

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1902-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16LF1902/3 Family Types

	~	>		ash						LCD			
Device	Data Sheet Index	Program Memor Flash (words)	Data SRAM (bytes)	High-Endurance Fl (bytes)	I/OS ⁽²⁾	10-bit ADC (ch)	Timers (8/16-bit)	EUSART	Common Pins	Segment Pins	Total Segments	Debug ⁽¹⁾	ХГР
PIC16LF1902	(1)	2048	128	128	25	11	1/1		4	19	72 ⁽³⁾	Н	Y
PIC16LF1903	(1)	4096	256	128	25	11	1/1	_	4	19	72 ⁽³⁾	Н	Y
PIC16LF1904	(2)	4096	256	128	36	14	1/1	1	4	29	116	I/H	Y
PIC16LF1906	(2)	8192	512	128	25	11	1/1	1	4	19	72 ⁽³⁾	I/H	Y
PIC16LF1907	(2)	8192	512	128	36	14	1/1	1	4	29	116	I/H	Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, available using Debug Header.

2: One pin is input-only.

3: COM3 and SEG15 share a pin, so the total segments are limited to 72 for 28-pin devices.

Data Sheet Index: (Unshaded devices are described in this document.)

1: DS40001455 PIC16LF1902/1903 Data Sheet, 28-Pin Flash, 8-bit Microcontrollers.

2: DS40001569 PIC16LF1904/6/7 Data Sheet, 28/40/44-Pin Flash, 8-bit Microcontrollers.

Pin Diagrams

FIGURE 1: 28-PIN PDIP, SOIC, SSOP

	VPP/MCLR/RE3	1	28 RB7 ⁽¹⁾ /SEG13/ICSPDAT
	SEG12/AN0/RA0	2	27 RB6 ⁽¹⁾ /SEG14/ICSPCLK
	SEG7/AN1/RA1	3	26 RB5 ⁽¹⁾ /AN13/COM1
	COM2/AN2/RA2	4	25 RB4 ⁽¹⁾ /AN13/COM0
	SEG15/COM3/VREF+/AN3/RA3	5	24 RB3 ⁽¹⁾ /AN9/SEG26/VLCD3
	SEG4/T0CKI/RA4	6	23 RB2 ⁽¹⁾ /AN8/SEG25/VLCD2
	SEG5/AN4/RA5	7	22 RB1 ⁽¹⁾ /AN10/SEG24/VLCD1
	VSS	8	21 RB0 ⁽¹⁾ /AN12/INT/SEG0
	SEG2/CLKIN/RA7	9	20 VDD
	SEG1/CLKOUT/RA6	10	19 Vss
	T1CKI/T1OSO/RC0	11	18 RC7/SEG8
	T1OSI/RC1	12	17 RC6/SEG9
	SEG3/RC2	13	16 RC5/SEG10
	SEG6/RC3	14	15 RC4/T1G/SEG11
Note 1:	These pins have interrupt-on-change func	tionality.	

0/1	28-Pin PDIP/ SOIC/SSOP	28-Pin UQFN	A/D	Timers	ГСР	Interrupt	dn-Iluq	Basic
RA0	2	27	AN0		SEG12	—		
RA1	3	28	AN1		SEG7	_		
RA2	4	1	AN2		COM2	_		
RA3	5	2	AN3/VREF+	_	SEG15/COM3	_		_
RA4	6	3		TOCKI	SEG4	_		
RA5	7	4	AN4		SEG5	_		
RA6	10	7			SEG1	_		CLKOUT
RA7	9	6			SEG2	_		CLKIN
RB0	21	18	AN12		SEG0	INT/IOC	Y	
RB1	22	19	AN10		VLCD1/SEG24	IOC	Y	
RB2	23	20	AN8	—	VLCD2/SEG25	IOC	Y	—
RB3	24	21	AN9	—	VLCD3/SEG26	IOC	Y	—
RB4	25	22	AN11	_	COM0	IOC	Y	_
RB5	26	23	AN13	—	COM1	IOC	Y	—
RB6	27	24			SEG14	IOC	Y	ICSPCLK
RB7	28	25		_	SEG13	IOC	Y	ICSPDAT
RC0	11	8		T10S0/T1CKI		_		
RC1	12	9		T1OSI		_		
RC2	13	10		_	SEG3	—		
RC3	14	11			SEG6	_		
RC4	15	12		T1G	SEG11	_		
RC5	16	13		_	SEG10	—		_
RC6	17	14	—	—	SEG9	—	_	—
RC7	18	15			SEG8	_	_	
RE3	1	26	_		_	_	Y(1)	MCLR/Vpp
Vdd	20	17			_	—	_	VDD
Vss	8,19	5,16				—	_	Vss

TABLE 1: 28-PIN ALLOCATION TABLE (PIC16LF1902/3)

Note 1: Weak pull-up always enabled when MCLR is enabled, otherwise the pull-up is under user control.

3.2.2 SPECIAL FUNCTION REGISTER

The Special Function Registers (SFRs) are registers used by the application to control the desired operation of peripheral functions in the device. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh). The registers associated with the operation of the peripherals are described in the appropriate peripheral chapter of this data sheet.

3.2.3 GENERAL PURPOSE RAM

There are up to 80 bytes of GPR in each data memory bank. The Special Function Registers occupy the 20 bytes after the core registers of every data memory bank (addresses x0Ch/x8Ch through x1Fh/x9Fh).

3.2.3.1 Linear Access to GPR

The general purpose RAM can be accessed in a non-banked method via the FSRs. This can simplify access to large memory structures. See **Section 3.5.2** "**Linear Data Memory**" for more information.

3.2.4 COMMON RAM

There are 16 bytes of common RAM accessible from all banks.

FIGURE 3-3: BANKED MEMORY PARTITIONING

3.2.5 DEVICE MEMORY MAPS

The memory maps for PIC16LF1902 and PIC16LF1903 are as shown in **Table 3-3**.

TABLE 3-3: PIC16LF1902/3 MEMORY MAP

	BANK 0		BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h	Core Registers (Table 3-2)	080h	Core Registers (Table 3-2)	100h	Core Registers (Table 3-2)	180h	Core Registers (Table 3-2)	200h	Core Registers (Table 3-2)	280h	Core Registers (Table 3-2)	300h	Core Registers (Table 3-2)	380h	Core Registers (Table 3-2)
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	_	28Ch	-	30Ch	_	38Ch	_
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	—	30Dh	_	38Dh	—
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh		20Eh	_	28Eh	_	30Eh	_	38Eh	_
00Fh	_	08Fh	—	10Fh	_	18Fh		20Fh	_	28Fh	_	30Fh	_	38Fh	_
010h	PORTE	090h	—	110h	—	190h	_	210h	WPUE	290h	—	310h	—	390h	—
011h	PIR1	091h	PIE1	111h	_	191h	PMADRL	211h	_	291h	_	311h	—	391h	—
012h	PIR2	092h	PIE2	112h	_	192h	PMADRH	212h	_	292h	—	312h	_	392h	_
013h	—	093h	—	113h	—	193h	PMDATL	213h	—	293h	—	313h	—	393h	—
014h	_	094h	_	114h	_	194h	PMDATH	214h	—	294h	—	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	_	195h	PMCON1	215h	_	295h	—	315h	_	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	PMCON2	216h	—	296h	—	316h	_	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	_	217h	—	297h	—	317h	_	397h	—
018h	T1CON	098h	—	118h	_	198h	_	218h	—	298h	—	318h	_	398h	_
019h	T1GCON	099h	OSCCON	119h	—	199h	_	219h	—	299h	—	319h	_	399h	—
01Ah	_	09Ah	OSCSTAT	11Ah	_	19Ah	—	21Ah	—	29Ah	—	31Ah	_	39Ah	_
01Bh	_	09Bh	ADRESL	11Bh	_	19Bh	—	21Bh	—	29Bh	—	31Bh	_	39Bh	_
01Ch	—	09Ch	ADRESH	11Ch	—	19Ch	_	21Ch	—	29Ch	—	31Ch	_	39Ch	—
01Dh	—	09Dh	ADCON0	11Dh	—	19Dh		21Dh	—	29Dh	—	31Dh	—	39Dh	_
01Eh	—	09Eh	ADCON1	11Eh	—	19Eh		21Eh	—	29Eh	—	31Eh	—	39Eh	_
01Fh	—	09Fh	—	11Fh	—	19Fh	_	21Fh	—	29Fh	—	31Fh	—	39Fh	—
020h		0A0h	General Purpose Register 32 Bytes	120h 13Fh	General Purpose	1A0h	Unimplemented	220h	Unimplemented	2A0h	Unimplemented	320h	Unimplemented	3A0h	Unimplemented
06Eb	General Purpose Register	0EEb	General Purpose Register 48 Bytes ⁽¹⁾	140h 16Eb	Register 80 Bytes ⁽¹⁾	1FFh	Read as '0'	26Fh	Read as '0'	2EFh	Read as '0'	36Fh	Read as '0'	3EFh	Read as '0'
070h	96 Bytes	0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
			Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: PIC16LF1903 only.

3.2.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-4 can be addressed from any Bank.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	Bank 0-31										
x00h or x80h	INDF0	Addressing (not a phys	this location ical register)	uses conte	nts of FSR0H	/FSR0L to a	ddress data r	memory		xxxx xxxx	uuuu uuuu
x01h or x81h	INDF1	Addressing (not a phys	this location ical register)	uses conte	nts of FSR1H	/FSR1L to a	ddress data r	memory		xxxx xxxx	uuuu uuuu
x02h or x82h	PCL	Program C	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	—	—	_	TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect Data Memory Address 0 Low Pointer								0000 0000	uuuu uuuu
x05h or x85h	FSR0H	Indirect Data Memory Address 0 High Pointer								0000 0000	0000 0000
x06h or x86h	FSR1L	Indirect Da	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000
x08h or x88h	BSR	—	_		BSR4	BSR3	BSR2	BSR1	BSR0	0 0000	0 0000
x09h or x89h	WREG	Working Register								0000 0000	uuuu uuuu
x0Ahor x8Ah	PCLATH	Write Buffer for the upper 7 bits of the Program Counter								-000 0000	-000 0000
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-4: CORE FUNCTION REGISTERS SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

GURE 6-4:	INTERNAL OSCILLATOR SWITCH TIMING
HENGCORC	LFINTOSC (WOT disabled)
HFINTOSC	Osciliuses Qeley ⁶⁹ (a cycle Byne Running
LFINTOSC	
IRCF <3:0>	$\neq 0$ $= 0$
System Clock	
	LENETOSO (WOY enabled)
HFINTOSC	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $X = 0$
System Clock	
1 NIN NY	
	LFUECCE and an analysis
CF831C65C	
MERICISC.	
\$\$C\$ <\$C\$	
System Circle	
Nexte 1 2 - See 3	and a set for more information.

TABLE 6-1: OSCILLATOR SWITCHING DELAYS

Switch From	Switch To	Oscillator Delay		
	LFINTOSC	1 cycle of each clock source		
Any clock course	HFINTOSC	2 μs (approx.)		
Any clock source	ECH, ECM, ECL	2 cycles		
	Secondary Oscillator	1024 Secondary Oscillator Cycles		

8.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	60
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	101
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	101
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	101
PIE1	TMR1GIE	ADIE	—	—	—	—	—	TMR1IE	61
PIE2	—	—	—	—	—	LCDIE	—	—	62
PIR1	TMR1GIF	ADIF	—	—	—	—	—	TMR1IF	63
PIR2	—	—	—	—	—	LCDIF	—	—	64
STATUS	—	—	—	TO	PD	Z	DC	С	16
WDTCON	—	—		١	SWDTEN	70			

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

9.0 WATCHDOG TIMER

The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.

The WDT has the following features:

- Independent clock source
- · Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (typical)
- Multiple Reset conditions
- Operation during Sleep

9.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator. Time intervals in this chapter are based on a nominal interval of 1 ms. See **Section 21.0 "Electrical Specifications"** for the LFINTOSC tolerances.

9.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Word 1. See Table 9-1.

9.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Word 1 are set to '11', the WDT is always on.

WDT protection is active during Sleep.

9.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Word 1 are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

9.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Word 1 are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 9-1 for more details.

TABLE 9-1:	WDT OF	'ERATING	MODES
------------	--------	-----------------	-------

WDTE<1:0>	SWDTEN	Device Mode	WDT Mode
11	х	Х	Active
10		Awake	Active
TO	A	Sleep	Disabled
0.1	1	~	Active
UI	0	~	Disabled
00	х	х	Disabled

TABLE 9-2: WDT CLEARING CONDITIONS

Conditions	WDT		
WDTE<1:0> = 00			
WDTE<1:0> = 01 and SWDTEN = 0			
WDTE<1:0> = 10 and enter Sleep	Cleared		
CLRWDT Command	Cleared		
Oscillator Fail Detected			
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK			
Change INTOSC divider (IRCF bits)	Unaffected		

9.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds (nominal). After a Reset, the default time-out period is two seconds.

9.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- Device enters Sleep
- · Device wakes up from Sleep
- · Oscillator fail event
- · WDT is disabled

See Table 9-2 for more information.

9.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See Section 3.0 "Memory Organization" and STATUS register (Register 3-1) for more information.

EXAMPLE 10-1: FLASH PROGRAM MEMORY READ

* This code block will read 1 word of program

- * memory at the memory address:
- PROG_ADDR_HI : PROG_ADDR_LO
- * data will be returned in the variables;
- * PROG_DATA_HI, PROG_DATA_LO

BANKSEL	PMADRL	; Select Bank for PMCON registers
MOVLW	PROG_ADDR_LO	;
MOVWF	PMADRL	; Store LSB of address
MOVLW	PROG_ADDR_HI	;
MOVWL	PMADRH	; Store MSB of address
BCF BSF NOP NOP	PMCON1,CFGS PMCON1,RD	<pre>; Do not select Configuration Space ; Initiate read ; Ignored (Figure 10-2) ; Ignored (Figure 10-2)</pre>
MOVF	PMDATL,W	; Get LSB of word
MOVWF	PROG_DATA_LO	; Store in user location
MOVF	PMDATH,W	; Get MSB of word
MOVWF	PROG_DATA_HI	; Store in user location

FLASH PROGRAM MEMORY READ CYCLE EXECUTION **FIGURE 10-2:**

10.2.4 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the address in PMADRH:PMADRL of the row to be programmed.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 10-5 (row writes to program memory with 32 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper ten bits of PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:5>) with the lower five bits of PMADRL, (PMADRL<7:5>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the PMDATH:PMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash Program Memory.

- Note: The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the unlock sequence is interrupted, writing to the latches or program memory will not be initiated.
- 1. Set the WREN bit of the PMCON1 register.
- 2. Clear the CFGS bit of the PMCON1 register.
- Set the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash Program Memory.
- 4. Load the PMADRH:PMADRL register pair with the address of the location to be written.
- 5. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The write latch is now loaded.
- 7. Increment the PMADRH:PMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '0', the write sequence will initiate the write to Flash Program Memory.
- 10. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- 11. Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The entire program memory latch content is now written to Flash Program Memory.
 - **Note:** The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 10-3. The initial address is loaded into the PMADRH:PMADRL register pair; the data is loaded using indirect addressing.

17.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- · Programmable internal or external clock source
- 2-bit prescaler
- · Dedicated 32 kHz oscillator circuit
- Multiple Timer1 gate (count enable) sources
- · Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- Selectable Gate Source Polarity
- · Gate Toggle mode
- Gate Single-pulse mode
- · Gate Value Status
- · Gate Event Interrupt

Figure 17-1 is a block diagram of the Timer1 module.

17.10 Timer1 Gate Control Register

The Timer1 Gate Control register (T1GCON), shown in Register 17-2, is used to control Timer1 gate.

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u		
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	1GGO/ T1GVAL DONE		T1GSS<1:0>		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cleared		HC = Bit is cleared by hardware					
bit 7	it 7 TMR1GE: Timer1 Gate Enable bit <u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function								
bit 6	T1GPOL: Timer1 Gate Polarity bit 1 = Timer1 gate is active-high (Timer1 counts when gate is high) 0 = Timer1 gate is active-low (Timer1 counts when gate is low)								
bit 5	T1GTM: Timer1 Gate Toggle Mode bit 1 = Timer1 Gate Toggle mode is enabled 0 = Timer1 Gate Toggle mode is disabled and toggle flip-flop is cleared Timer1 gate flip-flop toggles on every rising edge.								
bit 4	T1GSPM: Timer1 Gate Single-Pulse Mode bit								
	 1 = Timer1 gate Single-Pulse mode is enabled and is controlling Timer1 gate 0 = Timer1 gate Single-Pulse mode is disabled 								
bit 3	T1GGO/DONE: Timer1 Gate Single-Pulse Acquisition Status bit								
	 1 = Timer1 gate single-pulse acquisition is ready, waiting for an edge 0 = Timer1 gate single-pulse acquisition has completed or has not been started 								
bit 2	T1GVAL: Timer1 Gate Current State bit								
	Indicates the current state of the Timer1 gate that could be provided to TMR1H:TMR1L. Unaffected by Timer1 Gate Enable (TMR1GE).								
bit 1-0	T1GSS<1:0>: Timer1 Gate Source Select bits								
	00 = Timer1 gate pin 01 = Timer0 overflow output 10 = Reserved 11 = Reserved								

REGISTER 17-2: T1GCON: TIMER1 GATE CONTROL REGISTER

18.4.3 AUTOMATIC POWER MODE SWITCHING

As an LCD segment is electrically only a capacitor, current is drawn only during the interval where the voltage is switching. To minimize total device current, the LCD internal reference ladder can be operated in a different power mode for the transition portion of the duration. This is controlled by the LCDRL Register (Register 18-7). The LCDRL register allows switching between two power modes, designated 'A' and 'B'. 'A' Power mode is active for a programmable time, beginning at the time when the LCD segments transition. 'B' Power mode is the remaining time before the segments or commons change again. The LRLAT<2:0> bits select how long, if any, that the 'A' Power mode is active. Refer to Figure 18-4.

To implement this, the 5-bit prescaler used to divide the 32 kHz clock down to the LCD controller's 1 kHz base rate is used to select the power mode.

FIGURE 18-4: LCD INTERNAL REFERENCE LADDER POWER MODE SWITCHING DIAGRAM – TYPE A

RETFIE	Return from Interrupt						
Syntax:	[<i>label</i>] RETFIE k						
Operands:	None						
Operation:	$TOS \rightarrow PC, \\ 1 \rightarrow GIE$						
Status Affected:	None						
Description:	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in the PC. Interrupts are enabled by setting Global Interrupt Enable bit, GIE (INTCON<7>). This is a 2-cycle instruction.						
Words:	1						
Cycles:	2						
Example:	RETFIE						
	After Interrupt PC = TOS GIE = 1						

RETURN	Return from Subroutine					
Syntax:	[label] RETURN					
Operands:	None					
Operation:	$TOS \rightarrow PC$					
Status Affected:	None					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a 2-cycle instruction.					

RETLW	Return with literal in W	DIE	Pototo Loft f through Corry			
Syntax:	[<i>label</i>] RETLW k					
Operands:	$0 \le k \le 255$	Syntax:	[<i>label</i>] RLF f,d			
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$	Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Status Affected	None	Operation:	See description below C			
	The W register is loaded with the 8-bit	Status Affected:				
Description.	literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a 2-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is			
Words:	1		stored back in register 1.			
Cycles:	2					
Example:	CALL TABLE;W contains table	Words:	1			
	; offset value	Cycles:	1			
TABLE	• /W HOW HAS LADIE Value	Example:	RLF REG1,0			
	• ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ; • • RETLW kn ; End of table		Before Instruction REG1 = 1110 0110 C = 0 After Instruction			
	Before Instruction W = 0x07 After Instruction W = value of k8					

21.2 DC Characteristics

TABLE 21-1:SUPPLY VOLTAGE

PIC16LF1902/3			Standard Operating Conditions (unless otherwise stated)				
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
D001	Vdd	Supply Voltage	1.8	—	3.6	V	Fosc ≤ 16 MHz
			2.3	—	3.6	V	$Fosc \le 20 \text{ MHz} (EC \text{ mode})$
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	_	V	Device in Sleep mode
D002A*	VPOR*	Power-on Reset Release Voltage	1.54	1.64	1.74	V	
D002B*	VPORR*	Power-on Reset Rearm Voltage	-	1.7	_	V	Device in Sleep mode
D003	VADFVR	Fixed Voltage Reference Voltage for ADC, Initial Accuracy	6 7 7 8		4 4 6 6	%	1.024V, VDD ≥ 1.8V, 85°C 1.024V, VDD ≥ 1.8V, 125°C 2.048V, VDD ≥ 2.5V, 85°C 2.048V, VDD ≥ 2.5V, 125°C
D003A	VCDAFVR	Fixed Voltage Reference Voltage for Comparator and DAC, Initial Accu- racy	7 8 8 9		5 5 7 7	%	1.024V, VDD ≥ 1.8V, 85°C 1.024V, VDD ≥ 1.8V, 125°C 2.048V, VDD ≥ 2.5V, 85°C 2.048V, VDD ≥ 2.5V, 125°C
D003B	VLCDFVR	Fixed Voltage Reference Voltage for LCD Bias, Initial Accuracy	9 9.5	_	9 9	%	$\begin{array}{l} 3.072 \text{V}, \ \text{VDD} \geq 3.6 \text{V}, \ 85^{\circ}\text{C} \\ 3.072 \text{V}, \ \text{VDD} \geq 3.6 \text{V}, \ 125^{\circ}\text{C} \end{array}$
D003C*	TCVFVR	Temperature Coefficient, Fixed Volt- age Reference	—	-130	—	ppm/°C	
D003D*	$\Delta VFVR/$ ΔVIN	Line Regulation, Fixed Voltage Reference	—	0.270	—	%/V	
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	_	V/ms	See Section 5.1 "Power-on Reset (POR)" for details.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

FIGURE 21-3: POR AND POR REARM WITH SLOW RISING VDD

PIC16LF1902				Standard Operating Conditions (unless otherwise stated)					
Param.	Device Characteristics	Min.	Treat	Max. +85°C	Max. +125°C	Unito	Conditions		
No.			турт			Units	Vdd	Note	
	Power-down Base Current (IPD) ⁽²⁾							
D023			0.15	1.0	3.0	μA	1.8	WDT, BOR, FVR and T1OSC	
		_	0.16	2.0	4.0	μA	3.0	disabled, all Peripherals Inactive	
			0.65	3.0	5.0	μA	3.6		
D024			0.27	2.0	4.0	μA	1.8	WDT Current (Note 1)	
		l	0.56	3.0	5.0	μA	3.0		
			0.75	4.0	6.0	μA	3.6		
D025			17.5	31	35	μA	1.8	FVR current	
			17.7	33	38	μA	3.0		
		_	17.8	35	41	μA	3.6		
D026		_	0.15	2.3	3.56	μA	3.0	LPBOR current	
		_	0.21	3.4	4.70	μA	3.6		
D027		_	7.0	10	12	μA	3.0	BOR Current	
		_	7.5	12	14	μA	3.6		
D028		_	0.50	2.0	4.0	μA	1.8	T1OSC Current	
		_	0.60	3.0	5.0	μA	3.0		
		_	0.70	4.0	6.0	μA	3.6		
D029		_	0.40	2.0	4.0	μA	1.8	ADC Current (Note 1, Note 3),	
		_	0.70	3.0	5.0	μA	3.0	no conversion in progress	
		_	0.90	4.0	6.0	μA	3.6		
D030			—	250	_	μA	1.8	ADC Current (Note 1, Note 3),	
			_	250	_	μA	3.0	conversion in progress	
			_	250	_	μA	3.6		
D031	LCD Bias Ladder		•	•	•		•		
	Low power	_	1	2	6	μA	1.8		
	Medium Power	_	10	13	21	μA	3.0	1	
	High Power	_	100	111	120	μA	3.6	1	
+ Data in "Tyn" column is at 3.0V. 25°C unless otherwise stated. These parameters are for design guidance only and are									

TABLE 21-3: POWER-DOWN CURRENTS (IPD)

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Legend: TBD = To Be Determined

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

3: A/D oscillator source is FRC.

22.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

Graphs and charts are not available at this time.