

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-UFQFN Exposed Pad
Supplier Device Package	28-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1902-e-mv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-4 can be addressed from any Bank.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	Bank 0-31										
x00h or x80h	INDF0	Addressing (not a phys	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)								uuuu uuuu
x01h or x81h	INDF1	Addressing (not a phys	this location ical register)	uses conte	nts of FSR1H	/FSR1L to a	ddress data r	memory		xxxx xxxx	uuuu uuuu
x02h or x82h	PCL	Program C	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	—	—	_	TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect Data Memory Address 0 Low Pointer								0000 0000	uuuu uuuu
x05h or x85h	FSR0H	Indirect Da	Indirect Data Memory Address 0 High Pointer							0000 0000	0000 0000
x06h or x86h	FSR1L	Indirect Da	Indirect Data Memory Address 1 Low Pointer							0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Data Memory Address 1 High Pointer 0000 0000							0000 0000	0000 0000	
x08h or x88h	BSR	—	_		BSR4	BSR3	BSR2	BSR1	BSR0	0 0000	0 0000
x09h or x89h	WREG	Working Register								0000 0000	uuuu uuuu
x0Ahor x8Ah	PCLATH	Write Buffer for the upper 7 bits of the Program Counter							-000 0000	-000 0000	
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-4: CORE FUNCTION REGISTERS SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 0										
00Ch	PORTA	PORTA Data Latch when written: PORTA pins when read								xxxx xxxx	uuuu uuuu
00Dh	PORTB	PORTB Dat	PORTB Data Latch when written: PORTB pins when read								
00Eh	PORTC	PORTC Dat	a Latch wher	n written: PO	RTC pins whe	n read				xxxx xxxx	uuuu uuuu
00Fh	—	Unimpleme	nted							—	_
010h	PORTE	—				RE3		_	_	x	u
011h	PIR1	TMR1GIF	ADIF	_	_		_	_	TMR1IF	000	00000
012h	PIR2	_				_	LCDIF	_	_	0	0
013h	_	Unimpleme	nted							_	_
014h	—	Unimpleme	nted							—	_
015h	TMR0	Timer0 Mod	ule Register							xxxx xxxx	uuuu uuuu
016h	TMR1L	Holding Reg	gister for the	Least Signific	ant Byte of th	e 16-bit TMR	1 Register			xxxx xxxx	uuuu uuuu
017h	TMR1H	Holding Reg	gister for the	Most Signific	ant Byte of the	e 16-bit TMR1	Register			xxxx xxxx	uuuu uuuu
018h	T1CON	TMR1CS1	TMR1CS0	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	_	TMR10N	0000 00-0	uuuu uu-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GSS1	T1GSS0	00x0 0x00	uuuu uxuu
01Ah to 01Fh	_	Unimplemented								_	
Ban	k 1										
08Ch	TRISA	PORTA Dat	a Direction R	egister						1111 1111	1111 1111
08Dh	TRISB	PORTB Dat	a Direction R	egister						1111 1111	1111 1111
08Eh	TRISC	PORTC Dat	a Direction R	legister						1111 1111	1111 1111
08Fh	—	Unimpleme	nted					1	1	_	—
090h	TRISE	-	—	_		(2)	_	—	—	1	1
091h	PIE1	TMR1GIE	ADIE	_		_	_	—	TMR1IE	000	00000
092h	PIE2	-	—	—	—	—	LCDIE	—	_	0	0
093h	—	Unimpleme	nted							—	
094h	—	Unimpleme	nted	1	1		1	1	1	_	—
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	WDTCON	_	_	WDTPS4	WDTPS3	WDTPS2	WDTPS1	WDTPS0	SWDTEN	01 0110	01 0110
098h		Unimplemented —								_	
099h	OSCCON	—	IRCF3	IRCF2	IRCF1	IRCF0	_	SCS1	SCS0	-011 1-00	-011 1-00
09Ah	OSCSTAT	T10SCR	_	OSTS	HFIOFR	_	—	LFIOFR	HFIOFS	0-d000	d-dd0d
09Bh	ADRESL	A/D Result I	Register Low							XXXX XXXX	uuuu uuuu
09Ch	ADRESH	A/D Result I	Register High	1						XXXX XXXX	uuuu uuuu
09Dh	ADCON0	—	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM	ADCS2	ADCS1	ADCS0	—	—	ADPREF1	ADPREF0	0000	0000
09Fh	—	Unimplemented — —									

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

PIC16LF1902/3

Bank 15 (Continued) 7ABh — Unimplemented — …<	other Resets									
7ABh — Unimplemented — 7ACh LCDDATA12 — — — — SEG26 COM0 SEG25 COM0 SEG24 COM0	ank 15 (Continued)									
7ACh LCDDATA12 — — — — SEG26 COM0 SEG25 COM0 SEG24 COM0	_									
7ADh — Unimplemented — 7AEh — Unimplemented — 7AFh LCDDATA15 — — — — SEG26 COM1 SEG25 COM1 SEG24 COM1 xxx 7B0h — Unimplemented — — — — — 7B1h — Unimplemented — — — — —	uuu									
7AEh — Unimplemented — — 7AFh LCDDATA15 — — — — SEG26 COM1 SEG25 COM1 SEG24 COM1 xxx 7B0h — Unimplemented — — — — 7B1h — Unimplemented — — — —	_									
7AFh LCDDATA15 — — — — — SEG26 COM1 SEG25 COM1 SEG24 COM1 xxx 7B0h — Unimplemented — — — — 7B1h — Unimplemented — — — —	_									
7B0h — Unimplemented — 7B1h — Unimplemented —	uuu									
7B1h — Unimplemented —	_									
	_									
7B2h LCDDATA18 — — — — — — SEG26 COM2 SEG25 COM2 SEG24 COM2 xxx	uuu									
7B3h — Unimplemented —	_									
7B4h — Unimplemented —	_									
7B5h LCDDATA21 — — — — — SEG26 COM3 SEG25 COM3 SEG24 COM3 xxx	uuu									
7B6h — Unimplemented —	—									
 7EFh										
Bank 16-30										
x0Ch or x8Ch to x1Fh or x9Fh	-									
Bank 31										
F8Ch — Unimplemented —	—									
FE3h										
FE4h STATUS_SHAD Z_SHAD DC_SHAD C_SHADxxx	uuu									
FE5h WREG_SHAD Working Register Normal (Non-ICD) Shadow xxxx xxxx	uuuu uuuu									
FE6h BSR_SHAD — — Bank Select Register Normal (Non-ICD) Shadow x xxxx	u uuuu									
FE7h PCLATH_SHAD Program Counter Latch High Register Normal (Non-ICD) Shadow -xxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	uuuu uuuu									
FE8h FSR0L_SHAD Indirect Data Memory Address 0 Low Pointer Normal (Non-ICD) Shadow xxxx xxxx	uuuu uuuu									
FE9h FSR0H_SHAD Indirect Data Memory Address 0 High Pointer Normal (Non-ICD) Shadow xxxx xxxx	uuuu uuuu									
FEAh FSR1L_SHAD Indirect Data Memory Address 1 Low Pointer Normal (Non-ICD) Shadow xxxx xxxx	uuuu uuuu									
FEBh FSR1H_SHAD Indirect Data Memory Address 1 High Pointer Normal (Non-ICD) Shadow xxxx xxxx	uuuu uuuu									
FECh – Unimplemented –	_									
FEDh STKPTR — — Current Stack Pointer 1 1111	1 1111									
FEEh TOSL Top of Stack Low byte xxxx xxxx	uuuu uuuu									
FEFh TOSH — Top of Stack High byte -xxx xxxx	-uuu uuuu									

 TABLE 3-5:
 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: Note 1

: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

3.5.2 LINEAR DATA MEMORY

The linear data memory is the region from FSR address 0x2000 to FSR address 0x29AF. This region is a virtual region that points back to the 80-byte blocks of GPR memory in all the banks.

Unimplemented memory reads as 0x00. Use of the linear data memory region allows buffers to be larger than 80 bytes because incrementing the FSR beyond one bank will go directly to the GPR memory of the next bank.

The 16 bytes of common memory are not included in the linear data memory region.

FIGURE 3-11: LINEAR DATA MEMORY MAP

3.5.3 PROGRAM FLASH MEMORY

To make constant data access easier, the entire program Flash memory is mapped to the upper half of the FSR address space. When the MSB of FSRnH is set, the lower 15 bits are the address in program memory which will be accessed through INDF. Only the lower eight bits of each memory location is accessible via INDF. Writing to the program Flash memory cannot be accomplished via the FSR/INDF interface. All instructions that access program Flash memory via the FSR/INDF interface will require one additional instruction cycle to complete.

FIGURE 3-12: PROGRAM FLASH MEMORY MAP

6.2.1.2 Secondary Oscillator

The secondary oscillator is a separate crystal oscillator that is associated with the Timer1 peripheral. It is optimized for timekeeping operations with a 32.768 kHz crystal connected between the T1CKI/T1OSO and T1OSI device pins.

The secondary oscillator can be used as an alternate system clock source and can be selected during run-time using clock switching. Refer to **Section 6.3** "**Clock Switching**" for more information.

FIGURE 6-3: QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - 2: Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Applications Notes:
 - AN826, "Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices" (DS00826)
 - AN849, "Basic PIC[®] Oscillator Design" (DS00849)
 - AN943, "Practical PIC[®] Oscillator Analysis and Design" (DS00943)
 - AN949, "Making Your Oscillator Work" (DS00949)
 - TB097, "Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS" (DS91097)
 - AN1288, "Design Practices for Low-Power External Oscillators" (DS01288)

6.2.2 INTERNAL CLOCK SOURCES

The device may be configured to use the internal oscillator block as the system clock by performing one of the following actions:

- Program the FOSC<1:0> bits in Configuration Word 1 to select the INTOSC clock source, which will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to the internal oscillator during run-time. See Section 6.3 "Clock Switching"for more information.

In **INTOSC** mode, CLKIN is available for general purpose I/O. CLKOUT is available for general purpose I/O or CLKOUT.

The function of the CLKOUT pin is determined by the state of the CLKOUTEN bit in Configuration Word 1.

The internal oscillator block has two independent oscillators that provides the internal system clock source.

- 1. The **HFINTOSC** (High-Frequency Internal Oscillator) is factory calibrated and operates at 16 MHz.
- The LFINTOSC (Low-Frequency Internal Oscillator) is uncalibrated and operates at 31 kHz.

6.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source.

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 6-1). The frequency derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 6.2.2.4** "Internal Oscillator Clock Switch Timing" for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<1:0> = 11, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

The High-Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running and can be utilized.

The High-Frequency Internal Oscillator Status Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

A block diagram of the interrupt logic is shown in

Figure 7.1 and Figure 7.1.

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.

This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- · Automatic Context Saving

Many peripherals produce Interrupts. Refer to the corresponding chapters for details.

FIGURE 7-1: INTERRUPT LOGIC

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	60
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		121
PIE1	TMR1GIE	ADIE	_	_	_	_	_	TMR1IE	61
PIE2	_	_	_	_	_	LCDIE	_	—	62
PIR1	TMR1GIF	ADIF	_	_	_	_	_	TMR1IF	63
PIR2	—	_	_	—	—	LCDIF	_	_	64

 TABLE 7-1:
 SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

8.0 POWER-DOWN MODE (SLEEP)

The Power-Down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. TO bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Secondary oscillator is unaffected and peripherals that operate from it may continue operation in Sleep.
- 7. ADC is unaffected, if the dedicated FRC clock is selected.
- 8. Capacitive Sensing oscillator is unaffected.
- 9. I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance).
- 10. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- · I/O pins should not be floating
- External circuitry sinking current from I/O pins
- · Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- · Modules using Secondary oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include the FVR module. See **13.0** "Fixed Voltage Reference (FVR)" for more information.

8.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 5.11**, **Determining the Cause of a Reset**.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

TABLE 10-1:FLASH MEMORY
ORGANIZATION BY DEVICE

Device	Row Erase (words)	Write Latches (words)	
PIC16(L)F1902	22	22	
PIC16(L)F1903	32	52	

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program					
	memory read are required to be NOPs.					
This prevents the user from executir 2-cycle instruction on the next instruction after the RD bit is set.						

FIGURE 10-1:

FLASH PROGRAM MEMORY READ FLOWCHART

EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY

- ; This row erase routine assumes the following:
- ; 1. A valid address within the erase row is loaded in ADDRH:ADDRL
- ; 2. ADDRH and ADDRL are located in shared data memory $0\,\mathrm{x}70$ $0\,\mathrm{x}7F$ (common RAM)

	BCF BANKSEL MOVF MOVWF MOVF BCF BSF BSF	INTCON,GIE PMADRL ADDRL,W PMADRL ADDRH,W PMADRH PMCON1,CFGS PMCON1,FREE PMCON1,WREN	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Not configuration space ; Specify an erase operation ; Enable writes</pre>
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP NOP	55h PMCON2 0AAh PMCON2 PMCON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; NOP instructions are forced as processor starts ; row erase of program memory. ; ; ; The processor stalls until the erase process is complete ; after erase processor continues with 3rd instruction</pre>
	BCF BSF	PMCON1,WREN INTCON,GIE	; Disable writes ; Enable interrupts

DS40001455F-page 79

© 2011-2016 Microchip Technology Inc

PIC16LF1902/3

REGISTER 11-5: PORTB: PORTB REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **RB<7:0>**: PORTB General Purpose I/O Pin bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 11-6: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

REGISTER 11-7: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7 | LATB6 | LATB5 | LATB4 | LATB3 | LATB2 | LATB1 | LATB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

15.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- Port configuration
- · Channel selection
- ADC voltage reference selection
- ADC conversion clock source
- Interrupt control
- Result formatting

15.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 11.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined
	as a digital input may cause the input
	buffer to conduct excess current.

15.1.2 CHANNEL SELECTION

There are up to 11 channel selections available:

- AN<13:0> pins
- · Temperature Indicator
- FVR (Fixed Voltage Reference) Output

Refer to Section 13.0 "Fixed Voltage Reference (FVR)" and Section 14.0 "Temperature Indicator Module" for more information on these channel selections.

The CHS bits of the ADCON0 register determine which channel is connected to the sample and hold circuit.

When changing channels, a delay is required before starting the next conversion. Refer to **Section 15.2 "ADC Operation"** for more information.

15.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provides control of the positive voltage reference. The positive voltage reference can be:

- VREF+ pin
- Vdd

15.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- · FRC (dedicated internal oscillator)

The time to complete one bit conversion is defined as TAD. One full 10-bit conversion requires 11.5 TAD periods as shown in Figure 15-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the A/D conversion requirements in **Section 21.0** "**Electrical Specifications**" for more information. Table 15-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

REGISTER 15-3: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	pit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ired				

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

REGISTER 15-4: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRES | S<1:0> | _ | — | _ | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 ADRES<1:0>: ADC Result Register bits Lower two bits of 10-bit conversion result

bit 5-0 **Reserved**: Do not use.

17.6.2.1 T1G Pin Gate Operation

The T1G pin is one source for Timer1 gate control. It can be used to supply an external source to the Timer1 gate circuitry.

17.6.2.2 Timer0 Overflow Gate Operation

When Timer0 increments from FFh to 00h, a low-to-high pulse will automatically be generated and internally supplied to the Timer1 gate circuitry.

17.6.3 TIMER1 GATE TOGGLE MODE

When Timer1 Gate Toggle mode is enabled, it is possible to measure the full-cycle length of a Timer1 gate signal, as opposed to the duration of a single level pulse.

The Timer1 gate source is routed through a flip-flop that changes state on every incrementing edge of the signal. See Figure 17-4 for timing details.

Timer1 Gate Toggle mode is enabled by setting the T1GTM bit of the T1GCON register. When the T1GTM bit is cleared, the flip-flop is cleared and held clear. This is necessary in order to control which edge is measured.

Note: Enabling Toggle mode at the same time as changing the gate polarity may result in indeterminate operation.

17.6.4 TIMER1 GATE SINGLE-PULSE MODE

When Timer1 Gate Single-Pulse mode is enabled, it is possible to capture a single pulse gate event. Timer1 Gate Single-Pulse mode is first enabled by setting the T1GSPM bit in the T1GCON register. Next, the T1GGO/DONE bit in the T1GCON register must be set. The Timer1 will be fully enabled on the next incrementing edge. On the next trailing edge of the pulse, the T1GGO/DONE bit will automatically be cleared. No other gate events will be allowed to increment Timer1 until the T1GGO/DONE bit is once again set in software. See Figure 17-5 for timing details.

If the Single Pulse Gate mode is disabled by clearing the T1GSPM bit in the T1GCON register, the T1GGO/DONE bit should also be cleared.

Enabling the Toggle mode and the Single-Pulse mode simultaneously will permit both sections to work together. This allows the cycle times on the Timer1 gate source to be measured. See Figure 17-6 for timing details.

17.6.5 TIMER1 GATE VALUE STATUS

When Timer1 gate value status is utilized, it is possible to read the most current level of the gate control value. The value is stored in the T1GVAL bit in the T1GCON register. The T1GVAL bit is valid even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

17.6.6 TIMER1 GATE EVENT INTERRUPT

When Timer1 Gate Event Interrupt is enabled, it is possible to generate an interrupt upon the completion of a gate event. When the falling edge of T1GVAL occurs, the TMR1GIF flag bit in the PIR1 register will be set. If the TMR1GIE bit in the PIE1 register is set, then an interrupt will be recognized.

The TMR1GIF flag bit operates even when the Timer1 gate is not enabled (TMR1GE bit is cleared).

R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
LCDIRE	—	LCDIRI	_	VLCD3PE	VLCD2PE	VLCD1PE	—
bit 7							bit 0
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is ur	nchanged	x = Bit is unkn	iown	-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is s	set	'0' = Bit is clea	ared	C = Only clea	rable bit		
bit 7	LCDIRE: LC	D Internal Refer	ence Enable	bit			
	1 = Internal	LCD Reference	is enabled a	nd connected to	the Internal Co	ontrast Control	circuit
hit 6		LCD Relefence					
		Distornal Defer		Idla Enchla hit			
DIL D			ence Lauden		D Doforonao I /	addar ia in naw	or mode (D'
	1 = When 1	the I CD Referen	er to shut dov	in power mode	'B' the I CD Int	ternal EVR buff	er is disabled
	0 = The LC	D Internal FVR	Buffer ignore	s the LCD Refe	rence Ladder P	ower mode.	
bit 4	Unimpleme	nted: Read as 'o)'				
bit 3	VLCD3PE:	VLCD3 Pin Enat	ole bit				
	1 = The VL	CD3 pin is conne	ected to the in	nternal bias volt	age LCDBIAS3	(1)	
	0 = The VL	CD3 pin is not co	onnected				
bit 2	VLCD2PE:	VLCD2 Pin Enab	ole bit			(1)	
	1 = The VL 0 = The VL	CD2 pin is conne CD2 pin is not co	ected to the ir	nternal bias volt	age LCDBIAS2	(1)	
bit 1	VLCD1PE: V	VLCD1 Pin Enab	ole bit				
	1 = The VL	CD1 pin is conne	ected to the in	nternal bias volt	age LCDBIAS1	(1)	
	0 = The VL	CD1 pin is not co	onnected				
bit 0	Unimpleme	nted: Read as ')'				
Note 1:	Normal pin contro	ols of TRISx and	ANSELx are	unaffected.			

REGISTER 18-3: LCDREF: LCD REFERENCE VOLTAGE CONTROL REGISTER

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 19-2.

FIGURE 19-2: PICkit[™] STYLE CONNECTOR INTERFACE

RRF	Rotate Right f through Carry			
Syntax:	[<i>label</i>] RRF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	See description below			
Status Affected:	С			
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.			
	C Register f			

SUBLW	Subtract W from literal				
Syntax:	[label] SL	JBLW k			
Operands:	$0 \leq k \leq 255$				
Operation:	$k \operatorname{-}(W) \operatorname{\rightarrow}(W$	/)			
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's com- plement method) from the 8-bit literal 'k'. The result is placed in the W regis- ter.				
	C = 0	W > k			
	C = 1	$W \le k$			
	DC = 0	W<3:0> > k<3:0>			
	DC = 1	$W < 3:0 > \le k < 3:0 >$			

SLEEP	Enter Sleep mode
Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow \text{WDT,} \\ \textbf{0} \rightarrow \text{WDT prescaler,} \\ \textbf{1} \rightarrow \overline{\text{TO}}, \\ \textbf{0} \rightarrow \overline{\text{PD}} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its pres- caler are cleared. The processor is put into Sleep mode with the oscillator stopped.

SUBWF	Subtract W from f				
Syntax:	[label] SU	IBWF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	$(f) - (W) \to (d$	estination)			
Status Affected:	C, DC, Z				
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f.				
	C = 0	W > f			
	C = 1	$W \leq f$			

	DC = 0	W<3:0> > f<3:0>
	DC = 1	$W<3:0> \le f<3:0>$
SUBWFB	Subtract	W from f with Borrow
Syntax:	SUBWFB	f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	(f) - (W) - (f)	$(\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z	
Description:	Subtract W (CARRY) fr ment metho stored in W	and the BORROW flag rom register 'f' (2's comple- od). If 'd' is '0', the result is '. If 'd' is '1', the result is

stored back in register 'f'.

TABLE 21-2: SUPPLY CURRENT (IDD)^(1,2)

PIC16LF1902/3			Standard Operating Conditions (unless otherwise stated)				
Param Device						Conditions	
No.	Characteristics	Min.	Тур†	Max.	Units	Vdd	Note
D010		_	58	75	μA	1.8	Fosc = 1 MHz EC Oscillator mode High-Power mode
			115	140	μA	3.0	
			133	176	μA	3.6	
D011			130	200	μA	1.8	Fosc = 4 MHz EC Oscillator mode High-Power mode
			245	300	μA	3.0	
			290	350	μA	3.6	
D012			218	275	μA	1.8	Fosc = 500 kHz HFINTOSC mode
			283	375	μA	3.0	
		—	314	395	μA	3.6	
D013		_	233	325	μA	1.8	Fosc = 1 MHz HFINTOSC mode
			309	425	μA	3.0	
		_	347	475	μA	3.6	
D014		_	305	360	μA	1.8	Fosc = 4 MHz HFINTOSC mode
		_	433	520	μA	3.0	
		_	500	600	μA	3.6	
D015		—	395	480	μA	1.8	Fosc = 8 MHz HFINTOSC mode
		_	600	720	μA	3.0	
		_	700	850	μA	3.6	
D016		—	567	670	μA	1.8	Fosc = 16 MHz HFINTOSC mode
		_	915	1100	μA	3.0	
		_	1087	1300	μA	3.6	
D017		_	2.7	7.2	μA	1.8	Fosc = 31 kHz LFINTOSC mode $-40^{\circ}C \le TA \le +125^{\circ}C$
		_	4.5	9.7	μA	3.0	
		_	5.2	12.0	μA	3.6	
D017A		_	2.7	6.5	μA	1.8	Fosc = 31 kHz LFINTOSC mode -40°C ≤ TA ≤ +85°C
		_	4.5	9.0	μA	3.0	
		_	5.2	11.0	μA	3.6	
D018		_	2.4	6.7	μA	1.8	Fosc = 32 kHz EC Oscillator mode, Low-Power mode -40°C \leq TA \leq +125°C
			4.2	9.2	μA	3.0	
		—	4.8	11.5	μA	3.6	
D018A		_	2.4	6.0	μA	1.8	Fosc = 32 kHz
		_	4.2	8.5	μA	3.0	EC Oscillator mode, Low-Power mode $-40^{\circ}C \le TA \le +85^{\circ}C$
		—	4.8	10.5	μA	3.6	

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: FVR and BOR are disabled.

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2011-2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0546-7