence	MOVIW	0 A A h	, write 55m
bequence	MOVWE	FECON2	· write Olah
	BSF	EECON1 WB	; start erase (CPU stall)
	BSF	INTCON. GIE	; re-enable interrupts
	TBLRD*-		; dummy read decrement
	MOVIW	BUFFER ADDR HIGH	; point to buffer
	MOVWF	FSR0H	, roine co sailer
	MOVIW	BUFFER ADDR LOW	
	MOVWF	FSR0L	
	MOVIW	D' 2'	
	MOVWE	COUNTER1	
WRITE BUFFER BACK	110 1111	COONTENCE	
	MOVIW	D' 32'	: number of bytes in holding register
	MOVWF	COUNTER	, lamber of system notating register
WRITE BYTE TO HER	GS	CONTER	
	MOVE	POSTINCO. W	; get low byte of buffer data
	MOVWF	ТАВЬАТ	; present data to table latch
	TBLWT+*		; write data, perform a short write
			: to internal TBLWT holding register
	DECESZ	COUNTER	: loop until buffers are full
	BRA	WRITE WORD TO HREGS	, roop anorr partoro are rarr
	Diai		

9.5 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Priority registers (IPR1 and IPR2). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 9-8: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
SPPIP ⁽¹⁾	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplei	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 7	SPPIP: Strea	ming Parallel P prity	ort Read/Wri	te Interrupt Prio	ority bit ⁽¹⁾		
	0 = Low prior	rity					
bit 6	ADIP: A/D Co	onverter Interru	ot Priority bit				
	1 = High prio 0 = Low prior	ority rity					
bit 5	RCIP: EUSA	RT Receive Inte	errupt Priority	' bit			
	1 = High prio 0 = Low prior	ority rity					
bit 4	TXIP: EUSAF	RT Transmit Inte	errupt Priority	/ bit			
	1 = High prio 0 = Low prior	ority rity					
bit 3	SSPIP: Masternation 1 = High prio	er Synchronous rrity	Serial Port I	nterrupt Priority	/ bit		
	0 = Low prior	rity					
bit 2	CCP1IP: CCF	P1 Interrupt Pric	ority bit				
	1 = High prio 0 = Low prio	rity rity					
bit 1	TMR2IP: TM	R2 to PR2 Mate	h Interrupt P	riority bit			
	1 = High prio 0 = Low prior	ority rity					
bit 0	TMR1IP: TM	R1 Overflow Int	errupt Priorit	y bit			
	1 = High prio 0 = Low prior	rity rity					

11.0 TIMER0 MODULE

The Timer0 module incorporates the following features:

- Software selectable operation as a timer or counter in both 8-bit or 16-bit modes
- Readable and writable registers
- Dedicated 8-bit, software programmable
 prescaler
- Selectable clock source (internal or external)
- Edge select for external clock
- · Interrupt on overflow

The T0CON register (Register 11-1) controls all aspects of the module's operation, including the prescale selection. It is both readable and writable.

A simplified block diagram of the Timer0 module in 8-bit mode is shown in Figure 11-1. Figure 11-2 shows a simplified block diagram of the Timer0 module in 16-bit mode.

REGISTER 11-1: T0CON: TIMER0 CONTROL REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
TMR00N	T08BIT	TOCS	TOSE	PSA	T0PS2	T0PS1	T0PS0
bit 7							bit 0

bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
TMR0ON: T	imer0 On/Off Control bit		
1 = Enables	Timer0		
0 = Stops Til	mer0		
T08BIT: Tim	er0 8-Bit/16-Bit Control bit		
1 = Timer0 is 0 = Timer0 is	s configured as an 8-bit timer/ s configured as a 16-bit timer/	counter counter	
TOCS: Timer	r0 Clock Source Select bit		
1 = Transitio	n on T0CKI pin		
0 = Internal	instruction cycle clock (CLKO))	
T0SE: Timer	O Source Edge Select bit		
1 = Increme	nt on high-to-low transition on	TOCKI pin	
	nt on Iow-to-nign transition on		
PSA: Timer	Prescaler Assignment bit		
1 = 1 Imer0 p 0 = Timer0 p	orescaler is NOT assigned. The orescaler is assigned. The orescaler is assigned.	mer0 clock input bypasses pre clock input comes from presca	escaler. Aler output.
T0PS2:T0PS	SO : Timer0 Prescaler Select b	its	
111 = 1:256	Prescale value		
110 = 1:128	Prescale value		
101 = 1:64	Prescale value		
011 = 1:16	Prescale value		
010 = 1:8	Prescale value		
001 = 1:4	Prescale value		
000 = 1:2	Prescale value		
	bit OR TMR0ON: T 1 = Enables 0 = Stops Tit T08BIT: Tim 1 = Timer0 is 0 = Timer0 is 0 = Timer0 is TOCS: Timer 1 = Transitic 0 = Internal TOSE: Timer 1 = Increme 0 = Increme PSA: Timer0 1 = TImer0 p 0 = Timer0 p TOPS2:TOPS 111 = 1:256 110 = 1:128 101 = 1:64 100 = 1:32 011 = 1:4 000 = 1:2	bit W = Writable bit OR '1' = Bit is set TMR0ON: Timer0 On/Off Control bit 1 = Enables Timer0 0 = Stops Timer0 T08BIT: Timer0 8-Bit/16-Bit Control bit 1 = Timer0 is configured as an 8-bit timer/ 0 = Timer0 is configured as an 16-bit timer/ TOCS: Timer0 Clock Source Select bit 1 = Transition on TOCKI pin 0 = Internal instruction cycle clock (CLKO) TOSE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on 0 = Increment on low-to-high transition on 0 = Increment on low-to-high transition on PSA: Timer0 Prescaler Assignment bit 1 = TImer0 prescaler is NOT assigned. Timer0 TOPS2:TOPS0: Timer0 Prescaler Select b 111 = 1:256 Prescale value 101 = 1:128 Prescale value 101 = 1:164 Prescale value 101 = 1:32 Prescale value 101 = 1:4 Prescale value 011 = 1:2 Prescale value	bit W = Writable bit U = Unimplemented bit, read OR '1' = Bit is set '0' = Bit is cleared TMROON: Timer0 On/Off Control bit 1 = Enables Timer0 0 = Stops Timer0 TO8BIT: Timer0 8-Bit/16-Bit Control bit 1 = Timer0 is configured as an 8-bit timer/counter 0 = Timer0 is configured as an 8-bit timer/counter TOCS: Timer0 Clock Source Select bit 1 = Transition on T0CKI pin 0 = Internal instruction cycle clock (CLKO) TOSE: Timer0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin PSA: Timer0 Prescaler Assignment bit 1 = TImer0 prescaler is NOT assigned. Timer0 clock input bypasses pre 0 = Timer0 prescaler is assigned. Timer0 clock input toppasses pre 0 = Timer0 prescaler value 110 = 1:128 Prescale value 110 = 1:128 Prescale value 110 = 1:32 Prescale value 111 = 1:25 Prescale value 112 = 1:4 Prescale value 113 = Timer0 Prescaler value 114 = Prescale value 1154 Prescale value 1154 Prescale value 1155 Prescale value 115

12.3.3 TIMER1 OSCILLATOR LAYOUT CONSIDERATIONS

The Timer1 oscillator circuit draws very little power during operation. Due to the low-power nature of the oscillator, it may also be sensitive to rapidly changing signals in close proximity.

The oscillator circuit, shown in Figure 12-3, should be located as close as possible to the microcontroller. There should be no circuits passing within the oscillator circuit boundaries other than Vss or VDD.

If a high-speed circuit must be located near the oscillator (such as the CCP1 pin in Output Compare or PWM mode, or the primary oscillator using the OSC2 pin), a grounded guard ring around the oscillator circuit, as shown in Figure 12-4, may be helpful when used on a single-sided PCB or in addition to a ground plane.

FIGURE 12-4: OSCILLATOR CIRCUIT WITH GROUNDED GUARD RING

12.4 Timer1 Interrupt

The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 interrupt, if enabled, is generated on overflow which is latched in interrupt flag bit, TMR1IF (PIR1<0>). This interrupt can be enabled or disabled by setting or clearing the Timer1 Interrupt Enable bit, TMR1IE (PIE1<0>).

12.5 Resetting Timer1 Using the CCP Special Event Trigger

If either of the CCP modules is configured in Compare mode to generate a Special Event Trigger (CCP1M3:CCP1M0 or CCP2M3:CCP2M0 = 1011), this signal will reset Timer1. The trigger from CCP2 will also start an A/D conversion if the A/D module is enabled (see **Section 15.3.4 "Special Event Trigger"** for more information).

The module must be configured as either a timer or a synchronous counter to take advantage of this feature. When used this way, the CCPRH:CCPRL register pair effectively becomes a period register for Timer1.

If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a Special Event Trigger, the write operation will take precedence.

Note:	The Special Event Triggers from the CCP2
	module will not set the TMR1IF interrupt
	flag bit (PIR1<0>).

12.6 Using Timer1 as a Real-Time Clock

Adding an external LP oscillator to Timer1 (such as the one described in **Section 12.3 "Timer1 Oscillator"**) gives users the option to include RTC functionality to their applications. This is accomplished with an inexpensive watch crystal to provide an accurate time base and several lines of application code to calculate the time. When operating in Sleep mode and using a battery or supercapacitor as a power source, it can completely eliminate the need for a separate RTC device and battery backup.

The application code routine, RTCisr, shown in Example 12-1, demonstrates a simple method to increment a counter at one-second intervals using an Interrupt Service Routine. Incrementing the TMR1 register pair to overflow triggers the interrupt and calls the routine, which increments the seconds counter by one. Additional counters for minutes and hours are incremented as the previous counter overflows.

Since the register pair is 16 bits wide, counting up to overflow the register directly from a 32.768 kHz clock would take 2 seconds. To force the overflow at the required one-second intervals, it is necessary to preload it. The simplest method is to set the MSb of TMR1H with a BSF instruction. Note that the TMR1L register is never preloaded or altered; doing so may introduce cumulative error over many cycles.

For this method to be accurate, Timer1 must operate in Asynchronous mode and the Timer1 overflow interrupt must be enabled (PIE1<0> = 1) as shown in the routine, RTCinit. The Timer1 oscillator must also be enabled and running at all times.

15.0 CAPTURE/COMPARE/PWM (CCP) MODULES

PIC18F2455/2550/4455/4550 devices all have two CCP (Capture/Compare/PWM) modules. Each module contains a 16-bit register, which can operate as a 16-bit Capture register, a 16-bit Compare register or a PWM Master/Slave Duty Cycle register.

In 28-pin devices, the two standard CCP modules (CCP1 and CCP2) operate as described in this chapter. In 40/44-pin devices, CCP1 is implemented as an Enhanced CCP module, with standard Capture and Compare modes and Enhanced PWM modes. The ECCP implementation is discussed in Section 16.0 "Enhanced Capture/Compare/PWM (ECCP) Module". The Capture and Compare operations described in this chapter apply to all standard and Enhanced CCP modules.

Note: Throughout this section and Section 16.0 "Enhanced Capture/Compare/PWM (ECCP) Module", references to the register and bit names for CCP modules are referred to generically by the use of 'x' or 'y' in place of the specific module number. Thus, "CCPxCON" might refer to the control register for CCP1, CCP2 or ECCP1. "CCPxCON" is used throughout these sections to refer to the module control register regardless of whether the CCP module is a standard or Enhanced implementation.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
(1)	(1)	DCxB1	DCxB0	CCPxM3	CCPxM2	CCPxM1	CCPxM0
bit 7							bit 0

REGISTER 15-1: CCPxCON: STANDARD CCPx CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0' ⁽¹⁾
bit 5-4	DCxB1:DCxB0: PWM Duty Cycle Bit 1 and Bit 0 for CCPx Module
	Capture mode:
	Unused.
	Compare mode:
	Unused.
	PWM mode:
	These bits are the two LSbs (bit 1 and bit 0) of the 10-bit PWM duty cycle. The eight MSbs of the duty cycle are found in CCPR1L.
bit 3-0	CCPxM3:CCPxM0: CCPx Module Mode Select bits
	0000 = Capture/Compare/PWM disabled (resets CCPx module)
	0001 = Reserved
	0010 = Compare mode: toggle output on match (CCPxIF bit is set)
	0011 = Reserved
	0100 = Capture mode: every falling edge
	0101 = Capture mode: every rising edge
	0110 = Capture mode: every 4th hsing edge
	1000 = Compare mode: initialize CCPy nin low: on compare match, force CCPy nin high (CCPy/E hit
	is set)
	1001 = Compare mode: initialize CCPx pin high; on compare match, force CCPx pin low (CCPxIF bit
	is set)
	1010 = Compare mode: generate software interrupt on compare match (CCPxIF bit is set, CCPx pin
	reflects I/O state)
	1011 = Compare mode: trigger special event, reset timer, start A/D conversion on CCPx match
	(CCPxIF bit is set)
	11xx = PWM mode

Note 1: These bits are not implemented on 28-pin devices and are read as '0'.

17.7 Streaming Parallel Port

The Streaming Parallel Port (SPP) is an alternate route option for data besides USB RAM. Using the SPP, an endpoint can be configured to send data to or receive data directly from external hardware.

This methodology presents design possibilities where the microcontroller acts as a data manager, allowing the SPP to pass large blocks of data without the microcontroller actually processing it. An application example might include a data acquisition system, where data is streamed from an external FIFO through USB to the host computer. In this case, endpoint control is managed by the microcontroller and raw data movement is processed externally.

The SPP is enabled as a USB endpoint port through the associated endpoint buffer descriptor. The endpoint must be enabled as follows:

- 1. Set BDnADRL:BDnADRH to point to FFFFh.
- 2. Set the KEN bit (BDnSTAT<5>) to let SIE keep control of the buffer.
- 3. Set the INCDIS bit (BDnSTAT<4>) to disable automatic address increment.

Refer to **Section 18.0 "Streaming Parallel Port"** for more information about the SPP.

- Note 1: If an endpoint is configured to use the SPP, the SPP module must also be configured to use the USB module. Otherwise, unexpected operation may occur.
 - In addition, if an endpoint is configured to use the SPP, the data transfer type of that endpoint must be isochronous only.

17.8 Oscillator

The USB module has specific clock requirements. For full-speed operation, the clock source must be 48 MHz. Even so, the microcontroller core and other peripherals are not required to run at that clock speed or even from the same clock source. Available clocking options are described in detail in Section 2.3 "Oscillator Settings for USB".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Details on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INTOIE	RBIE	TMR0IF	INT0IF	RBIF	53
IPR2	OSCFIP	CMIP	USBIP	EEIP	BCLIP	HLVDIP	TMR3IP	CCP2IP	56
PIR2	OSCFIF	CMIF	USBIF	EEIF	BCLIF	HLVDIF	TMR3IF	CCP2IF	56

TABLE 17-6: REGISTERS ASSOCIATED WITH USB MODULE OPERATION⁽¹⁾

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the USB module.

Note 1: This table includes only those hardware mapped SFRs located in Bank 15 of the data memory space. The Buffer Descriptor registers, which are mapped into Bank 4 and are not true SFRs, are listed separately in Table 17-5.

19.4.3.3 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit, BF (SSPSTAT<0>), is set, or bit, SSPOV (SSPCON1<6>), is set.

An MSSP interrupt is generated for each data transfer byte. The Interrupt Flag bit, SSPIF, must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

If SEN is enabled (SSPCON2<0> = 1), RB1/AN10/ INT1/SCK/SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting bit, CKP (SSPCON1<4>). See **Section 19.4.4 "Clock Stretching"** for more detail.

19.4.3.4 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin RB1/AN10/INT1/SCK/ SCL is held low regardless of SEN (see Section 19.4.4 "Clock Stretching" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then the RB1/AN10/INT1/SCK/SCL pin should be enabled by setting bit, CKP (SSPCON1<4>). The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 19-10).

The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, the RB1/AN10/INT1/SCK/SCL pin must be enabled by setting bit CKP (SSPCON1<4>).

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared in software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

PIC18F2455/2550/4455/4550

PIC18F2455/2550/4455/4550

19.4.17.3 Bus Collision During a Stop Condition

Bus collision occurs during a Stop condition if:

- a) After the SDA pin has been deasserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is deasserted, SCL is sampled low before SDA goes high.

The Stop condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the Baud Rate Generator is loaded with SSPADD<6:0> and counts down to 0. After the BRG times out, SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0'. (Figure 19-33). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 19-34).

FIGURE 19-33: BUS COLLISION DURING A STOP CONDITION (CASE 1)

FIGURE 19-34: BUS COLLISION DURING A STOP CONDITION (CASE 2)

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc	= 40.000) MHz	Fosc	Fosc = 20.000 MHz			Fosc = 10.000 MHz			Fosc = 8.000 MHz		
(K) Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	_	_	_	_	_	_		_	_		_	_	
1.2	—	—	—	1.221	1.73	255	1.202	0.16	129	1.201	-0.16	103	
2.4	2.441	1.73	255	2.404	0.16	129	2.404	0.16	64	2.403	-0.16	51	
9.6	9.615	0.16	64	9.766	1.73	31	9.766	1.73	15	9.615	-0.16	12	
19.2	19.531	1.73	31	19.531	1.73	15	19.531	1.73	7	_	_	_	
57.6	56.818	-1.36	10	62.500	8.51	4	52.083	-9.58	2	—	_	_	
115.2	125.000	8.51	4	104.167	-9.58	2	78.125	-32.18	1	—	_	_	

	DAUD DATES		A OVALOU DOMOLIO MODEO
TABLE 20-3:	BAUD RAIES	FOR	ASYNCHRONOUS MODES

	SYNC = 0, BRGH = 0, BRG16 = 0										
BAUD	Fos	c = 4.000	MHz	Fos	c = 2.000	MHz	Fosc = 1.000 MHz				
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual % Rate Error (K)		SPBRG value (decimal)	Actual % Rate Error (K)		SPBRG value (decimal)		
0.3	0.300	0.16	207	0.300	-0.16	103	0.300	-0.16	51		
1.2	1.202	0.16	51	1.201	-0.16	25	1.201	-0.16	12		
2.4	2.404	0.16	25	2.403	-0.16	12	—	—	—		
9.6	8.929	-6.99	6	—	_	_	—	_	_		
19.2	20.833	8.51	2	—	_	_	—	_	_		
57.6	62.500	8.51	0	—	_	_	—	_	_		
115.2	62.500	-45.75	0	_	_	_	_	_	_		

	SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc	Fosc = 40.000 MHz Fosc = 20.000 MHz) MHz	Fosc	= 10.000) MHz	Fosc = 8.000 MHz			
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	% SPBRG A Error value (decimal)		% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	—	_	_	—	_	_	_	_	_	_	_	_
1.2	—	—	—	—	—	—	—		—	—	_	—
2.4	—	—	—	—	—	—	2.441	1.73	255	2.403	-0.16	207
9.6	9.766	1.73	255	9.615	0.16	129	9.615	0.16	64	9.615	-0.16	51
19.2	19.231	0.16	129	19.231	0.16	64	19.531	1.73	31	19.230	-0.16	25
57.6	58.140	0.94	42	56.818	-1.36	21	56.818	-1.36	10	55.555	3.55	8
115.2	113.636	-1.36	21	113.636	-1.36	10	125.000	8.51	4	—		_

	SYNC = 0, BRGH = 1, BRG16 = 0										
BAUD	Fosc = 4.000 MHz Fosc = 2.000 MHz Fosc = 1.000 MHz								MHz		
(K)	Actual Rate (K)	% Error	SPBRG value (decimal)	3RG Actual lue Rate ^{imal)} (K)		SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)		
0.3	_	_	_	_	_	_	0.300	-0.16	207		
1.2	1.202	0.16	207	1.201	-0.16	103	1.201	-0.16	51		
2.4	2.404	0.16	103	2.403	-0.16	51	2.403	-0.16	25		
9.6	9.615	0.16	25	9.615	-0.16	12	_	_	_		
19.2	19.231	0.16	12	_	_	_	_	_	_		
57.6	62.500	8.51	3	—	_	_	—	_	_		
115.2	125.000	8.51	1	—	_	_	—	_	_		

© 2009 Microchip Technology Inc.

REGISTER 25-13: DEVID1: DEVICE ID REGISTER 1 FOR PIC18F2455/2550/4455/4550 DEVICES

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7							bit 0
Legend:							

R = Read-only bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is un	programmed	u = Unchanged from programmed state

bit 7-5	DEV2:DEV0: Device ID bits
	For a complete listing, see Register 25-14.
bit 4-0	REV4:REV0: Revision ID bits
	These bits are used to indicate the device revision.

REGISTER 25-14: DEVID2: DEVICE ID REGISTER 2 FOR PIC18F2455/2550/4455/4550 DEVICES

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

Legend:

R = Read-only bit	P = Programmable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unp	programmed	u = Unchanged from programmed state

bit 7-0 DEV10:DEV3: Device ID bits

DEV10:DEV3 (DEVID2<7:0>)	DEV2:DEV0 (DEVID1<7:5>)	Device
0001 0010	011	PIC18F2455
0010 1010	011	PIC18F2458
0001 0010	010	PIC18F2550
0010 1010	010	PIC18F2553
0001 0010	001	PIC18F4455
0010 1010	001	PIC18F4458
0001 0010	000	PIC18F4550
0010 1010	000	PIC18F4553

FIGURE 25-7: EXTERNAL BLOCK TABLE READ (EBTRx) DISALLOWED

FIGURE 25-8: EXTERNAL BLOCK TABLE READ (EBTRx) ALLOWED

PIC18F2455/2550/4455/4550

BTFS	SC	Bit Test File, Skip if Clear		BTFSS	6	Bit Test File	Test File, Skip if Set		
Synta	ax:	BTFSC f, b	{,a}		Syntax		BTFSS f, b	{,a}	
Oper	ands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]			Opera	nds:	0 ≤ f ≤ 255 0 ≤ b < 7 a ∈ [0,1]		
Oper	ation:	skip if (f)	= 0		Operat	tion:	skip if (f)	= 1	
Statu	s Affected:	None			Status	Affected:	None		
Enco	ding:	1011	bbba ff	ff ffff	Encod	ing:	1010	bbba ff	ff ffff
Desc	ription:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.		Descri	Description: If bit 'b' in register 'f' is '1' instruction is skipped. If bit the next instruction fetche current instruction execut and a NOP is executed inst this a two-cycle instruction If 'a' is '0', the Access Bai 'a' is '1', the BSR is used GPR bank (default). If 'a' is '0' and the extend set is enabled, this instru in Indexed Literal Offset / mode whenever f ≤ 95 (5 See Section 26.2.3 "Byt Bit-Oriented Instruction Literal Offset Mode" for		gister 'f' is '1', 1 s skipped. If bit ruction fetched uction executio s executed instruction. e Access Bank BSR is used to default). In the extended ed, this instructi iteral Offset Ac ever $f \le 95$ (5Ff a 26.2.3 "Byte- d Instructions et Mode" for d	then the next 'b' is '1', then during the n is discarded ead, making is selected. If p select the d instruction ion operates ldressing n). Oriented and in Indexed etails.	
Word	ls:	1			Words	:	1		
Cycle	es:	1(2) Note: 3 cy by a	cles if skip and 2-word instruc	followed	Cycles	:	1(2) Note: 3 cy by a	rcles if skip and a 2-word instruc	l followed
QC	ycle Activity:				Q Cyc	cle Activity:			
	Q1	Q2	Q3	Q4	-	Q1	Q2	Q3	Q4
	Decode	Read	Process	No		Decode	Read	Process	No
lfek	in [.]	register i	Dala	operation	lfekin		register i	Dala	operation
11 5K	ιρ. Q1	Q2	Q3	04	пэкір	Q1	02	Q3	Q4
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation		operation	operation	operation	operation
lf sk	ip and followed	d by 2-word ins	truction:		lf skip	and followed	by 2-word ins	truction:	
	Q1	Q2	Q3	Q4	F	Q1	Q2	Q3	Q4
	No	No	No	No		No	No	No	No
	operation	operation	operation	operation	_	operation	operation	operation	operation
	NO operation	operation	operation	operation		NO	operation	operation	NO operation
					L				
<u>Exan</u>	<u>nple:</u>	HERE BI FALSE : TRUE :	IFSC FLAG	;, 1, 0	<u>Examp</u>	<u>ole:</u>	HERE B' FALSE : TRUE :	IFSS FLAG	, 1, 0
	Before Instruct PC After Instructio If FLAG< PC If FLAG< PC	tion = add n 1> = 0; = add 1> = 1; = add	ress (HERE) ress (TRUE) ress (FALSE))	B	efore Instruct PC fter Instructio If FLAG< PC If FLAG< PC	tion = add n = 0; 1> = 0; 1> = 1; = add = add	Iress (HERE) Iress (FALSE) Iress (TRUE)	

26.2.3 BYTE-ORIENTED AND BIT-ORIENTED INSTRUCTIONS IN INDEXED LITERAL OFFSET MODE

Note:	Enabling	the	PIC18	instruction	set		
	extension	may	cause leg	gacy applicat	ions		
	to behave	errat	tically or fail entirely.				

In addition to eight new commands in the extended set, enabling the extended instruction set also enables Indexed Literal Offset Addressing mode (Section 5.6.1 "Indexed Addressing with Literal Offset"). This has a significant impact on the way that many commands of the standard PIC18 instruction set are interpreted.

When the extended set is disabled, addresses embedded in opcodes are treated as literal memory locations: either as a location in the Access Bank ('a' = 0) or in a GPR bank designated by the BSR ('a' = 1). When the extended instruction set is enabled and 'a' = 0, however, a file register argument of 5Fh or less is interpreted as an offset from the pointer value in FSR2 and not as a literal address. For practical purposes, this means that all instructions that use the Access RAM bit as an argument – that is, all byte-oriented and bitoriented instructions, or almost half of the core PIC18 instructions – may behave differently when the extended instruction set is enabled.

When the content of FSR2 is 00h, the boundaries of the Access RAM are essentially remapped to their original values. This may be useful in creating backward compatible code. If this technique is used, it may be necessary to save the value of FSR2 and restore it when moving back and forth between C and assembly routines in order to preserve the Stack Pointer. Users must also keep in mind the syntax requirements of the extended instruction set (see Section 26.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands").

Although the Indexed Literal Offset Addressing mode can be very useful for dynamic stack and pointer manipulation, it can also be very annoying if a simple arithmetic operation is carried out on the wrong register. Users who are accustomed to the PIC18 programming must keep in mind that, when the extended instruction set is enabled, register addresses of 5Fh or less are used for Indexed Literal Offset Addressing.

Representative examples of typical byte-oriented and bit-oriented instructions in the Indexed Literal Offset Addressing mode are provided on the following page to show how execution is affected. The operand conditions shown in the examples are applicable to all instructions of these types.

26.2.3.1 Extended Instruction Syntax with Standard PIC18 Commands

When the extended instruction set is enabled, the file register argument, 'f', in the standard byte-oriented and bit-oriented commands is replaced with the literal offset value, 'k'. As already noted, this occurs only when 'f' is less than or equal to 5Fh. When an offset value is used, it must be indicated by square brackets ("[]"). As with the extended instructions, the use of brackets indicates to the compiler that the value is to be interpreted as an index or an offset. Omitting the brackets, or using a value greater than 5Fh within brackets, will generate an error in the MPASM Assembler.

If the index argument is properly bracketed for Indexed Literal Offset Addressing mode, the Access RAM argument is never specified; it will automatically be assumed to be '0'. This is in contrast to standard operation (extended instruction set disabled) when 'a' is set on the basis of the target address. Declaring the Access RAM bit in this mode will also generate an error in the MPASM Assembler.

The destination argument, 'd', functions as before.

In the latest versions of the MPASM assembler, language support for the extended instruction set must be explicitly invoked. This is done with either the command line option, $/_{y}$, or the PE directive in the source listing.

26.2.4 CONSIDERATIONS WHEN ENABLING THE EXTENDED INSTRUCTION SET

It is important to note that the extensions to the instruction set may not be beneficial to all users. In particular, users who are not writing code that uses a software stack may not benefit from using the extensions to the instruction set.

Additionally, the Indexed Literal Offset Addressing mode may create issues with legacy applications written to the PIC18 assembler. This is because instructions in the legacy code may attempt to address registers in the Access Bank below 5Fh. Since these addresses are interpreted as literal offsets to FSR2 when the instruction set extension is enabled, the application may read or write to the wrong data addresses.

When porting an application to the PIC18F2455/2550/ 4455/4550, it is very important to consider the type of code. A large, re-entrant application that is written in 'C' and would benefit from efficient compilation will do well when using the instruction set extensions. Legacy applications that heavily use the Access Bank will most likely not benefit from using the extended instruction set.

DC Characteristics: Supply Voltage PIC18F2455/2550/4455/4550 (Industrial) PIC18LF2455/2550/4455/4550 (Industrial)

PIC18LF2 (Indus	PIC18LF2455/2550/4455/4550 (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC18F24 (Indus	PIC18F2455/2550/4455/4550 (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Symbol	ol Characteristic		Тур	Max	Units	Conditions		
D001	Vdd	Supply Voltage	2.0 ⁽²⁾	_	5.5	V	EC, HS, XT and Internal Oscillator modes		
			3.0 ⁽²⁾	—	5.5	V	HSPLL, XTPLL, ECPIO and ECPLL Oscillator modes		
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5		_	~			
D003	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal		_	0.7	V	See Section 4.3 "Power-on Reset (POR)" for details		
D004	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	_	V/ms	See Section 4.3 "Power-on Reset (POR)" for details		
D005	VBOR	Brown-out Reset Voltage							
		BORV1:BORV0 = 11	2.00	2.05	2.16	V			
		BORV1:BORV0 = 10	2.65	2.79	2.93	V			
		BORV1:BORV0 = 01	4.11	4.33	4.55	V			
		BORV1:BORV0 = 00	4.36	4.59	4.82	V			

Legend: Shading of rows is to assist in readability of the table.

28.1

Note 1: This is the limit to which VDD can be lowered in Sleep mode, or during a device Reset, without losing RAM data.

2: The stated minimums apply for the PIC18LF products in this device family. PIC18F products in this device family are rated for 4.2V minimum in all oscillator modes.

Block Diagrams

INDEX

Α	
A/D	265
Acquisition Requirements	270
ADCON0 Register	265
ADCON1 Register	265
ADCON2 Register	265
ADRESH Register	268
ADRESL Register	265
Analog Port Pins, Configuring	272
Associated Registers	274
Configuring the Module	269
Conversion Clock (TAD)	271
Conversion Requirements	405
Conversion Status (GO/DONE Bit)	268
Conversions	273
Converter Characteristics	404
Converter Interrupt, Configuring	269
Discharge	273
Operation in Power-Managed Modes	272
Selecting and Configuring Acquisition Time	271
Special Event Trigger (CCP2)	274
Special Event Trigger (ECCP)	152
Use of the CCP2 Trigger	274
Absolute Maximum Ratings	367
AC (Timing) Characteristics	385
Load Conditions for Device Timing	
Specifications	386
Parameter Symbology	385
Temperature and Voltage Specifications	386
Timing Conditions	386
AC Characteristics	
Internal RC Accuracy	388
Access Bank	
Mapping with Indexed Literal Offset Mode	79
ACKSTAT	232
ACKSTAT Status Flag	232
ADCON0 Register	265
GO/DONE Bit	268
ADCON1 Register	265
ADCON2 Register	265
ADDFSR	356
ADDLW	. 319
ADDULNK	356
ADDWF	.319
ADDWFC	320
ADRESH Register	265
ADRESL Register	268
Analog-to-Digital Converter. See A/D.	
and BSR	79
ANDLW	320
ANDWF	.321
Assembler	
MPASM Assembler	364
В	
Baud Rate Generator	228
BC	321

BF232

A/D	
Analog Input Model 269	
Baud Rate Generator 228	
Capture Mode Operation 145	
Comparator Analog Input Model 279	
Comparator I/O Operating Modes	
Comparator Output 278	
Comparator Voltage Reference	
Comparator Voltage Reference	
Output Buffer Example	
Compare Mode Operation 146	
Device Clock	
Enhanced PWM 153	
EUSART Receive	
EUSART Transmit	
External Power-on Reset Circuit	
(Slow VDD Power-up)	
Fail-Safe Clock Monitor 306	
Generic I/O Port 113	
High/Low-Voltage Detect with External Input 286	
Interrupt Logic 100	
MSSP (I ² C Master Mode) 226	
MSSP (I ² C Mode) 207	
MSSP (SPI Mode) 197	
On-Chin Reset Circuit 45	
DIC18E2/55/2550 10	
DIC18E4455/4550 11	
PIL (HS Mode) 27	
DW/M Operation (Simplified) 148	
Ponde from Elash Program Momony	
Single Compositor	
CDD Data Dath 101	
SPP Data Path	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 is 8 Bit Mode 128	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 123	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 132 Timer1 132	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 132 Timer1 132 Timer2 138	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 132 Timer1 132 Timer2 138 Timer3 140	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 132 Timer1 (16-Bit Read/Write Mode) 132 Timer3 140 Timer3 140	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 132 Timer1 (16-Bit Read/Write Mode) 132 Timer2 138 Timer3 140 Timer3 (16-Bit Read/Write Mode) 140 USR Interrupt Logic 180	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 132 Timer1 (16-Bit Read/Write Mode) 132 Timer2 138 Timer3 140 Timer3 (16-Bit Read/Write Mode) 140 USB Interrupt Logic 180 USB Regrindered and Optione 165	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 132 Timer1 (16-Bit Read/Write Mode) 132 Timer2 138 Timer3 140 Timer3 (16-Bit Read/Write Mode) 140 USB Interrupt Logic 180 USB Peripheral and Options 165 Watchdog Timer 203	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 132 Timer1 (16-Bit Read/Write Mode) 132 Timer3 140 Timer3 (16-Bit Read/Write Mode) 140 USB Interrupt Logic 180 USB Peripheral and Options 165 Watchdog Timer 303	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 132 Timer1 (16-Bit Read/Write Mode) 132 Timer3 140 Timer3 (16-Bit Read/Write Mode) 140 USB Interrupt Logic 180 USB Peripheral and Options 165 Watchdog Timer 303 BN 322	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 132 Timer1 (16-Bit Read/Write Mode) 132 Timer3 140 Timer3 (16-Bit Read/Write Mode) 140 USB Interrupt Logic 180 USB Peripheral and Options 165 Watchdog Timer 303 BN 322 BNC 323	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1 (16-Bit Read/Write Mode)132Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNN323BNN323BNO323	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1 (16-Bit Read/Write Mode)132Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNC323BNOV323BNOV324BNOV324	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1 (16-Bit Read/Write Mode)132Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNC323BNN323BNOV324BNZSae Brown out Depend	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1 (16-Bit Read/Write Mode)132Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNC323BNN323BNOV324BNZ324BNZ324BNZ324BNZ324BNZ324BNZ324BNZ324BNZ324BNZ324BNZ324BOY327	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1 (16-Bit Read/Write Mode)132Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNC323BNN323BNOV324BNZ324BOR. See Brown-out Reset.327BOV327DDA225	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1 (16-Bit Read/Write Mode)132Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNC323BNN323BNOV324BNZ324BOR. See Brown-out Reset.327BOV327BRA325	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1 (16-Bit Read/Write Mode)132Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNC323BNN323BNOV324BOZ327BRA325Break Character (12-Bit) Transmit and Receive259BPG. See Brown-out Reset.259BPG. See Brown-Path Path Character (12-Bit) Transmit and Receive259	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1132Timer2138Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNC323BNN323BNOV324BOZ327BRA325Break Character (12-Bit) Transmit and Receive259BRG. See Baud Rate Generator.48	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1 (16-Bit Read/Write Mode)132Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNC323BNN323BNOV324BNZ324BOR. See Brown-out Reset.327BRA325Break Character (12-Bit) Transmit and Receive259BRG. See Baud Rate Generator.48Dotocting48	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 132 Timer1 132 Timer2 138 Timer3 140 Timer3 (16-Bit Read/Write Mode) 140 USB Interrupt Logic 180 USB Peripheral and Options 165 Watchdog Timer 303 BN 322 BNC 323 BNN 323 BNOV 324 BNZ 327 BRA 325 Break Character (12-Bit) Transmit and Receive 259 BRG. See Baud Rate Generator. 325 Break Character (12-Bit) Transmit and Receive 259 BRG. See Baud Rate Generator. 48 Disabling in Sleen Mode 48	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer1 in 8-Bit Mode 128 Timer1 (16-Bit Read/Write Mode) 132 Timer2 138 Timer3 (16-Bit Read/Write Mode) 140 USB Interrupt Logic 180 USB Peripheral and Options 165 Watchdog Timer 303 BN 322 BNC 323 BNN 322 BNC 323 BNV 323 BNV 323 BNV 324 BOZ 327 BRA 325 Break Character (12-Bit) Transmit and Receive 259 BRG. See Baud Rate Generator. 325 Brown-out Reset (BOR) 48 Disabling in Sleep Mode 48 Disabling in Sleep Mode 48	
SPP Data Path 191 Table Read Operation 81 Table Write Operation 82 Table Writes to Flash Program Memory 87 Timer0 in 16-Bit Mode 128 Timer0 in 8-Bit Mode 128 Timer1 132 Timer1 132 Timer2 138 Timer3 140 Timer3 16-Bit Read/Write Mode) 140 USB Interrupt Logic 180 USB Peripheral and Options 165 Watchdog Timer 303 BN 322 BNOV 323 BNOV 324 BOR See Brown-out Reset. BOV 327 BRA 325 Break Character (12-Bit) Transmit and Receive 259 BRG. See Baud Rate Generator. 80 Detecting 48 Disabling in Sleep Mode 48 Software Enabled 48	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1132Timer2138Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNC323BNN323BNOV324BOR. See Brown-out Reset.327BRA325Break Character (12-Bit) Transmit and Receive259BRG. See Baud Rate Generator.48Detecting48Software Enabled48Software Enabled48SF325	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1132Timer2138Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNC323BNN323BNOV324BOR. See Brown-out Reset.327BRA325Break Character (12-Bit) Transmit and Receive259BRG. See Baud Rate Generator.48Detecting48Disabling in Sleep Mode48Software Enabled48SF325BTFSC326BTFSC326	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1132Timer2138Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNC323BNOV324BOR. See Brown-out Reset.327BRA325Break Character (12-Bit) Transmit and Receive259BRG. See Baud Rate Generator.48Detecting48Disabling in Sleep Mode48Software Enabled48BTFSC326BTFSS326BTFSS326BTG327	
SPP Data Path191Table Read Operation81Table Write Operation82Table Writes to Flash Program Memory87Timer0 in 16-Bit Mode128Timer0 in 8-Bit Mode128Timer1132Timer1132Timer2138Timer3140Timer3 (16-Bit Read/Write Mode)140USB Interrupt Logic180USB Peripheral and Options165Watchdog Timer303BN322BNC323BNN323BNOV324BOZ327BRA325Break Character (12-Bit) Transmit and Receive259BRG. See Baud Rate Generator.87Brown-out Reset (BOR)48Detecting48Software Enabled48SF325BTFSC326BTFSS326BTG326BTG326BTG326BTG326BTFSS326BTG327BT326BT327BT326BT327BT326BT326BT326BT326BT326BT326BT326BT326BT326BT327BT326BT327BT328BT329BT329 <t< td=""><td></td></t<>	

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao

Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4080

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

03/26/09