

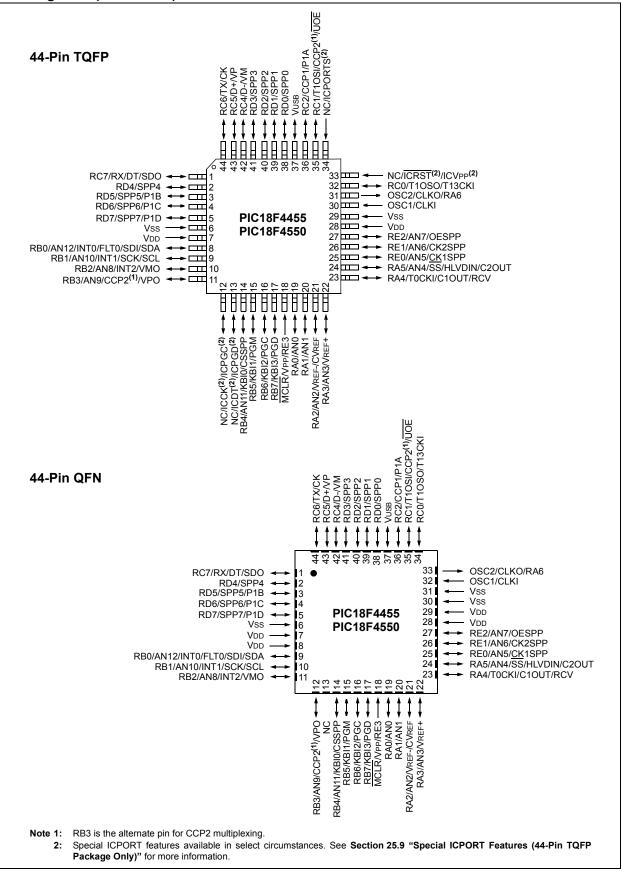
Welcome to E-XFL.COM

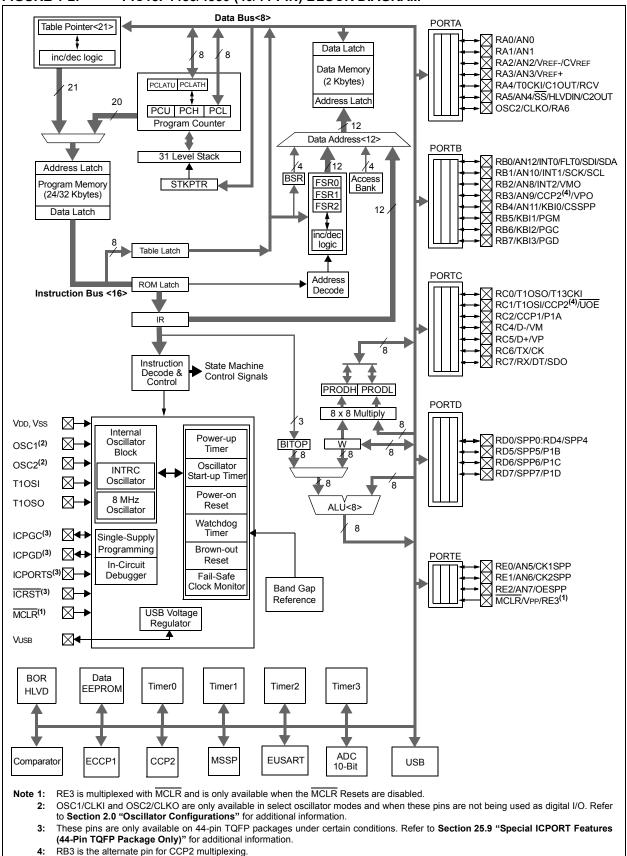
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4550t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.2.5.4 Compensating for INTOSC Drift

It is possible to adjust the INTOSC frequency by modifying the value in the OSCTUNE register. This has no effect on the INTRC clock source frequency.

Tuning the INTOSC source requires knowing when to make the adjustment, in which direction it should be made and in some cases, how large a change is needed. When using the EUSART, for example, an adjustment may be required when it begins to generate framing errors or receives data with errors while in Asynchronous mode. Framing errors indicate that the device clock frequency is too high; to adjust for this, decrement the value in OSCTUNE to reduce the clock frequency. On the other hand, errors in data may suggest that the clock speed is too low; to compensate, increment OSCTUNE to increase the clock frequency.

It is also possible to verify device clock speed against a reference clock. Two timers may be used: one timer is clocked by the peripheral clock, while the other is clocked by a fixed reference source, such as the Timer1 oscillator. Both timers are cleared but the timer clocked by the reference generates interrupts. When an interrupt occurs, the internally clocked timer is read and both timers are cleared. If the internally clocked timer value is greater than expected, then the internal oscillator block is running too fast. To adjust for this, decrement the OSCTUNE register. Finally, a CCP module can use free-running Timer1 (or Timer3), clocked by the internal oscillator block and an external event with a known period (i.e., AC power frequency). The time of the first event is captured in the CCPRxH:CCPRxL registers and is recorded for use later. When the second event causes a capture, the time of the first event is subtracted from the time of the second event. Since the period of the external event is known, the time difference between events can be calculated.

If the measured time is much greater than the calculated time, the internal oscillator block is running too fast; to compensate, decrement the OSCTUNE register. If the measured time is much less than the calculated time, the internal oscillator block is running too slow; to compensate, increment the OSCTUNE register.

4.5 Device Reset Timers

PIC18F2455/2550/4455/4550 devices incorporate three separate on-chip timers that help regulate the Power-on Reset process. Their main function is to ensure that the device clock is stable before code is executed. These timers are:

- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- PLL Lock Time-out

4.5.1 POWER-UP TIMER (PWRT)

The Power-up Timer (PWRT) of the PIC18F2455/2550/ 4455/4550 devices is an 11-bit counter which uses the INTRC source as the clock input. This yields an approximate time interval of 2048 x 32 μ s = 65.6 ms. While the PWRT is counting, the device is held in Reset.

The power-up time delay depends on the INTRC clock and will vary from chip to chip due to temperature and process variation. See DC parameter 33 (Table 28-12) for details.

The PWRT is enabled by clearing the PWRTEN Configuration bit.

4.5.2 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (from OSC1 input) delay after the PWRT delay is over (parameter 33, Table 28-12). This ensures that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, HS and HSPLL modes and only on Power-on Reset or on exit from most power-managed modes.

4.5.3 PLL LOCK TIME-OUT

With the PLL enabled in its PLL mode, the time-out sequence following a Power-on Reset is slightly different from other oscillator modes. A separate timer is used to provide a fixed time-out that is sufficient for the PLL to lock to the main oscillator frequency. This PLL lock time-out (TPLL) is typically 2 ms and follows the oscillator start-up time-out.

4.5.4 TIME-OUT SEQUENCE

On power-up, the time-out sequence is as follows:

- 1. After the POR condition has cleared, PWRT time-out is invoked (if enabled).
- 2. Then, the OST is activated.

The total time-out will vary based on oscillator configuration and the status of the PWRT. Figure 4-3, Figure 4-4, Figure 4-5, Figure 4-6 and Figure 4-7 all depict time-out sequences on power-up, with the Power-up Timer enabled and the device operating in HS Oscillator mode. Figures 4-3 through 4-6 also apply to devices operating in XT mode. For devices in RC mode and with the PWRT disabled, on the other hand, there will be no time-out at all.

Since the time-outs occur from the POR pulse, if MCLR is kept low long enough, all time-outs will expire. Bringing MCLR high will begin execution immediately (Figure 4-5). This is useful for testing purposes or to synchronize more than one PIC18FXXXX device operating in parallel.

Oscillator	Power-up ⁽²⁾ and	Exit from		
Configuration	PWRTEN = 0	PWRTEN = 1	Power-Managed Mode	
HS, XT	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc	
HSPLL, XTPLL	66 ms ⁽¹⁾ + 1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	1024 Tosc + 2 ms ⁽²⁾	
EC, ECIO	66 ms ⁽¹⁾	—	—	
ECPLL, ECPIO	66 ms ⁽¹⁾ + 2 ms ⁽²⁾	2 ms ⁽²⁾	2 ms ⁽²⁾	
INTIO, INTCKO	66 ms ⁽¹⁾	_	—	
INTHS, INTXT	66 ms ⁽¹⁾ + 1024 Tosc	1024 Tosc	1024 Tosc	

TABLE 4-2: TIME-OUT IN VARIOUS SITUATIONS

Note 1: 66 ms (65.5 ms) is the nominal Power-up Timer (PWRT) delay.

2: 2 ms is the nominal time required for the PLL to lock.

5.4 Data Addressing Modes

Note: The execution of some instructions in the core PIC18 instruction set are changed when the PIC18 extended instruction set is enabled. See Section 5.6 "Data Memory and the Extended Instruction Set" for more information.

While the program memory can be addressed in only one way – through the program counter – information in the data memory space can be addressed in several ways. For most instructions, the addressing mode is fixed. Other instructions may use up to three modes, depending on which operands are used and whether or not the extended instruction set is enabled.

The addressing modes are:

- Inherent
- Literal
- Direct
- Indirect

An additional addressing mode, Indexed Literal Offset, is available when the extended instruction set is enabled (XINST Configuration bit = 1). Its operation is discussed in greater detail in **Section 5.6.1 "Indexed Addressing with Literal Offset**".

5.4.1 INHERENT AND LITERAL ADDRESSING

Many PIC18 control instructions do not need any argument at all; they either perform an operation that globally affects the device or they operate implicitly on one register. This addressing mode is known as Inherent Addressing. Examples include SLEEP, RESET and DAW.

Other instructions work in a similar way but require an additional explicit argument in the opcode. This is known as Literal Addressing mode because they require some literal value as an argument. Examples include ADDLW and MOVLW, which respectively, add or move a literal value to the W register. Other examples include CALL and GOTO, which include a 20-bit program memory address.

5.4.2 DIRECT ADDRESSING

Direct Addressing mode specifies all or part of the source and/or destination address of the operation within the opcode itself. The options are specified by the arguments accompanying the instruction.

In the core PIC18 instruction set, bit-oriented and byte-oriented instructions use some version of Direct Addressing by default. All of these instructions include some 8-bit literal address as their Least Significant Byte. This address specifies either a register address in one of the banks of data RAM (Section 5.3.4 "General **Purpose Register File**") or a location in the Access Bank (Section 5.3.3 "Access Bank") as the data source for the instruction.

The Access RAM bit 'a' determines how the address is interpreted. When 'a' is '1', the contents of the BSR (Section 5.3.2 "Bank Select Register (BSR)") are used with the address to determine the complete 12-bit address of the register. When 'a' is '0', the address is interpreted as being a register in the Access Bank. Addressing that uses the Access RAM is sometimes also known as Direct Forced Addressing mode.

A few instructions, such as MOVFF, include the entire 12-bit address (either source or destination) in their opcodes. In these cases, the BSR is ignored entirely.

The destination of the operation's results is determined by the destination bit 'd'. When 'd' is '1', the results are stored back in the source register, overwriting its original contents. When 'd' is '0', the results are stored in the W register. Instructions without the 'd' argument have a destination that is implicit in the instruction; their destination is either the target register being operated on or the W register.

5.4.3 INDIRECT ADDRESSING

Indirect Addressing allows the user to access a location in data memory without giving a fixed address in the instruction. This is done by using File Select Registers (FSRs) as pointers to the locations to be read or written to. Since the FSRs are themselves located in RAM as Special Function Registers, they can also be directly manipulated under program control. This makes FSRs very useful in implementing data structures, such as tables and arrays in data memory.

The registers for Indirect Addressing are also implemented with Indirect File Operands (INDFs) that permit automatic manipulation of the pointer value with auto-incrementing, auto-decrementing or offsetting with another value. This allows for efficient code, using loops, such as the example of clearing an entire RAM bank in Example 5-5.

EXAMPLE 5-5: HOW TO CLEAR RAM (BANK 1) USING INDIRECT ADDRESSING

	LFSR	FSR0, 100h	;	
NEXT	CLRF	POSTINCO	;	Clear INDF
			;	register then
			;	inc pointer
	BTFSS	FSROH, 1	;	All done with
			;	Bank1?
	BRA	NEXT	;	NO, clear next
CONTINU	JE		;	YES, continue

12.7 Considerations in Asynchronous Counter Mode

Following a Timer1 interrupt and an update to the TMR1 registers, the Timer1 module uses a falling edge on its clock source to trigger the next register update on the rising edge. If the update is completed after the clock input has fallen, the next rising edge will not be counted.

If the application can reliably update TMR1 before the timer input goes low, no additional action is needed. Otherwise, an adjusted update can be performed

following a later Timer1 increment. This can be done by monitoring TMR1L within the interrupt routine until it increments, and then updating the TMR1H:TMR1L register pair while the clock is low, or one-half of the period of the clock source. Assuming that Timer1 is being used as a Real-Time Clock, the clock source is a 32.768 kHz crystal oscillator; in this case, one-half period of the clock is 15.25 μ s.

The Real-Time Clock application code in Example 12-1 shows a typical ISR for Timer1, as well as the optional code required if the update cannot be done reliably within the required interval.

EXAMPLE 12-1: IMPLEMENTING A REAL-TIME CLOCK USING A TIMER1 INTERRUPT SERVICE

RTCinit			
	MOVLW	80h	; Preload TMR1 register pair
	MOVWF	TMR1H	; for 1 second overflow
	CLRF	TMR1L	
	MOVLW	b'00001111'	; Configure for external clock,
	MOVWF	T1CON	; Asynchronous operation, external oscillator
	CLRF	secs	; Initialize timekeeping registers
	CLRF	mins	;
	MOVLW	.12	
	MOVWF	hours	
	BSF	PIE1, TMR1IE	; Enable Timerl interrupt
	RETURN		
RTCisr			
			; Insert the next 4 lines of code when TMR1
			; can not be reliably updated before clock pulse goes low
	BTFSC	TMR1L,0	; wait for TMR1L to become clear
	BRA	\$-2	; (may already be clear)
	BTFSS	TMR1L,0	; wait for TMR1L to become set
	BRA	\$-2	; TMR1 has just incremented
			; If TMR1 update can be completed before clock pulse goes low
			; Start ISR here
	BSF	TMR1H, 7	; Preload for 1 sec overflow
	BCF	PIR1, TMR1IF	; Clear interrupt flag
	INCF	secs, F	; Increment seconds
	MOVLW	.59	; 60 seconds elapsed?
	CPFSGT	secs	
	RETURN		; No, done
	CLRF	secs	; Clear seconds
	INCF	mins, F	; Increment minutes
	MOVLW	.59	; 60 minutes elapsed?
	CPFSGT	mins	
	RETURN		; No, done
	CLRF	mins	; clear minutes
	INCF	hours, F	; Increment hours
	MOVLW	.23	; 24 hours elapsed?
	CPFSGT	hours	
	RETURN		; No, done
	CLRF	hours	; Reset hours
	RETURN		; Done

NOTES:

15.1 CCP Module Configuration

Each Capture/Compare/PWM module is associated with a control register (generically, CCPxCON) and a data register (CCPRx). The data register, in turn, is comprised of two 8-bit registers: CCPRxL (low byte) and CCPRxH (high byte). All registers are both readable and writable.

15.1.1 CCP MODULES AND TIMER RESOURCES

The CCP modules utilize Timers 1, 2 or 3, depending on the mode selected. Timer1 and Timer3 are available to modules in Capture or Compare modes, while Timer2 is available for modules in PWM mode.

TABLE 15-1:CCP MODE – TIMER
RESOURCE

CCP/ECCP Mode	Timer Resource
Capture	Timer1 or Timer3
Compare	Timer1 or Timer3
PWM	Timer2

The assignment of a particular timer to a module is determined by the Timer to CCP enable bits in the T3CON register (Register 14-1). Both modules may be active at any given time and may share the same timer resource if they are configured to operate in the same mode (Capture/Compare or PWM) at the same time. The interactions between the two modules are summarized in Figure 15-2. In Timer1 in Asynchronous Counter mode, the capture operation will not work.

15.1.2 CCP2 PIN ASSIGNMENT

The pin assignment for CCP2 (capture input, compare and PWM output) can change, based on device configuration. The CCP2MX Configuration bit determines which pin CCP2 is multiplexed to. By default, it is assigned to RC1 (CCP2MX = 1). If the Configuration bit is cleared, CCP2 is multiplexed with RB3.

Changing the pin assignment of CCP2 does not automatically change any requirements for configuring the port pin. Users must always verify that the appropriate TRIS register is configured correctly for CCP2 operation, regardless of where it is located.

CCP1 Mode	CCP2 Mode	Interaction
Capture	Capture	Each module can use TMR1 or TMR3 as the time base. The time base can be different for each CCP.
Capture	Compare	CCP2 can be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Automatic A/D conversions on trigger event can also be done. Operation of CCP1 could be affected if it is using the same timer as a time base.
Compare	Capture	CCP1 be configured for the Special Event Trigger to reset TMR1 or TMR3 (depending upon which time base is used). Operation of CCP2 could be affected if it is using the same timer as a time base.
Compare	Compare	Either module can be configured for the Special Event Trigger to reset the time base. Automatic A/D conversions on CCP2 trigger event can be done. Conflicts may occur if both modules are using the same time base.
Capture	PWM ⁽¹⁾	None
Compare	PWM ⁽¹⁾	None
PWM ⁽¹⁾	Capture	None
PWM ⁽¹⁾	Compare	None
PWM ⁽¹⁾	PWM	Both PWMs will have the same frequency and update rate (TMR2 interrupt).

TABLE 15-2: INTERACTIONS BETWEEN CCP1 AND CCP2 FOR TIMER RESOURCES

Note 1: Includes standard and Enhanced PWM operation.

17.0 UNIVERSAL SERIAL BUS (USB)

This section describes the details of the USB peripheral. Because of the very specific nature of the module, knowledge of USB is expected. Some high-level USB information is provided in **Section 17.10 "Overview of USB"** only for application design reference. Designers are encouraged to refer to the official specification published by the USB Implementers Forum (USB-IF) for the latest information. USB specification Revision 2.0 is the most current specification at the time of publication of this document.

17.1 Overview of the USB Peripheral

The PIC18FX455/X550 device family contains a full-speed and low-speed compatible USB Serial Interface Engine (SIE) that allows fast communication between any USB host and the PIC[®] microcontroller. The SIE can be interfaced directly to the USB, utilizing the internal transceiver, or it can be connected through an external transceiver. An internal 3.3V regulator is also available to power the internal transceiver in 5V applications.

Some special hardware features have been included to improve performance. Dual port memory in the device's data memory space (USB RAM) has been supplied to share direct memory access between the microcontroller core and the SIE. Buffer descriptors are also provided, allowing users to freely program endpoint memory usage within the USB RAM space. A Streaming Parallel Port has been provided to support the uninterrupted transfer of large volumes of data, such as isochronous data, to external memory buffers.

Figure 17-1 presents a general overview of the USB peripheral and its features.

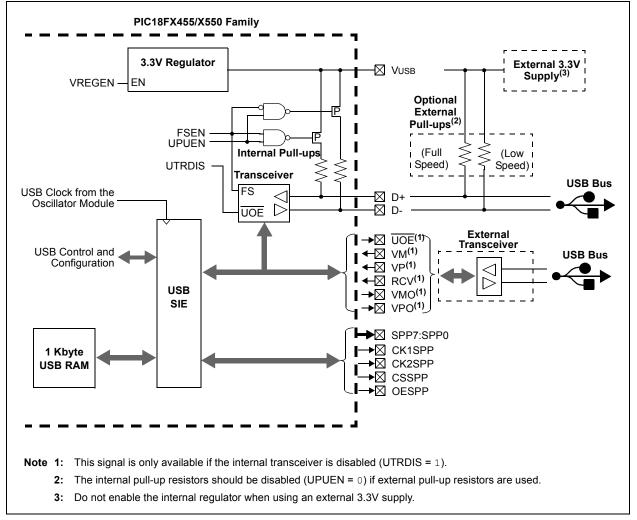
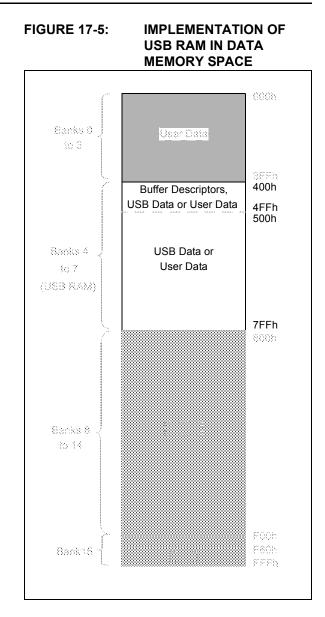


FIGURE 17-1: USB PERIPHERAL AND OPTIONS

17.2.5 USB ADDRESS REGISTER (UADDR)

The USB Address register contains the unique USB address that the peripheral will decode when active. UADDR is reset to 00h when a USB Reset is received, indicated by URSTIF, or when a Reset is received from the microcontroller. The USB address must be written by the microcontroller during the USB setup phase (enumeration) as part of the Microchip USB firmware support.

17.2.6 USB FRAME NUMBER REGISTERS (UFRMH:UFRML)


The Frame Number registers contain the 11-bit frame number. The low-order byte is contained in UFRML, while the three high-order bits are contained in UFRMH. The register pair is updated with the current frame number whenever a SOF token is received. For the microcontroller, these registers are read-only. The Frame Number register is primarily used for isochronous transfers.

17.3 USB RAM

USB data moves between the microcontroller core and the SIE through a memory space known as the USB RAM. This is a special dual port memory that is mapped into the normal data memory space in Banks 4 through 7 (400h to 7FFh) for a total of 1 Kbyte (Figure 17-5).

Bank 4 (400h through 4FFh) is used specifically for endpoint buffer control, while Banks 5 through 7 are available for USB data. Depending on the type of buffering being used, all but 8 bytes of Bank 4 may also be available for use as USB buffer space.

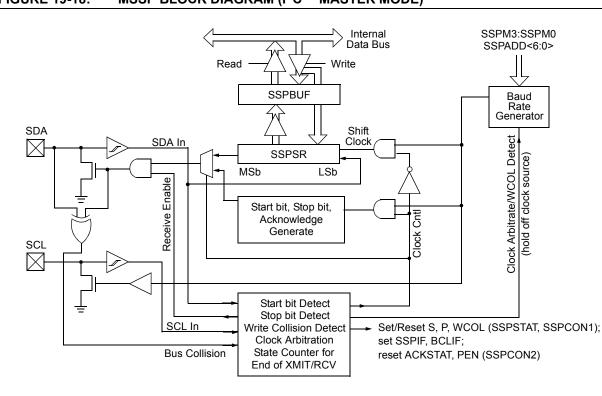
Although USB RAM is available to the microcontroller as data memory, the sections that are being accessed by the SIE should not be accessed by the microcontroller. A semaphore mechanism is used to determine the access to a particular buffer at any given time. This is discussed in **Section 17.4.1.1 "Buffer Ownership**".

19.4.6 MASTER MODE

Master mode is enabled by setting and clearing the appropriate SSPM bits in SSPCON1 and by setting the SSPEN bit. In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware if the TRIS bits are set.

Master mode operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is Idle, with both the S and P bits clear.

In Firmware Controlled Master mode, user code conducts all ${\sf I}^2{\sf C}$ bus operations based on Start and Stop bit conditions.


Once Master mode is enabled, the user has six options:

- 1. Assert a Start condition on SDA and SCL.
- 2. Assert a Repeated Start condition on SDA and SCL.
- 3. Write to the SSPBUF register initiating transmission of data/address.
- 4. Configure the I^2C port to receive data.
- 5. Generate an Acknowledge condition at the end of a received byte of data.
- 6. Generate a Stop condition on SDA and SCL.

Note: The MSSP module, when configured in I²C Master mode, does not allow queueing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur.

The following events will cause the MSSP Interrupt Flag bit, SSPIF, to be set (and MSSP interrupt, if enabled):

- · Start condition
- Stop condition
- · Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated Start

FIGURE 19-18: MSSP BLOCK DIAGRAM (I²C[™] MASTER MODE)

20.2.5 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. The Break character transmit consists of a Start bit, followed by twelve '0' bits and a Stop bit. The Frame Break character is sent whenever the SENDB and TXEN bits (TXSTA<3> and TXSTA<5>) are set while the Transmit Shift Register is loaded with data. Note that the value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

Note that the data value written to the TXREG for the Break character is ignored. The write simply serves the purpose of initiating the proper sequence.

The TRMT bit indicates when the transmit operation is active or Idle, just as it does during normal transmission. See Figure 20-10 for the timing of the Break character sequence.

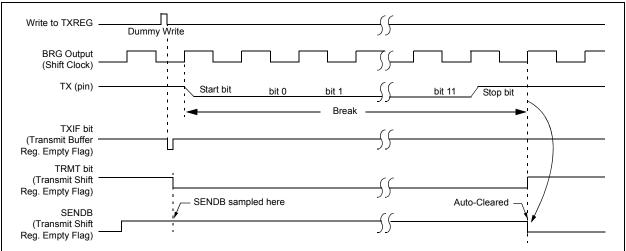
20.2.5.1 Break and Sync Transmit Sequence

The following sequence will send a message frame header made up of a Break, followed by an Auto-Baud Sync byte. This sequence is typical of a LIN bus master.

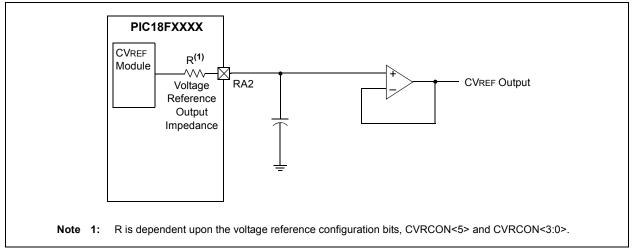
- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to set up the Break character.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware. The Sync character now transmits in the preconfigured mode.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

20.2.6 RECEIVING A BREAK CHARACTER


The Enhanced USART module can receive a Break character in two ways.

The first method forces configuration of the baud rate at a frequency of 9/13 the typical speed. This allows for the Stop bit transition to be at the correct sampling location (13 bits for Break versus Start bit and 8 data bits for typical data).


The second method uses the auto-wake-up feature described in **Section 20.2.4 "Auto-Wake-up on Sync Break Character"**. By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Rate Detect feature. For both methods, the user can set the ABD bit once the TXIF interrupt is observed.

FIGURE 20-10: SEND BREAK CHARACTER SEQUENCE

FIGURE 23-2: COMPARATOR VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 23-1: REGISTERS ASSOCIATED WITH COMPARATOR VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
CVRCON	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	55
CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	55
TRISA		TRISA6 ⁽¹⁾	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	56

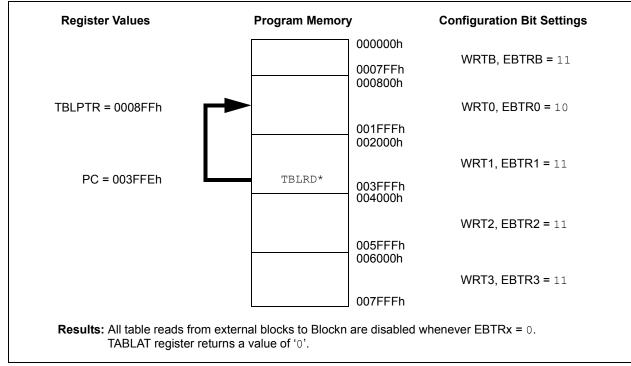
Legend: Shaded cells are not used with the comparator voltage reference.

Note 1: PORTA<6> and its direction and latch bits are individually configured as port pins based on various oscillator modes. When disabled, these bits read as '0'.

REGISTER 25-9: CONFIG6L: CONFIGURATION REGISTER 6 LOW (BYTE ADDRESS 30000Ah)

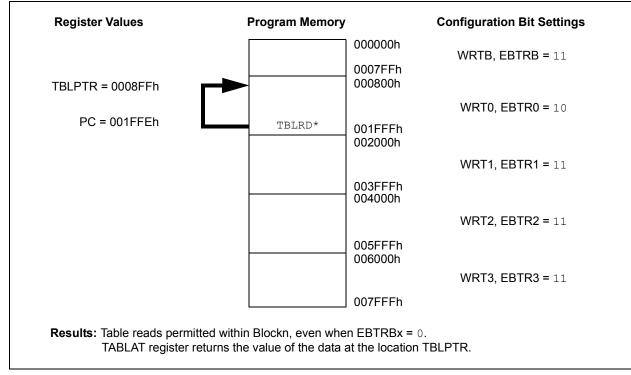
U-0	U-0	U-0	U-0	R/C-1	R/C-1	R/C-1	R/C-1
—	—	—	—	WRT3 ⁽¹⁾	WRT2	WRT1	WRT0
bit 7							bit 0
Legend:							
R = Readab	ole bit	C = Clearable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value v	vhen device is unp	programmed		u = Unchang	ed from progran	nmed state	
bit 7-4	Unimplemen	ted: Read as ')'				
bit 3	WRT3: Write	Protection bit ⁽¹)				
	1 = Block 3 (006000-007FFFh) is not write-protected						
	0 = Block 3 (0	06000-007FFF	h) is write-pro	otected			
bit 2	WRT2: Write	Protection bit					
	1 = Block 2 (004000-005FFFh) is not write-protected						
	0 = Block 2 (004000-005FFFh) is write-protected						
bit 1 WRT1: Write Protection bit							
1 = Block 1 (002000-003FFFh) is not write-protected							
0 = Block 1 (002000-003FFFh) is write-protected							
bit 0	WRT0: Write	Protection bit					
					not write-protect	ed	
	0 = Block 0 (0	00800-001FFF	h) or (001000	0-001FFFh) is	write-protected		

Note 1: Unimplemented in PIC18FX455 devices; maintain this bit set.


REGISTER 25-10: CONFIG6H: CONFIGURATION REGISTER 6 HIGH (BYTE ADDRESS 30000Bh)

R/C-1	R/C-1	R-1	U-0	U-0	U-0	U-0	U-0
WRTD	WRTB	WRTC ⁽¹⁾		—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	C = Clearable bit	U = Unimplemented bit, read as '0'
-n = Value when device is ur	nprogrammed	u = Unchanged from programmed state


bit 7	WRTD: Data EEPROM Write Protection bit
	1 = Data EEPROM is not write-protected
	0 = Data EEPROM is write-protected
bit 6	WRTB: Boot Block Write Protection bit
	1 = Boot block (000000-0007FFh) is not write-protected
	0 = Boot block (000000-0007FFh) is write-protected
bit 5	WRTC: Configuration Register Write Protection bit ⁽¹⁾
	1 = Configuration registers (300000-3000FFh) are not write-protected
	0 = Configuration registers (300000-3000FFh) are write-protected
bit 4-0	Unimplemented: Read as '0'

Note 1: This bit is read-only in normal execution mode; it can be written only in Program mode.

FIGURE 25-7: EXTERNAL BLOCK TABLE READ (EBTRx) DISALLOWED

FIGURE 25-8: EXTERNAL BLOCK TABLE READ (EBTRx) ALLOWED

TABLE 26-1: OPCODE FIELD DESCRIPTIONS

Field	Description					
a	RAM access bit					
	a = 0: RAM location in Access RAM (BSR register is ignored)					
	a = 1: RAM bank is specified by BSR register					
bbb	Bit address within an 8-bit file register (0 to 7).					
BSR	Bank Select Register. Used to select the current RAM bank.					
C, DC, Z, OV, N	ALU Status bits: Carry, Digit Carry, Zero, Overflow, Negative.					
d	Destination select bit					
	d = 0: store result in WREG					
	d = 1: store result in file register f					
dest	Destination: either the WREG register or the specified register file location.					
f	8-bit register file address (00h to FFh) or 2-bit FSR designator (0h to 3h).					
f _s	12-bit register file address (000h to FFFh). This is the source address.					
f _d	12-bit register file address (000h to FFFh). This is the destination address.					
GIE	Global Interrupt Enable bit.					
k	Literal field, constant data or label (may be either an 8-bit, 12-bit or a 20-bit value).					
label	Label name.					
mm	The mode of the TBLPTR register for the table read and table write instructions.					
	Only used with table read and table write instructions:					
*	No change to register (such as TBLPTR with table reads and writes)					
*+	Post-Increment register (such as TBLPTR with table reads and writes)					
*-	Post-Decrement register (such as TBLPTR with table reads and writes)					
+*	Pre-Increment register (such as TBLPTR with table reads and writes)					
n	The relative address (2's complement number) for relative branch instructions or the direct address for					
	Call/Branch and Return instructions.					
PC	Program Counter.					
PCL	Program Counter Low Byte.					
PCH	Program Counter High Byte.					
PCLATH	Program Counter High Byte Latch.					
PCLATU	Program Counter Upper Byte Latch.					
PD	Power-Down bit.					
PRODH	Product of Multiply High Byte.					
PRODL	Product of Multiply Low Byte.					
S	Fast Call/Return mode select bit					
	s = 0: do not update into/from shadow registers					
	s = 1: certain registers loaded into/from shadow registers (Fast mode)					
TBLPTR	21-bit Table Pointer (points to a program memory location).					
TABLAT	8-bit Table Latch.					
TO	Time-out bit.					
TOS	Top-of-Stack.					
u	Unused or unchanged.					
WDT	Watchdog Timer.					
WREG	Working register (accumulator).					
х	Don't care ('0' or '1'). The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.					
Zs	7-bit offset value for indirect addressing of register files (source).					
zd	7-bit offset value for indirect addressing of register files (destination).					
{ }	Optional argument.					
[text]	Indicates an indexed address.					
(text)	The contents of text.					
[expr] <n></n>	Specifies bit n of the register indicated by the pointer expr.					
\rightarrow	Assigned to.					
< >	Register bit field.					
E	In the set of.					
	User-defined term (font is Courier New).					

GOT	0	Unconditio	onal Brai	nch		
Synta	ax:	GOTO k				
Oper	ands:	$0 \le k \le 104$	8575			
Oper	ation:	$k \rightarrow PC<20$	0:1>			
Statu	is Affected:	None				
1st w	oding: /ord (k<7:0>) word(k<19:8>)	1110 1111	1111 k ₁₉ kkk	k ₇ kkk kkkk	kkkk ₀ kkkk ₈	
Desc	ription:	GOTO allow anywhere v 2-Mbyte mo value 'k' is is always a	within the emory rai loaded in	entire nge. The to PC<20	20-bit):1>. GOTO	
Word	ls:	2	2			
Cycle	es:	2				
QC	ycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Read literal 'k'<7:0>,	No operat	ion 'k	ead literal 3'<19:8>, rite to PC	
	No operation	No operation	No operat	ion o	No peration	
<u>Exan</u>	n <u>ple:</u> After Instructio PC =		RE HERE)			

INCF	Increment	f			
Syntax:	INCF f{,	d {,a}}			
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$				
Operation:	(f) + 1 \rightarrow d	est			
Status Affected:	C, DC, N,	OV, Z			
Encoding:	0010	10da	fff	f	ffff
	placed in V placed bac If 'a' is '0', 1 If 'a' is '1', 1 GPR bank If 'a' is '0' a set is enab in Indexed mode when Section 20 Bit-Orientt	k in regis the Access the BSR i (default). and the ex- led, this i Literal Of never $f \leq 1$ 5.2.3 "Byther ad Instru	ter 'f' (ss Ban s used (tende nstruc fset A 95 (5F te-Ori ctions	(defa ik is d to d in ddre h). ente s in	ault). selected. select the struction operates essing See ed and Indexed
Words:	Literal Off	set Mode	e" tor (deta	IIS.
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3			Q4
Decode	Read register 'f'	Proce Data		-	/rite to stination
Example: Before Instruc CNT Z C DC After Instructio CNT	= FFh = 0 = ? = ?	CNT,	1, 0		
Z C	= 000				

MOVFF	Move f to	f			
Syntax:	MOVFF f	s,f _d			
Operands:	$\begin{array}{l} 0 \leq f_s \leq 40 \\ 0 \leq f_d \leq 40 \end{array}$				
Operation:	$(f_{\text{s}}) \to f_{\text{d}}$				
Status Affected:	None				
Encoding: 1st word (source) 2nd word (destin.)	1100 1111	ffff ffff	ffff ffff	ffff _s ffff _d	
Description:	The conter moved to a Location o in the 4096 FFFh) and can also b FFFh. Either sou (a useful s MOVFF is p transferring peripheral buffer or a The MOVFT PCL, TOS destination	destinatio f source " 6-byte dat l location e anywhe rce or des pecial situ particularly g a data n register (s n I/O port F instructi U, TOSH	n register f_s ' can be a space (of destina re from 0 stination c uation). y useful for hemory lo such as th). on canno	'f _d '. anywhere 000h to tition 'f _d ' 00h to an be W or cation to a he transmit t use the	
Words:	2				
Cycles:	2				
Q Cycle Activity:					
Q1	Q2	Q3	8	Q4	7
Decode	Read	Droce		No	

MOVLB	Move Liter	al to Lo	w Nibb	ole iı	n BSR
Syntax:	MOVLW k	Ι.			
Operands:	$0 \le k \le 255$				
Operation:	$k \to BSR$				
Status Affected:	None				
Encoding:	0000	0001	kkk	k	kkkk
Description:	The eight-b Bank Selec of BSR<7:4 regardless	t Registe I> always	er (BSF s rema	R). T iins '	he value 0'
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3			Q4
Decode	Read literal 'k'	Proce Data			te literal to BSR
Example:	MOVLB	5			
Example: Before Instruc BSR Reg	tion	-			

05h

After Instruction

BSR Register =

Q1	Q2	Q3	Q4
Decode	Read register 'f' (src)	Process Data	No operation
Decode	No operation No dummy read	No operation	Write register 'f' (dest)

Example:	MOVFF	REG1,	REG2
Externiorer	110 1 1 1	imor,	1000

Before Instruction		
REG1	=	33h
REG2	=	11h
After Instruction		
REG1	=	33h
REG2	=	33h

DC and AC Characteristics	
Graphs and Tables	407
DC Characteristics	379
Power-Down and Supply Current	370
Supply Voltage	369
DCFSNZ	333
DECF	332
DECFSZ	333
Dedicated ICD/ICSP Port	311
Development Support	363
Device Differences	
Device Overview	7
Features (table)	9
New Core Features	7
Other Special Features	8
Device Reset Timers	. 49
Oscillator Start-up Timer (OST)	. 49
PLL Lock Time-out	
Power-up Timer (PWRT)	. 49
Direct Addressing	. 75

Е

Effect on Standard PIC MCU Instructions	,
Electrical Characteristics	
Enhanced Capture/Compare/PWM (ECCP)	
Associated Registers	
Capture and Compare Modes	152
Capture Mode. See Capture (ECCP Module).	
Outputs and Configuration	
Pin Configurations for ECCP1	152
PWM Mode. See PWM (ECCP Module).	
Standard PWM Mode	152
Timer Resources	152
Enhanced Universal Synchronous Asynchronous	
Receiver Transmitter (EUSART). See EUSART.	
Equations	
A/D Acquisition Time	
A/D Minimum Charging Time	270
Calculating the Minimum Required A/D	
Acquisition Time	270
Errata	5
EUSART	
Asynchronous Mode	
12-Bit Break Transmit and Receive	259
Associated Registers, Receive	257
Associated Registers, Transmit	255
Auto-Wake-up on Sync Break Character	258
Receiver	256
Setting up 9-Bit Mode with	
Address Detect	256
Transmitter	253
Baud Rate Generator	
Operation in Power-Managed Modes	247
Baud Rate Generator (BRG)	247
Associated Registers	248
Auto-Baud Rate Detect	251
Baud Rate Error, Calculating	248
Baud Rates, Asynchronous Modes	249
High Baud Rate Select (BRGH Bit)	247
Sampling	247

Synchronous Master Mode	. 260
Associated Registers, Receive	. 262
Associated Registers, Transmit	. 261
Reception	. 262
Transmission	. 260
Synchronous Slave Mode	. 263
Associated Registers, Receive	. 264
Associated Registers, Transmit	. 263
Reception	. 264
Transmission	. 263
Extended Instruction Set	. 355
ADDFSR	. 356
ADDULNK	. 356
and Using MPLAB IDE Tools	. 362
CALLW	. 357
Considerations for Use	. 360
MOVSF	. 357
MOVSS	. 358
PUSHL	. 358
SUBFSR	. 359
SUBULNK	. 359
Syntax	. 355
External Clock Input	26

F

Fail-Safe Clock Monitor	291, 306
Exiting the Operation	306
Interrupts in Power-Managed Modes	307
POR or Wake-up from Sleep	
WDT During Oscillator Failure	
Fast Register Stack	
Firmware Instructions	
Flash Program Memory	
Associated Registers	
Control Registers	
EECON1 and EECON2	
TABLAT (Table Latch) Register	
TBLPTR (Table Pointer) Register	
Erase Sequence	
Erasing	86
Operation During Code-Protect	
Protection Against Spurious Writes	
Reading	
Table Pointer	
Boundaries Based on Operation	84
Table Pointer Boundaries	
Table Reads and Table Writes	
Unexpected Termination of Write	
Write Sequence	
Write Verify	
Writing To	
FSCM. See Fail-Safe Clock Monitor.	

G

GOTO	334
н	
Hardware Multiplier	97
Introduction	97
Operation	97
Performance Comparison	97

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fron	n: Name	
	Company	
	Address	
	City/State/ZIP/Country	
	Telephone: ()	FAX: ()
Application (optional):		
Would you like a reply?YN		
Device: PIC18F2455/2550/4455/4550 Literature Number: DS39632E		
Questions:		
1. What are the best features of this document?		
-		
-		
2. I	. How does this document meet your hardware and software development needs?	
-		
-		
3. I	. Do you find the organization of this document easy to follow? If not, why?	
-		
4.	. What additions to the document do you think would enhance the structure and subject?	
-		
5.	What deletions from the document could be made without affecting the overall usefulness?	
-		
6. I	Is there any incorrect or misleading information (what and where)?	
-		
7. How would you improve this document?		nt?
		_