

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, HLVD, POR, PWM, WDT
Number of I/O	35
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 13x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf4550t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.4 PLL FREQUENCY MULTIPLIER

PIC18F2455/2550/4255/4550 devices include a Phase Locked Loop (PLL) circuit. This is provided specifically for USB applications with lower speed oscillators and can also be used as a microcontroller clock source.

The PLL is enabled in HSPLL, XTPLL, ECPLL and ECPIO Oscillator modes. It is designed to produce a fixed 96 MHz reference clock from a fixed 4 MHz input. The output can then be divided and used for both the USB and the microcontroller core clock. Because the PLL has a fixed frequency input and output, there are eight prescaling options to match the oscillator input frequency to the PLL.

There is also a separate postscaler option for deriving the microcontroller clock from the PLL. This allows the USB peripheral and microcontroller to use the same oscillator input and still operate at different clock speeds. In contrast to the postscaler for XT, HS and EC modes, the available options are 1/2, 1/3, 1/4 and 1/6 of the PLL output.

The HSPLL, ECPLL and ECPIO modes make use of the HS mode oscillator for frequencies up to 48 MHz. The prescaler divides the oscillator input by up to 12 to produce the 4 MHz drive for the PLL. The XTPLL mode can only use an input frequency of 4 MHz which drives the PLL directly.

FIGURE 2-6: PLL BLOCK DIAGRAM (HS MODE)

2.2.5 INTERNAL OSCILLATOR BLOCK

The PIC18F2455/2550/4455/4550 devices include an internal oscillator block which generates two different clock signals; either can be used as the microcontroller's clock source. If the USB peripheral is not used, the internal oscillator may eliminate the need for external oscillator circuits on the OSC1 and/or OSC2 pins.

The main output (INTOSC) is an 8 MHz clock source which can be used to directly drive the device clock. It also drives the INTOSC postscaler which can provide a range of clock frequencies from 31 kHz to 4 MHz. The INTOSC output is enabled when a clock frequency from 125 kHz to 8 MHz is selected.

The other clock source is the internal RC oscillator (INTRC) which provides a nominal 31 kHz output. INTRC is enabled if it is selected as the device clock source; it is also enabled automatically when any of the following are enabled:

- Power-up Timer
- Fail-Safe Clock Monitor
- · Watchdog Timer
- Two-Speed Start-up

These features are discussed in greater detail in Section 25.0 "Special Features of the CPU".

The clock source frequency (INTOSC direct, INTRC direct or INTOSC postscaler) is selected by configuring the IRCF bits of the OSCCON register (page 33).

2.2.5.1 Internal Oscillator Modes

When the internal oscillator is used as the microcontroller clock source, one of the other oscillator modes (External Clock or External Crystal/Resonator) must be used as the USB clock source. The choice of the USB clock source is determined by the particular internal oscillator mode.

There are four distinct modes available:

- 1. INTHS mode: The USB clock is provided by the oscillator in HS mode.
- 2. INTXT mode: The USB clock is provided by the oscillator in XT mode.
- INTCKO mode: The USB clock is provided by an external clock input on OSC1/CLKI; the OSC2/ CLKO pin outputs FOSC/4.
- INTIO mode: The USB clock is provided by an external clock input on OSC1/CLKI; the OSC2/ CLKO pin functions as a digital I/O (RA6).

Of these four modes, only INTIO mode frees up an additional pin (OSC2/CLKO/RA6) for port I/O use.

2.3 Oscillator Settings for USB

When these devices are used for USB connectivity, they must have either a 6 MHz or 48 MHz clock for USB operation, depending on whether Low-Speed or Full-Speed mode is being used. This may require some forethought in selecting an oscillator frequency and programming the device.

The full range of possible oscillator configurations compatible with USB operation is shown in Table 2-3.

2.3.1 LOW-SPEED OPERATION

The USB clock for Low-Speed mode is derived from the primary oscillator chain and not directly from the PLL. It is divided by 4 to produce the actual 6 MHz clock. Because of this, the microcontroller can only use a clock frequency of 24 MHz when the USB module is

active and the controller clock source is one of the primary oscillator modes (XT, HS or EC, with or without the PLL).

This restriction does not apply if the microcontroller clock source is the secondary oscillator or internal oscillator block.

2.3.2 RUNNING DIFFERENT USB AND MICROCONTROLLER CLOCKS

The USB module, in either mode, can run asynchronously with respect to the microcontroller core and other peripherals. This means that applications can use the primary oscillator for the USB clock while the microcontroller runs from a separate clock source at a lower speed. If it is necessary to run the entire application from only one clock source, full-speed operation provides a greater selection of microcontroller clock frequencies.

Input Oscillator Frequency	PLL Division (PLLDIV2:PLLDIV0)	Clock Mode (FOSC3:FOSC0)	MCU Clock Division (CPUDIV1:CPUDIV0)	Microcontroller Clock Frequency
48 MHz	N/A ⁽¹⁾	EC, ECIO	None (00)	48 MHz
			÷2(01)	24 MHz
			÷3(10)	16 MHz
			÷4 (11)	12 MHz
48 MHz	÷12 (111)	EC, ECIO	None (00)	48 MHz
			÷2(01)	24 MHz
			÷3(10)	16 MHz
			÷4 (11)	12 MHz
		ECPLL, ECPIO	÷2 (00)	48 MHz
			÷3(01)	32 MHz
			÷4 (10)	24 MHz
			÷6(11)	16 MHz
40 MHz	÷10(110)	EC, ECIO	None (00)	40 MHz
			÷2(01)	20 MHz
			÷3(10)	13.33 MHz
			÷4 (11)	10 MHz
		ECPLL, ECPIO	÷2 (00)	48 MHz
			÷3(01)	32 MHz
			÷4 (10)	24 MHz
			÷6 (11)	16 MHz
24 MHz	÷6 (101)	HS, EC, ECIO	None (00)	24 MHz
			÷2(01)	12 MHz
			÷3(10)	8 MHz
			÷4 (11)	6 MHz
		HSPLL, ECPLL, ECPIO	÷2(00)	48 MHz
			÷3(01)	32 MHz
			÷4 (10)	24 MHz
			÷6 (11)	16 MHz

TABLE 2-3: OSCILLATOR CONFIGURATION OPTIONS FOR USB OPERATION

Legend: All clock frequencies, except 24 MHz, are exclusively associated with full-speed USB operation (USB clock of 48 MHz). Bold is used to highlight clock selections that are compatible with low-speed USB operation (system clock of 24 MHz, USB clock of 6 MHz).

Note 1: Only valid when the USBDIV Configuration bit is cleared.

2.5 Effects of Power-Managed Modes on the Various Clock Sources

When PRI_IDLE mode is selected, the designated primary oscillator continues to run without interruption. For all other power-managed modes, the oscillator using the OSC1 pin is disabled. Unless the USB module is enabled, the OSC1 pin (and OSC2 pin if used by the oscillator) will stop oscillating.

In secondary clock modes (SEC_RUN and SEC_IDLE), the Timer1 oscillator is operating and providing the device clock. The Timer1 oscillator may also run in all power-managed modes if required to clock Timer1 or Timer3.

In internal oscillator modes (RC_RUN and RC_IDLE), the internal oscillator block provides the device clock source. The 31 kHz INTRC output can be used directly to provide the clock and may be enabled to support various special features regardless of the power-managed mode (see Section 25.2 "Watchdog Timer (WDT)", Section 25.3 "Two-Speed Start-up" and Section 25.4 "Fail-Safe Clock Monitor" for more information on WDT, Fail-Safe Clock Monitor and Two-Speed Start-up). The INTOSC output at 8 MHz may be used directly to clock the device or may be divided down by the postscaler. The INTOSC output is disabled if the clock is provided directly from the INTRC output.

Regardless of the Run or Idle mode selected, the USB clock source will continue to operate. If the device is operating from a crystal or resonator-based oscillator, that oscillator will continue to clock the USB module. The core and all other modules will switch to the new clock source.

If the Sleep mode is selected, all clock sources are stopped. Since all the transistor switching currents have been stopped, Sleep mode achieves the lowest current consumption of the device (only leakage currents).

Sleep mode should never be invoked while the USB module is operating and connected. The only exception is when the device has been issued a "Suspend"

command over the USB. Once the module has suspended operation and shifted to a low-power state, the microcontroller may be safely put into Sleep mode.

Enabling any on-chip feature that will operate during Sleep will increase the current consumed during Sleep. The INTRC is required to support WDT operation. The Timer1 oscillator may be operating to support a Real-Time Clock. Other features may be operating that do not require a device clock source (i.e., MSSP slave, PSP, INTx pins and others). Peripherals that may add significant current consumption are listed in Section 28.2 "DC Characteristics: Power-Down and Supply Current".

2.6 Power-up Delays

Power-up delays are controlled by two timers so that no external Reset circuitry is required for most applications. The delays ensure that the device is kept in Reset until the device power supply is stable under normal circumstances and the primary clock is operating and stable. For additional information on power-up delays, see **Section 4.5 "Device Reset Timers"**.

The first timer is the Power-up Timer (PWRT), which provides a fixed delay on power-up (parameter 33, Table 28-12). It is enabled by clearing (= 0) the PWRTEN Configuration bit.

The second timer is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable (XT and HS modes). The OST does this by counting 1024 oscillator cycles before allowing the oscillator to clock the device.

When the HSPLL Oscillator mode is selected, the device is kept in Reset for an additional 2 ms following the HS mode OST delay, so the PLL can lock to the incoming clock frequency.

There is a delay of interval, TCSD (parameter 38, Table 28-12), following POR, while the controller becomes ready to execute instructions. This delay runs concurrently with any other delays. This may be the only delay that occurs when any of the EC or internal oscillator modes are used as the primary clock source.

Oscillator Mode	OSC1 Pin	OSC2 Pin
INTCKO	Floating, pulled by external clock	At logic low (clock/4 output)
INTIO	Floating, pulled by external clock	Configured as PORTA, bit 6
ECIO, ECPIO	Floating, pulled by external clock	Configured as PORTA, bit 6
EC	Floating, pulled by external clock	At logic low (clock/4 output)
XT and HS	Feedback inverter disabled at quiescent voltage level	Feedback inverter disabled at quiescent voltage level

 TABLE 2-4:
 OSC1 AND OSC2 PIN STATES IN SLEEP MODE

Note: See Table 4-2 in Section 4.0 "Reset" for time-outs due to Sleep and MCLR Reset.

7.2 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit (EECON1<7>) and then set control bit, RD (EECON1<0>). The data is available on the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation or until it is written to by the user (during a write operation).

The basic process is shown in Example 7-1.

7.3 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 7-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. The WREN bit must be set on a previous instruction. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared in hardware and the EEPROM Interrupt Flag bit (EEIF) is set. The user may either enable this interrupt, or poll this bit. EEIF must be cleared by software.

7.4 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 7-1: DATA EEPROM READ

MOVLW	DATA_EE_ADDR	;
MOVWF	EEADR	; Lower bits of Data Memory Address to read
BCF	EECON1, EEPGD	; Point to DATA memory
BCF	EECON1, CFGS	; Access EEPROM
BSF	EECON1, RD	; EEPROM Read
MOVF	EEDATA, W	; W = EEDATA

EXAMPLE 7-2:	DATA EEPROM WRITE

	MOVLW	DATA EE ADD	;
	MOVWF	EEADR	; Lower bits of Data Memory Address to write
	MOVLW	DATA_EE_DAT	;
	MOVWF	EEDATA	; Data Memory Value to write
	BCF	EECON1, EEP	D ; Point to DATA memory
	BCF	EECON1, CFG	; Access EEPROM
	BSF	EECON1, WRE	; Enable writes
	BCF	INTCON, GIE	; Disable Interrupts
	MOVLW	55h	;
Required	MOVWF	EECON2	; Write 55h
Sequence	MOVLW	0AAh	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BSF	INTCON, GIE	; Enable Interrupts
			; User code execution
	BCF	EECON1, WRE	; Disable writes on write complete (EEIF set)

9.2 INTCON Registers

The INTCON registers are readable and writable registers which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global interrupt enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 9-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RBIE	TMR0IF	INT0IF	RBIF ⁽¹⁾
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked interrupts 0 = Disables all interrupts <u>When IPEN = 1:</u>
	 1 = Enables all high-priority interrupts 0 = Disables all interrupts
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit
	When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts
	<u>When IPEN = 1:</u> 1 = Enables all low-priority peripheral interrupts (if GIE/GIEH = 1) 0 = Disables all low-priority peripheral interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit
	 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt
bit 4	INT0IE: INT0 External Interrupt Enable bit
	 1 = Enables the INT0 external interrupt 0 = Disables the INT0 external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit
	 1 = Enables the RB port change interrupt 0 = Disables the RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit
	 1 = TMR0 register has overflowed (must be cleared in software) 0 = TMR0 register did not overflow
bit 1	INT0IF: INT0 External Interrupt Flag bit
	 1 = The INT0 external interrupt occurred (must be cleared in software) 0 = The INT0 external interrupt did not occur
bit 0	RBIF: RB Port Change Interrupt Flag bit ⁽¹⁾
	 1 = At least one of the RB7:RB4 pins changed state (must be cleared in software) 0 = None of the RB7:RB4 pins have changed state
NI-4-	

Note 1: A mismatch condition will continue to set this bit. Reading PORTB, and then waiting one additional instruction cycle, will end the mismatch condition and allow the bit to be cleared.

R/W-1	R/W-1	R/W-1	R/W-1	U-0	R/W-1	U-0	R/W-1	
RBPU	INTEDG0	INTEDG1	INTEDG2	—	TMR0IP	—	RBIP	
bit 7					·		bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7	RBPU: PORT 1 = All PORT 0 = PORTB p	B Pull-up Enal B pull-ups are pull-ups are ena	ole bit disabled abled by indiv	idual port latch	values			
bit 6	INTEDG0: Ex 1 = Interrupt 0 = Interrupt	ternal Interrupt on rising edge on falling edge	0 Edge Sele	ct bit				
bit 5	<pre>INTEDG1: Ex 1 = Interrupt 0 = Interrupt</pre>	ternal Interrupt on rising edge on falling edge	1 Edge Seleo	ct bit				
bit 4	bit 4 INTEDG2: External Interrupt 2 Edge Select bit 1 = Interrupt on rising edge 0 = Interrupt on falling edge							
bit 3	Unimplemen	ted: Read as '	0'					
bit 2	bit 2 TMR0IP: TMR0 Overflow Interrupt Priority bit 1 = High priority 0 = Low priority							
bit 1	Unimplemen	ted: Read as '	0'					
bit 0	RBIP: RB Poi 1 = High prio 0 = Low prior	rt Change Inter rity rity	rupt Priority b	it				
Note: Inte ena are	rrupt flag bits a ble bit or the gl clear prior to e	are set when a lobal interrupt e nabling an inte	n interrupt co enable bit. Use rrupt. This fea	ndition occurs er software sho ature allows for	regardless of t ould ensure the software polling	he state of its of appropriate inte	corresponding errupt flag bits	

REGISTER 9-2: INTCON2: INTERRUPT CONTROL REGISTER 2

13.0 TIMER2 MODULE

The Timer2 module timer incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4 and 1:16)
- Software programmable postscaler (1:1 through 1:16)
- · Interrupt on TMR2 to PR2 match
- Optional use as the shift clock for the MSSP module

The module is controlled through the T2CON register (Register 13-1) which enables or disables the timer and configures the prescaler and postscaler. Timer2 can be shut off by clearing control bit, TMR2ON (T2CON<2>), to minimize power consumption.

A simplified block diagram of the module is shown in Figure 13-1.

13.1 Timer2 Operation

In normal operation, TMR2 is incremented from 00h on each clock (Fosc/4). A 2-bit counter/prescaler on the clock input gives direct input, divide-by-4 and divide-by-16 prescale options. These are selected by the prescaler control bits, T2CKPS1:T2CKPS0 (T2CON<1:0>). The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 13.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, while the PR2 register initializes at FFh. Both the prescaler and postscaler counters are cleared on the following events:

- a write to the TMR2 register
- a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

TMR2 is not cleared when T2CON is written.

REGISTER 13-1: T2CON: TIMER2 CONTROL REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	T2OUTPS3	T2OUTPS2	T2OUTPS1	T2OUTPS0	TMR2ON	T2CKPS1	T2CKPS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Unimplemented: Read as '0'
T2OUTPS3:T2OUTPS0: Timer2 Output Postscale Select bits
0000 = 1:1 Postscale
0001 = 1:2 Postscale
•
•
•
1111 = 1:16 Postscale
TMR2ON: Timer2 On bit
1 = Timer2 is on
0 = Timer2 is off
T2CKPS1:T2CKPS0: Timer2 Clock Prescale Select bits
00 = Prescaler is 1
01 = Prescaler is 4
1x = Prescaler is 16

	CCP1CON <7.6>	SIGNAL	0 Duty	PR2 + 1
			- Period	d 🗾 🕨
00	(Single Output)	P1A Modulated		1)
		P1A Modulated		· / · · · · · · · · · · · · · · · · · ·
10	(Half-Bridge)	P1B Modulated		į
		P1A Active		
0.1	(Full-Bridge,	P1B Inactive		
01	Forward)	P1C Inactive	_	
		P1D Modulated		
		P1A Inactive		
11	(Full-Bridge,	P1B Modulated		
	Reverse)	P1C Active		
		P1D Inactive		1 1 1

FIGURE 16-2: PWM OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

FIGURE 16-3: PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE)

	CCP1CON	SIGNAL	0 → Duty → Cycle →	PR2 + 1
	<7.0>		Period —	
00	(Single Output)	P1A Modulated		
		P1A Modulated		
10	(Half-Bridge)	P1B Modulated		
		P1A Active	_	1 1 1
01	(Full-Bridge,	P1B Inactive		
01	Forward)	P1C Inactive		i
		P1D Modulated		
		P1A Inactive	_	
11	(Full-Bridge,	P1B Modulated	= -	I
	Reverse)	P1C Active	_	
		P1D Inactive		

Relationships:

• Period = 4 * Tosc * (PR2 + 1) * (TMR2 Prescale Value)

• Duty Cycle = Tosc * (CCPR1L<7:0>:CCP1CON<5:4>) * (TMR2 Prescale Value)

• Delay = 4 * Tosc * (ECCP1DEL<6:0>)

Note 1: Dead-band delay is programmed using the ECCP1DEL register (Section 16.4.6 "Programmable Dead-Band Delay").

18.0 STREAMING PARALLEL PORT

Note:	The	Streaming	Parallel	Port	is	only		
available on 40/44-pin devices.								

PIC18F4455/4550 USB devices provide a Streaming Parallel Port as a high-speed interface for moving data to and from an external system. This parallel port operates as a master port, complete with chip select and clock outputs to control the movement of data to slave devices. Data can be channelled either directly to the USB SIE or to the microprocessor core. Figure 18-1 shows a block view of the SPP data path.

In addition, the SPP can provide time multiplexed addressing information along with the data by using the second strobe output. Thus, the USB endpoint number can be written in conjunction with the data for that endpoint.

18.1 SPP Configuration

The operation of the SPP is controlled by two registers: SPPCON and SPPCFG. The SPPCON register (Register 18-1) controls the overall operation of the parallel port and determines if it operates under USB or microcontroller control. The SPPCFG register (Register 18-2) controls timing configuration and pin outputs.

18.1.1 ENABLING THE SPP

To enable the SPP, set the SPPEN bit (SPPCON<0>). In addition, the TRIS bits for the corresponding SPP pins must be properly configured. At a minimum:

- Bits TRISD<7:0> must be set (= 1)
- Bits TRISE<2:1> must be cleared (= 0)
- If CK1SPP is to be used:
- Bit TRISE<0> must be cleared (= 0)
- If CSPP is to be used:
- Bit TRISB<4> must be cleared (= 0)

REGISTER 18-1: SPPCON: SPP CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	SPPOWN	SPPEN
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	Unimplemented: Read as '0'
bit 1	SPPOWN: SPP Ownership bit
	 1 = USB peripheral controls the SPP 0 = Microcontroller directly controls the SPP
bit 0	SPPEN: SPP Enable bit
	1 = SPP is enabled 0 = SPP is disabled

19.4.14 SLEEP OPERATION

While in Sleep mode, the I^2C module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

19.4.15 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

19.4.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit (SSPSTAT<4>) is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the MSSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed in hardware with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- · Data Transfer
- · A Start Condition
- · A Repeated Start Condition
- An Acknowledge Condition

19.4.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF, and reset the I^2C port to its Idle state (Figure 19-27).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine, and if the I²C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine, and if the l^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF bit will start the transmission of data at the first data bit regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 19-27: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

DEC	ECFSZ Decrement f, Skip if 0						
Synta	ax:	DECFSZ f	f {,d {,a}}				
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$					
Oper	ation:	(f) – 1 \rightarrow de skip if resul	est, t = 0				
Statu	s Affected:	None					
Enco	ding:	0010	11da ffi	ff ffff			
Encoding:001011daffffffffDescription:The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). 							
Cycle	es:	1(2)	1(2)				
•		Note: 3 cy	cles if skip an	d followed			
00	vele Activity:	Dy a		ICUON.			
QU	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process Data	Write to destination			
lf sk	ip:						
	Q1	Q2	Q3	Q4			
	NO operation	NO	NO operation	NO operation			
lf sk	ip and followe	d by 2-word in	struction:				
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
	operation	operation	operation	operation			
Example:		HERE	DECFSZ GOTO	CNT, 1, 1 LOOP			
	Before Instruc PC After Instructio	tion = Address	6 (HERE)				
	CNT If CNT PC If CNT PC	= CNT - 7 = 0; = Address ≠ 0; = Address	1 6 (CONTINUE 6 (HERE + 2	:) :)			

DCF	SNZ	Decrement	Decrement f, Skip if Not 0				
Synta	ax:	DCFSNZ	f {,d {,a}}				
Oper	ands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$				
Oper	ation:	(f) – 1 \rightarrow de skip if resul	est, t ≠ 0				
Statu	s Affected:	None					
Enco	ding:	0100	11da ff	ff ffff			
Desc	ription:	The conten decremente placed in W placed back lf the result instruction, discarded a instead, ma instruction. If 'a' is '0', tt If 'a' is '0', tt If 'a' is '0', tt GPR bank If 'a' is '0' a set is enabl in Indexed mode wher Section 26 Bit-Oriente Literal Offs	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If the result is not '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead, making it a two-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the Access Bank is selected. If 'a' is '0', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 26.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details				
Word	ls:	1					
Cycles:		1(2) Note: 3 o by	cycles if skip a a 2-word inst	and followed ruction.			
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read register 'f'	Process Data	destination			
lf sk	ip:	. oglotor i	2010	accunation			
	Q1	Q2	Q3	Q4			
	No	No	No	No			
	operation	operation	operation	operation			
lf sk	ip and followe	d by 2-word in	struction:				
	Q1	Q2	Q3	Q4			
	N0 operation	N0 operation	N0 operation	NO			
	No	No	No	No			
	operation	operation	operation	operation			
<u>Exan</u>	nple:	HERE ZERO NZERO	DCFSNZ TE :	MP, 1, 0			
	Before Instruc	tion					
	TEMP After Instruction	=	?				
	TEMP	=	TEMP – 1.				
	If TEMP	=	0; Address				
	If TEMP PC	= ≠ =	Address (0; Address (NZERO)			

RET	URN	Return from	m Subroutine		RLCF		Rotate Lef	t f through Ca	arry		
Synta	ax:	RETURN {s}		Synta	x :	RLCF f {,d {,a}}					
Oper Oper	erands: $s \in [0,1]$ eration:(TOS) \rightarrow PC;if $s = 1$		$s \in [0,1]$ (TOS) \rightarrow PC; if $s = 1$		Opera	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$				
		$(WS) \rightarrow W,$ (STATUSS) (BSRS) $\rightarrow I$	\rightarrow STATUS, BSR,	changed	Opera	Operation:		$(f < n >) \rightarrow dest < n + 1 >,$ $(f < 7 >) \rightarrow C,$ $(C) \rightarrow dest < 0 >$			
Statu	e Affected:	POLATU, P	CLAIN are un	ichangeu	Status	s Affected:	C, N, Z				
Status Affected: None		Encod	ding:	0011	01da ffi	ff ffff					
Encoding: 0000 0000 0001 Description: Return from subroutine. The spopped and the top of the statis loaded into the program consisters WS, STATUSS and B loaded into their corresponding registers, W, STATUS and BS s's' = 0, no update of these registers (default)		the stack is stack (TOS) n counter. If shadow and BSRS are nding d BSR. If e registers	Descr	iption:	Ine conten one bit to th flag. If 'd' is W. If 'd' is ' in register ' If 'a' is '0', t selected. If select the C If 'a' is '0' a set is enabl	ts of register ' he left through s '0', the result 1', the result is f' (default). he Access Ba 'a' is '1', the B GPR bank (de nd the extend led, this instru	r are rotated the Carry is placed in s stored back nk is SR is used to fault). ed instruction ction				
Word	ls:	1					operates in	Indexed Liter	al Offset		
Cycle	es:	2					f \leq 95 (5Fh)). See Sectio	ver 1 26.2.3		
QC	ycle Activity:						"Byte-Orie	nted and Bit-	Oriented		
	Q1	Q2	Q3	Q4	1		Mode" for (is in Indexed details	Literal Offset		
	Decode	No operation	Process Data	Pop PC from stack				registe	erf <mark>◄</mark>		
	No operation	No operation	No operation	No operation	Words	S:	1				
					Cycle	s:	1				
_					Q Cy	cle Activity:					
Exan	nple:	RETURN			-	Q1	Q2	Q3	Q4		
	After Instruction PC = T	on: OS				Decode	Read register 'f'	Process Data	Write to destination		
					Exam	<u>ple:</u>	RLCF	REG, 0,	0		
					E	Before Instruc REG C After Instructio REG W C	$\begin{array}{rcl} \text{tion} & & \\ & = & 1110 & 0 \\ & = & 0 \\ \text{on} & & \\ & = & 1110 & 0 \\ & = & 1100 & 1 \\ & = & 1 \end{array}$	110 110 100			

SUBLW			Subtrac	t V	V from L	itera	I	
Synta	ax:	S	SUBLW	k				
Oper	ands:	C	$0 \le k \le 2$	55	5			
Oper	ation:	k	- (W) -	\rightarrow	W			
Statu	s Affected:	١	N, OV, C	;, [DC, Z			
Enco	ding:	Γ	0000		1000	kk}	k	kkkk
Desc	ription	V	V is sub iteral 'k'.	tra . T	acted from	m the is pla	eigh acec	nt-bit I in W.
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1		Q2		Q3			Q4
	Decode	F lite	Read eral 'k'		Proces Data	SS	Wr	ite to W
Exan	nple 1:	S	SUBLW	0	2h			
	Before Instruc W C After Instructic W C Z N	tion = = n = = = =	01h ? 01h 1 0 0	; r	esult is p	ositiv	re	
Exan	nple 2:	5	SUBLW	0	2h			
Before Instruction W = C = After Instruction W = C = Z = N =			02h ? 00h 1 1 0	; re	esult is z	ero		
Exan	nple 3:	5	SUBLW	0	2h			
	Before Instruc W C After Instructic W C Z N	tion = = n = = = =	03h ? FFh 0 1	; (; r	(2's com) esult is r	oleme negati	ent) ve	

SUBWF	Subtract	Subtract W from f				
Syntax:	SUBWF	f {,d {,a}}				
Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]	5				
Operation:	(f) – (W) –	→ dest				
Status Affected:	N, OV, C,	DC, Z				
Encoding:	0101	11da ffi	ff ffff			
Description:	Subtract V compleme result is st (default). If 'a' is '0', selected. I to select th If 'a' is '0' a set is enal operates ii Addressin $f \le 95$ (5FH "Byte-Orie Instructio Mode" for	V from register ent method). If ored in W. If 'c ored back in re the Access Ba f 'a' is '1', the I he GPR bank (and the extend bled, this instru- n Indexed Liter g mode where h). See Section ented and Bit- ns in Indexed details.	"f (2's 'd' is '0', the l' is '1', the egister 'f' ank is BSR is used idefault). ed instruction action ral Offset ever n 26.2.3 Oriented Literal Offset			
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example 1: Before Instruct REG W	SUBWF ion = 3 = 2 = 2	REG, 1, 0				
After Instruction REG W C Z N	n = 1 = 2 = 1 ; re = 0 = 0	esult is positive	9			
Example 2:	SUBWF	REG, 0, 0				
Before Instruct REG W C After Instruction	ion = 2 = 2 = ? n					
REG W C Z N	= 2 = 0 = 1 ; re = 1 = 0	esult is zero				
Example 3:	SUBWF	REG, 1, 0				
Before Instruct REG W C	ion = 1 = 2 = ?					
	n					
REG	n = FFh ;(2	's complemen	t)			
W C	n = FFh;(2 = 2 = 0 :re	's complemen	t) e			

27.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C18 and MPLAB C30 C Compilers
 - MPLINK™ Object Linker/
 - MPLIB™ Object Librarian
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD 2
- Device Programmers
 - PICSTART® Plus Development Programmer
 - MPLAB PM3 Device Programmer
 - PICkit[™] 2 Development Programmer
- Low-Cost Demonstration and Development Boards and Evaluation Kits

27.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- Visual device initializer for easy register initialization
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as HI-TECH Software C Compilers and IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (assembly or C)
 - Mixed assembly and C
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

28.2 DC Characteristics: Power-Down and Supply Current PIC18F2455/2550/4455/4550 (Industrial) PIC18LF2455/2550/4455/4550 (Industrial) (Continued)

PIC18LF2455/2550/4455/4550 (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
PIC18F2455/2550/4455/4550 (Industrial)			Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial					
Param No.	Symbol	Device	Тур	Мах	Units	Conditions		
		Supply Current (IDD) ⁽²⁾						
		PIC18LFX455/X550	15	32	μA	-40°C		
			15	30	μA	+25°C	VDD = 2.0V	
			15	29	μA	+85°C		
		PIC18LFX455/X550	40	63	μA	-40°C		Fosc = 31 kHz
			35	60	μA	+25°C	VDD = 3.0V	(RC_RUN mode,
			30	57	μA	+85°C		INTRC source)
		All devices	105	168	μA	-40°C	_	
			90	160	μA	+25°C	VDD = 5.0V	
			80	152	μA	+85°C		
		PIC18LFX455/X550	0.33	1	mA	-40°C	_	
			0.33	1	mA	+25°C	VDD = 2.0V	
			0.33	1	mA	+85°C		
		PIC18LFX455/X550	0.6	1.3	mA	-40°C	_	Fosc = 1 MHz
			0.6	1.2	mA	+25°C	VDD = 3.0V	(RC_RUN mode,
			0.6	1.1	mA	+85°C		INTOSC source)
		All devices	1.1	2.3	mA	-40°C	_	
			1.1	2.2	mA	+25°C	VDD = 5.0V	
			1.0	2.1	mA	+85°C		
		PIC18LFX455/X550	0.8	2.1	mA	-40°C	-	
			0.8	2.0	mA	+25°C	VDD = 2.0V	
			0.8	1.9	mA	+85°C		
		PIC18LFX455/X550	1.3	3.0	mA	-40°C		Fosc = 4 MHz
			1.3	3.0	mA	+25°C	VDD = 3.0V	(RC_RUN mode,
			1.3	3.0	mA	+85°C		in 1050 source)
		All devices	2.5	5.3	mA	-40°C		
			2.5	5.0	mA	+25°C	VDD = 5.0V	
			2.5	4.8	mA	+85°C		

Legend: Shading of rows is to assist in readability of the table.

Note 1: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD or VSS and all features that add delta current disabled (such as WDT, Timer1 Oscillator, BOR, etc.).

2: The supply current is mainly a function of operating voltage, frequency and mode. Other factors, such as I/O pin loading and switching rate, oscillator type and circuit, internal code execution pattern and temperature, also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD or VSS;

MCLR = VDD; WDT enabled/disabled as specified.

 Standard low-cost 32 kHz crystals have an operating temperature range of -10°C to +70°C. Extended temperature crystals are available at a much higher cost.

4: BOR and HLVD enable internal band gap reference. With both modules enabled, current consumption will be less than the sum of both specifications.

Package Marking Information (Continued)

44-Lead TQFP

44-Lead QFN

Example

Example

DS39632E-page 410

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES		
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν		40	
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	-	.023
Overall Row Spacing §	eB	-	-	.700

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS		
Dimensior	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	44				
Pitch	е	0.65 BSC				
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	E	8.00 BSC				
Exposed Pad Width	E2	6.30	6.45	6.80		
Overall Length	D	8.00 BSC				
Exposed Pad Length	D2	6.30	6.45	6.80		
Contact Width	b	0.25	0.30	0.38		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	_	_		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

DC and AC Characteristics	
Graphs and Tables	407
DC Characteristics	379
Power-Down and Supply Current	370
Supply Voltage	369
DCFSNZ	333
DECF	332
DECFSZ	333
Dedicated ICD/ICSP Port	311
Development Support	363
Device Differences	419
Device Overview	7
Features (table)	9
New Core Features	7
Other Special Features	8
Device Reset Timers	
Oscillator Start-up Timer (OST)	
PLL Lock Time-out	
Power-up Timer (PWRT)	
Direct Addressing	75

Е

Effect on Standard PIC MCU Instructions	77, 360
Electrical Characteristics	367
Enhanced Capture/Compare/PWM (ECCP)	151
Associated Registers	164
Capture and Compare Modes	152
Capture Mode. See Capture (ECCP Module).	
Outputs and Configuration	152
Pin Configurations for ECCP1	152
PWM Mode. See PWM (ECCP Module).	
Standard PWM Mode	152
Timer Resources	152
Enhanced Universal Synchronous Asynchronous	
Receiver Transmitter (EUSART). See EUSART.	
Equations	
A/D Acquisition Time	270
A/D Minimum Charging Time	270
Calculating the Minimum Required A/D	
Acquisition Time	270
Errata	5
EUSART	
Asynchronous Mode	253
12-Bit Break Transmit and Receive	259
Associated Registers, Receive	257
Associated Registers, Transmit	255
Auto-Wake-up on Sync Break Character	258
Receiver	256
Setting up 9-Bit Mode with	
Address Detect	256
Transmitter	253
Baud Rate Generator	
Operation in Power-Managed Modes	247
Baud Rate Generator (BRG)	247
Associated Registers	248
Auto-Baud Rate Detect	251
Baud Rate Error, Calculating	248
Baud Rates, Asynchronous Modes	249
High Baud Rate Select (BRGH Bit)	247
Sampling	247

Synchronous Master Mode	. 260
Associated Registers, Receive	. 262
Associated Registers, Transmit	. 261
Reception	. 262
Transmission	. 260
Synchronous Slave Mode	. 263
Associated Registers, Receive	. 264
Associated Registers, Transmit	. 263
Reception	. 264
Transmission	. 263
Extended Instruction Set	. 355
ADDFSR	. 356
ADDULNK	. 356
and Using MPLAB IDE Tools	. 362
CALLW	. 357
Considerations for Use	. 360
MOVSF	. 357
MOVSS	. 358
PUSHL	. 358
SUBFSR	. 359
SUBULNK	. 359
Syntax	. 355
External Clock Input	26

F

Fail-Safe Clock Monitor	291, 306
Exiting the Operation	306
Interrupts in Power-Managed Modes	307
POR or Wake-up from Sleep	307
WDT During Oscillator Failure	306
Fast Register Stack	62
Firmware Instructions	313
Flash Program Memory	81
Associated Registers	89
Control Registers	82
EECON1 and EECON2	82
TABLAT (Table Latch) Register	84
TBLPTR (Table Pointer) Register	
Erase Sequence	86
Erasing	86
Operation During Code-Protect	89
Protection Against Spurious Writes	
Reading	
Table Pointer	
Boundaries Based on Operation	84
Table Pointer Boundaries	
Table Reads and Table Writes	
Unexpected Termination of Write	
Write Sequence	
Write Verify	
Writing To	
FSCM. See Fail-Safe Clock Monitor.	

G

GOTO	334
н	
Hardware Multiplier	97
Introduction	97
Operation	97
Performance Comparison	97